請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43507完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張繼堯(Chi-Yao Chang) | |
| dc.contributor.author | Chun-Ping Wang | en |
| dc.contributor.author | 王俊平 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:22:35Z | - |
| dc.date.available | 2010-08-20 | |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-18 | |
| dc.identifier.citation | 山元孝吉,1971。袋形動物、輪蟲綱。新日本動物圖鑑上冊,岡田要編 三版404-423,北隆館。
北島 力、藤田矢郎、大和史人、米康夫、渡邊武,1979。クロレラベ培養したパン酵母ワムシの餌料效果。日水誌 45, 469-471。 荻野珍吉 著, 吳清熊 譯,1983。魚類之營養和飼料。國立編譯館。 呂明毅,1991。輪蟲生物學與大量培養問題之研究。養魚世界 l月,75-90. 黃貴民,1999。實用石斑魚養殖。水產出版社。 陳明耀,1997。生物餌料培養。水產出版社。 蘇惠美,1999。餌料生物之培養與利用。台灣省水產試驗所東港分所出版。 蘇惠美,廖一久,1986。台灣水產飼料之研究與發展(下)綜論餌料生物之營養價。台灣水產學會專集,5(2), 123-151。 陳紫媖、蘇惠美,2005。水產種苗的生產。科學發展月刊 385,32-41。 莊慶達、陳詩璋,2008。石斑魚種苗產銷與預警機制建構之探討。水產種苗專刊 ⅩⅢ,6-21。 漁業署,2006。中華民國台閩地區漁業統計年報,行政院農委會漁業署,台北。 黃丁士,1999。以沸石粉作為不同營養物的載體滋養輪蟲 (Brachionus plicatilis)後對嘉臘(Pagrus major)魚苖培育之評估。國立臺灣海洋大學水產養殖研究所碩士論文,基隆。 李明鋒,2003。海水魚卵孵化與魚苗培育系統之建立與試驗研究。國立中興大學生物產業機電工程學系碩士論文,台中。 錢昇威,2005。白條海葵魚胚胎與仔魚之發育及餵食不同微藻滋養之輪蟲對魚苗成長及活存研究。國立臺灣海洋大學水產養殖研究所碩士論文,基隆。 許珊菁, 2005。鼠模式中高脂飲食、肥胖與脂質調控基因之表現。國立臺灣大學微生物與生化學研究所博士論文,台北。 蔡美玲,2009。養殖海鱺過氧化體增生活化受體(PPAR)基因表現與體脂肪之研究。國立中山大學海洋生物研究所博士論文。 Aldridge, T.C., Tugwood, J.D., Green, S., 1995. Identification and characterization of DNA elements implicated in the regulation of CYP4A1 transcription. Biochem J 306 (Pt 2), 473-479. Auwerx, J., 1999. PPARgamma, the ultimate thrifty gene. Diabetologia 42, 1033-1049 Avella, M.A., Olivotto, I., Gioacchini, G., Maradonna, F., Carnevali, O., 2007. The role of fatty acids enrichments in the larviculture of false percula clownfish Amphiprion ocellaris. Aquaculture 273, 87-95. Batista,-Pinto, C., Rodrigues, P., Rocha, E., Lobo-da-Cunha, A., 2005. Identification and organ expression of peroxisome proliferator activated receptors in brown trout (Salmo trutta f. fario). Biochimica et Biophysica Acta 1731, 88-94. Bell, M.V., Batty, R.S., Dick, J.R., Fretwell, K., Navarro, J.C., Sargent, J.R., 1995. Dietary deficiency of docosahexaenoic acid impairs vision at law intensities in juvenile herring (Clupea harengus, L.) larvae during first feeding . Lipids 30, 443-449. Bell, M.V., Dick, J.R., Thrush, M., Navarro, J.C., 1996. Decreased 20:4n − 6/20:5n − 3 ratio in sperm from cultured sea bass, Dicentrarchus labrax, broodstock compared with wild fish. Aquaculture 144, 189-199. Berger, J., Wagner, J.A., 2002. Physiological and Therapeutic Roles of Peroxisome Proliferator-Activated Receptors. Diabetes Technology & Therapeutics. 4,163-174. Bell, J.G., McEvoy, L.A., Estevez, A., Shields, R.J., Sargent J.R., 2003. Optimising lipid nutrition in first-feeding flatfish larvae. Aquaculture 227, 211-220. Boukouvala, E., Antonopoulou, E., Favre-Krey, L., Diez, A., Bautista, J.M., Leaver, M.J., Tocher, D.R., Krey, G., 2004. Molecular Characterization of three peroxisome proliferator-activated receptors from the sea bass (Dicentrarchus labrax). Lipids 39, 1085-1092. Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H., Moras, D., 1995. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature 375, 377-382. Chawla, A., Repa, J.J., Evans, R.M., Mangelsdorf, D.J., 2001. Nuclear Receptors and Lipid Physiology: Opening the X-Files. Science 294, 1866-1870. Corton, J.C., Anderson, S.P., Stauber, A., 2000. Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annual Review of Pharmacology and Toxicology 40, 491-518. Chang, W. J., C. H. Chen, W. T. K. Cheng, and S. T. Ding. 2007. The effects of dietary docosahexaenoic acid enrichment on the expression of porcine genes. Asian-Aust. J. Anim. Sci. 20, 768-774. Doi, M., Munir, M.N., Nik Razali., N.L., Zulkifli, T., 1991. Artifical propagation of the grouper, Epinephelus suillus at the marine finfish hatchery in Tanjong Demong, Terengganu, Malaysia. Department of Fisheries, Ministry of Agriculture, Malaysia, 41 pp. Duplus, E., M. Glorian, and C. Forest. 2000. Fatty acid regulation of gene transcription. J Biol Chem 275, 30749-30752. Diez, A., Menoyo, D., Perez-Benavente, S., Calduch-Giner, J.A., Vega-Rubin, S., Celis, Obach, A., Favre-Krey, L., Boukouvala, E., Leaver, M.J., Tocher, D.R., Perez-Sanchez, J., Krey, G., Bautista, J.M., 2007. Conjugated Linoleic Acid Affects Lipid Composition, Metabolism, and Gene Expression in Gilthead Sea Bream (Sparus aurata L)1-3. The Journal of Nutrition 137, 1363-1369. Furukawa, A., 1966. Studies on feed of fish. V. Results of the small floating net culture test to establish the artificial diet as complete yellow-tail foods. Bull. Naikai. Reg. Fish. Res. Lab., No 23, 45-56. Fukuhara, O., Fushimi, T., 1988. Fin differentiation and squamation of artificially reared grouper , Epinepheius akaara. Aquaculture 69, 379-386. Forman, B.M., Tontonoz, P., Chen J., Brun, R.P., Spiegelman, B.M., Evans, R.M. 1995. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83, 803-812. Faustino, M., 2002. Developmental Osteology of the Gilthead Seabream (Sparus aurata, L.). Thesis. Faro University, Portugal. 187 pp. Feige, J.N., Gelman, L., Michalik, L., Desvergne, B., Wahli, W., 2006. From molecular action to physiological outputs: peroxisome proliferator activated receptors are nuclear receptors at the crossroads of key cellular functions, Prog. Lipid Res 45, 120-159. Fujii, A., Kurokawa, Y., Shin'ichiro Kawai, Yoseda, K., Dan, S., Kai, A., Tanaka, M., 2007. Diurnal variation of tryptic activity in larval stage and development of proteolytic enzyme activities of Malabar grouper (Epinephelus malabaricus) after hatching. Aquaculture 270, 68-76 Gómez, A., Serra, M., Carvalho, G.R., Lunt, D.H., 2002. Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis(rotifera). Evolution 56, 1431-1444. Garcia, A.S., Parrish, C.C., Brown, J.A., Johnson, S.C., Leadbeater, S., 2008. Use of differently enriched rotifers, Brachionus plicatilis, during larviculture of haddock, Melanogrammus aeglefinus: effects on early growth, survival and body lipid composition. Aquaculture Nutrition 14, 431-444. Hagiwara, A., Gallardo, W.G.., Assavaaree, M., Kotani, T., 2001. Live food production in Japan: recent progress and future aspects. Aquaculture 200, 111-127. Hiromi, O., Tetsuya, U., 2008. Molecular characterization of peroxisome proliferator-activated receptors ( PPARs) and their gene expression in the differentiating adipocytes of red sea bream Pagrus major. Comparative Biochemistry and Physiology, Part B 151, 268-277. Hong, S., Tjonahen, E., Morgan, E.L., Lu, Y., Serhan, C.N., Rowley, A.F., 2005. Rainbow trout (Oncorhynchus mykiss) brain cells biosynthesize novel docosahexaenoic acid-derived resolvins and protectins-mediator lipidomic analysis. 78, 107-116. Houseknecht, K.L., Cole, B.M., Steele, P.J., 2002. Peroxisome proliferator-activated receptor gamma (PPARy) and its ligands: A review. Domesti Animal Endocrinology 22, 1-23. Ibabe, A., Bilbao, E., Cajaraville, M.P., 2005. Expression of peroxisome proliferator-activated receptors in zebrafish (Danio rerio) depending on gender and developmental stage. Histochemistry and Cell Biology 123, 75-87. Issemann, I., Green, S., 1990. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645-650. Izquierdo, M.S., Palmas, L., Canaria, G., 1996. Essential fatty acid requirements of cultured marine fish larvae. Aquaculture Nutrition 2, 183-191. Johnson, D. W. and Katavic I., 1984. Mortality, growth, and swim bladder stress syndrome of sea bass (Dicentrarchus labrax) larvae under varied environmental conditions. Aquaculture 38, 67-78. James, M.J., Gibson, R.A. and Cleland, L.G. 2000. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr 71, 343-348. Jordal, A-E.O., Torstensen, B.E., Tsoi, S., Tocher, D.R., Lall, S.P., Douglas, S.E., 2005. Dietary Rapeseed Oil Affects the Expression of Genes Involved in Hepatic Lipid Metabolism in Atlantic Salmon (Salmo salar L.) The Journal of Nutrition 135, 2355-2361. Kraul, S., Nelson, A., Brittain, K., 1992. Evaluation of live feeds for postlarval mahimahi Coryphaena hippurus. Journal of World Aquaculture Soc. 23, 299-306. Kliewer, S.A., Lenhard, J.M., Willson, T.M., Patel, I., Morris, D.C., Lehmann, J.M., 1995. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83, 813-819. Koven, W., Barr, Y., Lutzky, S., Ben-Atia, I., Weiss, R., Harel, M., Behrens P., Tandler A, 2001. The effect of dietary arachidonic acid (20:4n−6) on growth, survival and resistance to handling stress in gilthead seabream (Sparus aurata) larvae. Aquaculture 193, 107-122. Kondo, H., Misaki, R., Gelman, L., Watabe, S., 2007. Ligand-dependent transcriptional activities of four torafugu pufferfish Takifugu rubripes peroxisome proliferator-activated receptors. General and Comparative Endocrinology 154, 120-127. Lall, S.P., Bishop, F.J., 1975. Studies on the nutrient requirements of rainbow trout(Salmo gairdnei) grown in seawater and freshwater. International Council for the Exploration of the Sea, Montreal, 1975. Fisheries Improvement Committee CM 1975/E, 19. Liao, I.C., Su, H.M., Chang, E.Y., 2001. Techniques in finfish larviculture in Taiwan. Aquaculture 200, 1-31. Leung, Y.F., Dowling, J.E., 2005. Gene Expression profiling of zebrafish embryonic retina. Zebrafish 2, 269-284. Leaver, M.J., Boukouvala, E., Antonopoulou, E., Diez, A., Favre-Krey, L., Ezaz, M.T., Bautista, J.M., Tocher, D.R., Krey, G., 2005. Three peroxisome proliferator-activated receptor isotypes from each of two species of marine fish. Endocrinology 146, 3150-3162. Leu, M.Y., Liou, C.H., Fang, L.S., 2005. Embryonic and larval development of the malabar grouper, Epinephelus malabaricus (Pisces: Serranidae). Journal of the Marine Biological Association of the UK 85, 1240-1254. Mandard, S., Muller, M., Kersten, S., 2004. Peroxisome proliferator-activated receptor alpha target genes. Cellular and Molecular Life Sciences 61, 393-416. Morais, S., Bell, J.G., Robertson, D.A., Roy, W.J., Morris, P.C., 2001. Protein /lipid rations in extruded diets for Atlantic cod (Gadus morhua L.): effects on growth, feed utilization, muscle composition and liver histology. Aquaculture 203, 101-119. Motojima, K., Passilly, P., Peters, J.M., Gonzalez, F.J., Latruffe, N., 1998. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. The Journal of Biological Chemistry 273, 16710-16714. Nagy, L., Tontonoz, P., Alvarez, J.G., Chen, H., Evans, R.M., 1998. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93, 229-40. Naz, M., 2008. The changes in the biochemical compositions and enzymatic activities of rotifer (Brachionus plicatilis, Muller) and Artemia during the enrichment and starvation periods. Fish Physiol Biochem 34, 391-404. Oku, H., Ogata, H.Y., 2000. Body lipid deposition in juveniles of red sea bream Pagrus major, yellowtail Seriola Quinqueradiata, and Japanese flounder Paralichthys olivaceus. Fisheries Science 66, 25-31. Ostrowski, A.C., Divakaran, S., 1990. Survival and bioconversion of n-3 fatty acids during early development of dolphin (Coryphaena hippurus) larvae fed oil-enriched rotifers. Aquaculture 89, 273-285. Peters, J.M., Lee, S.S., Li, W., Ward, J.M., Gavrilova, O., Everett, C., Reitman, M.L., Hudson, L.D., Gonzalez, F.J., 2000. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Mol Cell Biol 20, 5119-5128. Poitou, C., N. Viguerie, R. Cancello, R. De Matteis, S. Cinti, V. Stich, C. Coussieu, E. Gauthier, M. Courtine, J. D. Zucker, G. S. Barsh, W. Saris, P. Bruneval, A. Basdevant, D. Langin, and K. Clement. 2005. Serum amyloid A: Production by human white adipocyte and regulation by obesity and nutrition. Diabetologia 48, 519-528. Reitan, K.I., Rainuzzo, J.R., Olsen, Y., 1994. Influence of lipid composition of live feed on growth, survival and pigmentation of turbot larvae. Aquaculture International 2, 33-48. Rosen, E.D., Sarraf, P., Troy, A.E., Bradwin, G., Moore, K., Milstone, D.S., Spiegelman, B.M., Mortensen, R.M., 1999. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4, 611-617. Rasmussen, R.S., 2001. Quality of farmed salmonids with emphasis on proximate composition, yield and sensory characteristics. Aquaculture Research 32, 767-786. Roo, F.J., Hernandez-Cruz, C.M., Socorro, J.A., Fernandez-Palacios, H., Montero, D., Izquierdo, M.S., 2008. Effect of DHA content in rotifers on the occurrence of skeletal deformities in red porgy Pagrus pagrus ( Linnaeus, 1785) Aquaculture 287, 84-93. Shearer, K.D., 1994. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture 119, 63-88. Sheridan, M.A., 1988. Lipid dynamic in fish: aspects of absorption, transportation, deposition and mobilization. Comparative Biochemistry and Physiology 90B, 679-690. Su, H.M., Su, M.S., Liao, I.C., 1997. Preliminary results of providing various combinations of live foods to grouper (Epinephelus coioides) larvae. Hydrobiologia 358, 301-304. Spiegelman, B.M. 1998. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47, 507-514. Shields, R.J., Bell, J.G., Luizi, F.S., Gara, B., Bromage, N.R., Sargent, J.R., 1999. Natural Copepods Are Superior to Enriched Artemia Nauplii as Feed for Halibut Larvae (Hippoglossus hippoglossus) in Terms of Survival, Pigmentation and Retinal Morphology: Relation to Dietary Essential Fatty Acids. Journal of Nutrition. 129, 1186-1194. Sampath, H., Ntambi, J.M., 2004. Polyunsaturated fatty acid regulation of gene expression. Nutrition Review 62, 333-339 Santana, T.B., Masuda, R., Carrillo, E.J., Ganuza, E., Valencia, A., Hernández-Cruz, C.M., Izquierdo, M.S., 2007. Dietary n-3 HUFA deficiency induces a reduced visual response in gilthead seabream Sparus aurata larvae. Aquaculture 264, 408-417. Takeuchi, T., Watanabe T., 1980. Effect of polyunsaturated fatty acid in the growth of rainbow trout, chum salmon and coho salmo. Oral presentation at the annual meeting of Japan soc. Sci. Fish. In Oct. 1980. Tugwood, J.D., Issemann, I., Anderson, R.G., Bundell, K.R., McPheat, W.L. Green, S., 1992. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene. Embo J 11, 433-439. Teboul, L., Gaillard, D., Staccini, L., Inadera, H., Amri, E.Z., Grimaldi, P.A., 1995 Thiazolidinediones and fatty acids convert myogenic cells into adipose-like cells. J Biol Chem 270, 28183-28187. Tsai, M.L., Chen, H.Y., Tseng, M.C., Chang, R.C., 2008. Cloning of peroxisome proliferators activated receptors in the cobia (Rachycentron canadum) and their expression at different life-cycle stages under cage aquaculture. Gene 425, 69-78. Vagner, M., Robin, J.H., Zambonino Infante, J.L., Person-Le Ruyet, J., 2007. Combined effects of dietary HUFA level and temperature on sea bass (Dicentrarchus labrax) larvae development. Aquaculture 266, 179-190. Villeneuve, L., Gisbert, E., Le Delliou, H., Cahu, C.I., Zambonino-Infante, J., 2005. Dietary levels of all-trans retinol affect retinoid nuclear receptor expression and skeletal development in European sea bass larvae. Br. J. Nutr. 93, 1-12. Watanabe, T., Oowa, F., Kitajima, C., Fujita, S. and Yone, Y.,1979. Relation between the dietary value of rotifers Brachionus plicatis and their content of ω-3 highly unsaturated fatty acids. Bull. Jpn. Soc. Sci. Fish 45, 883-889. Watanabe, T., Tamiya, T., Oka, A., Hirata, M., Kitajima, C., Fujita, S., 1983b. Improvement of dietary value of live foods for fish larvae by feeding them on 3 highly unsaturated fatty acids and fat-soluble vitamins. Bull. Japan. Soc. Sci. Fish 49, 471-479. Watanabe, T., Kiron, V., 1994. Prospects in larval fish dietetics. Aquaculture 124, 223-251. Wu, Z., Xie, Y., Bucher, N.L., Farmer, S.R., 1995. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes and Development 9, 2350-63. Willson, T.M., Brown, P.J., Sternbach, D.D., Henke, B.R., 2000. The PPARs: fromorphan receptors to drug discovery. Journal of Medicinal Chemistry 43, 527-550. Willsom, T.M., Lehmann, J.M., Kliewer, S.A., 1996. Discovery of ligands for the nuclear peroxisome proliferator-activated receptors. Annals of the New York Academy of Science 804, 276-283. Yone, Y., Sakamote S., Furuichi M., 1974. Studies on red sea bream. Ⅸ. The basal diet for nutrition studies. Report. Fish. Res. Lab. Kyasha Univ., No. 2, 13-24. Youson, J.H., 1988. First metamorphosis. The Physiology of Developing Fish. Yang, R. Z., M. J. Lee, H. Hu, T. I. Pollin, A. S. Ryan, B. J. Nicklas, S. Snitker, R. B. Horenstein, K. Hull, N. H. Goldberg, A. P. Goldberg, A. R. Shuldiner, S. K. Fried, and D. W. Gong. 2006. Acute-phase serum amyloid A: An inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Med 3, e287 Zhou, S., Robert, G., Ackman, R.G., Morrison, C., 1995. Storage of lipids in the myosepta of Atlantic salmon (Salmon salar). Fish Physiology and Biochemistry 14, 171-178. Zou, J.X., Chang, L., Xiang, W.Z., Hu, C.Q., Lin, J.S., 2003. Parent grouper rearing, spawning, fertilization and embryonic development of Epinephelus malabaricus (Bloch & Schneider). Acta Hydrobiologica Sinica, 27, 378-384. Zoete, L., Grosdidier, A., Michielin, O., 2007. Peroxisome proliferator-activated receptor structures: Ligand specificity, molecular switch and interactions with regulators. Biochimica et biophysica Acta 1771, 915-925. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43507 | - |
| dc.description.abstract | 石斑魚(Grouper)育苗前期,以輪蟲(Rotifer, Brachionus plicatilis)為主要餌料生物,然而輪蟲營養價值不穩定,魚苗攝食後往往造成n-3高度不飽和脂肪酸(highly unsaturated fatty acid, HUFA)缺乏,進而增加魚體畸形和高死亡率。本研究以營養基因體學觀點,探討輪蟲營養強化後對點帶石斑(Epinephelus coioides)營養組成和骨骼發育之影響,並利用微陣列生物晶片(microarray biochip)探討表現差異之基因群,以建立健康石斑魚苗外表型與基因型關聯之基因標誌,作為營養需求與胚胎發育研究的基礎。本研究有兩組輪蟲滋養液配方,甲組為超級熊克(Super DC Selco),乙組為鱈魚乳化油,比照未滋養輪蟲之脂肪酸組成,超級熊克滋養輪蟲後其體內之粗脂質增加0.79 %,鱈魚乳化油滋養之粗脂質增加1.72 % ,而魚苗攝食滋養輪蟲比較攝食未滋養者,超級熊克滋養輪蟲餵飼之魚苗粗脂質增加0.48 %,鱈魚乳化油組粗脂質增加0.39 %。在花生四烯酸(arachidonic acid, ARA)組成上,以油脂滋養輪蟲投餵魚苗組較未滋養組含量減少,然而二十碳五烯酸(eicosapentaenoic acid, EPA)、二十二碳六烯酸(docosahexaenoic acid, DHA)及n-3 HUFA之蓄積量皆有顯著增加,超級熊克滋養輪蟲餵飼魚苗之n-3 HUFA達8.7 %,鱈魚乳化油組達8.9 %。輪蟲和魚苗間之脂肪酸轉換比例也呈現正向關係,魚苗不管攝食未滋養或甲乙組滋養輪蟲,其體內DHA和EPA比值皆大於1,其中超級熊克組更高達4以上。過氧化體增生活化受體 γ (peroxisome proliferators-activated receptor γ, PPAR γ)是調控脂肪代謝相關基因表現的重要轉錄因子,以RT-PCR比較滋養組和未滋養組全魚體之PPAR γ表現量,發現各組別間並沒有顯著差異,推論未滋養或滋養輪蟲之營養值已頗高,皆可維持其PPAR γ的表現量。由石斑魚胚胎發育期cDNA基因庫構築之微陣列生物晶片,分析超級熊克和乳化鱈魚油滋養組比較於未滋養組輪蟲餵食後之魚苗基因表現變化,發現共交集1.5倍以上促進表現(up-regulation)之基因群有37個,1.5倍以上抑制表現(down-regulation)之基因群有27個,進一步利用NCBI基因庫比對得知,促進表現之差異性基因群有骨骼及肌肉發育相關之結構蛋白質,如: myosin light chain 3、actin alpha skeletal muscle、muscle creatine kinase等,也有生理代謝相關酵素,如:chymotrypsinogen 2、pyruvate kinase、pancreatic carboxypeptidase B1、enolase 3、apolipoprotein A和hypothetical protein LOC等。抑制表現之差異性基因群有能量代謝相關之蛋白質:cytochrome c oxidase subunit III;結構蛋白質:alpha 2 type I collagen;DNA複製之關鍵酵素:checkpoint kinase 1;激活素受體:activin receptor IIA等。本研究結果顯示,點帶石斑魚苗餵食n-3 HUFA滋養後之輪蟲,可增加魚體粗脂質、EPA、DHA及n-3 HUFA含量,DHA/ EPA比值亦符合營養指標。透過微陣列生物晶片分析,可推論餌料生物營養組成與點帶石斑魚苗發育之關聯性。 | zh_TW |
| dc.description.abstract | In the early stage of grouper larvae culture, Rotifer (Brachionus pliicatilis) is the major living feed. However, the nutrition of rotifer is not stable, which leads to the lack of n-3 highly unsaturated fatty acid (HUFA) in larvae and the increase of malformation rate and mortality. In this study, we investigated the effect of rotifer nutrition enrichment on nutrition composition and skeleton development of Epinephelus coioides from the nutrition genomics point of view. We investigated the differentially expressed genes by microarray biochip to establish the gene markers relationship between healthy phenotype and genotype as the basis for nutrition needs and embryo development. There are two rotifer enrichment formulas designed in this study, one is Super DC Selco, the other is cod emulsion oil. After rotifer enrichment, the crude lipid content increases 0.79 % (Super DC Selco), 1.72 % (cod emulsion oil) in rotifer, and 0.48 % (Super DC Selco), 0.39 % (cod emulsion oil) in larvae. When the larvae group fed with rotifer enriched with emulsion, respectively the arachidonic acid (ARA) composition decreased. However, the accumulation amount of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and n-3 highly unsaturated fatty acid (HUFA) were significantly increased. The n-3 HUFA of larvae fed rotifer increased 8.7 % enriched with Super DC Selco, and 8.9 % enriched with cod emulsion oil, respectively. The fatty acid transfer through the food chain between rotifer and larvae was proportional. The DHA/EPA ratio was above 1, no matter the larvae was fed with enriched- or un-enriched- rotifer, and the DHA/EPA ratio even reached 4 for larvae fed with rotifer enriched with Super DC Selco. Peroxisome proliferator-activated receptor γ (PPAR γ) is an important transcription factor in regulating gene expression of lipid metabolism. Compare the expression amount of PPAR γ from grouper larvae in enriched group and un-enriched group by RT-PCR, we found that there is no significant difference between each group, which indicated that the nutrition of un-enriched- or enriched- rotifer has high nutrition already. Using the microarray biochip made from grouper embryonic stage cDNA library to analyze the gene expression profile of larvae fed with rotifer enriched with Super DC Selco or cod emulsion oil or un-enriched rotifer, we found that there were 37 genes with 1.5 fold up-regulation and 27 genes with 1.5 fold down-regulation. Further NCBI blast results showed that the up-regulated genes include skeletal and muscle development related structural proteins:ex myosin light chain 3, actin alpha skeletal muscle and muscle creatine kinase; metabolism related enzymes:ex chymotrypsinogen 2, pyruvate kinase, pancreatic carboxypeptidase B1, enolase 3, apolipoprotein A and hypothetical protein LOC. Whereas down-regulated genes include energy metabolism related protein: cytochrome c oxidase subunit III;structural protein:alpha 2 type I collagen;DNA replication related protein:checkpoint kinase 1 and activin receptor IIA. It is concluded that grouper larvae fed with enriched- rotifer the total n-3 HUFA was increased compare to that fed with un-enriched- rotifer in the composition of crude lipid, EPA, DHA and n-3 HUFA. Therefore microarray technique can establish the nutrition composition of living feed correlation with development of grouper larvae. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:22:35Z (GMT). No. of bitstreams: 1 ntu-98-R96b45026-1.pdf: 1327296 bytes, checksum: c54a977f479fdecc53b87b23c8973ab5 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要 …………………………………………………………………………….Ι
英文摘要 …………………………………………………………………………....Ⅲ 表目次 ……………………………………………………………………………....Ⅷ 圖目次 ……………………………………………………………………………....Ⅸ 一、 前言 …………………………………………………………………………1 二、 文獻回顧 ……………………………………………………………………4 2.1 水產種苗培育 ……………………………………………………………4 2.2 石斑魚(Epinephelus spp.) ………………………………………………..4 2.2.1. 石斑魚介紹 ………………………………………………………4 2.2.2 石斑魚繁殖與胚胎發育 …………………………………………5 2.3 餌料生物…………………………………………………………………7 2.3.1 輪蟲介紹 …………………………………………………………7 2.3.2 培育條件及營養價值 ……………………………………………8 2.4 脂肪酸……………………………………………………………………9 2.4.1脂肪酸介紹 ………………………………………………………9 2.4.2 魚類脂肪酸需求 ………………………………………………10 2.4.3 魚類體脂肪分佈…………………………………………………11 2.4.4 脂肪組成對魚類發育之外表型分析……………………………12 2.4.5 脂肪組成對魚類發育之基因型分析……………………………12 2.5 過氧化體增生活化受體(PPAR)之生理特性…………………………14 2.5.1 PPAR的發現 …………………………………………………14 2.5.2 PPAR的種類 …………………………………………………14 2.5.3 PPAR的結構 …………………………………………………15 2.5.4 PPRE…………………………………………………………..16 2.5.5 PPAR之ligands ………………………………………………17 2.5.6 PPAR γ和脂肪生合成 ………………………………………17 2.5.7 魚類PPARs之生理角色 ………………………………………18 三、 材料與方法 ……………………………………………………………….20 3.1 餌料生物培養…………………………………………………………20 3.1.1 輪蟲培養 ……………………………………………………20 3.1.2 藻類培養 ……………………………………………………20 3.1.3 韋因培養液配製………………………………………………21 3.2 輪蟲滋養………………………………………………………………21 3.3 點帶石斑(Epinephelus coioides)魚苗培育 …………………………22 3.4 粗脂質萃取……………………………………………………………22 3.5 脂肪酸萃取……………………………………………………………23 3.5.1 皂化 …………………………………………………………23 3.5.2 甲基酯化 ……………………………………………………23 3.5.3 氣相層析儀(GLC)分析………………………………………24 3.6 透明魚骨骼樣本製作與觀察 ………………………………………24 3.7 全魚體Total RNA之萃取 …………………………………………25 3.8 RNA變性電泳分析 ………………………………………………25 3.9 RNA cleanup純化………………………………………………… 26 3.10 點帶石斑之過氧化體增生活化受體基因選殖……………………27 3.10.1 專一性引子設計……………………………………………27 3.10.2 互補去氧核醣核酸(cDNA)製備……………………………27 3.10.2.1 One-step反轉錄聚合酶鏈鎖反應………………27 3.10.2.2 Two-step聚合酶鏈鎖反應 ……………………28 3.10.2.3 洋菜膠體電泳……………………………………29 3.10.3 載體接合作用………………………………………………29 3.10.4 勝任細胞製備………………………………………………30 3.10.5 轉形作用……………………………………………………30 3.10.6 質體DNA純化 ……………………………………………31 3.10.7 限制酶剪切作用……………………………………………31 3.10.8 DNA定序…………………………………………………32 3.10.9 PPAR γ基因表現量分析…………………………………32 3.11 微陣列生物晶片(Microarray biochip)分析………………………33 3.11.1 點帶石斑魚受精卵至白身期之cDNA基因庫製備………33 3.11.2 魚苗探針(Probe)製備………………………………………33 3.11.2.1 全魚體Total RNA之萃取同3.7……………….33 3.11.2.2 RNA變性電泳分析同3.8…………………….33 3.11.2.3 RNA cleanup純化同3.9………………………33 3.11.2.4 第一股cDNA合成 ……………………………33 3.11.2.5 cDNA coupling dye……………………………34 3.11.2.6 微陣列生物晶片前準備 ………………………34 3.11.2.7 雜合反應(Hybridization)……………………….34 3.11.2.8 差異性基因表現分析 …………………………35 3.11.2.9 候選基因定序分析……………………………35 四、 結果……………………………………………………………………..37 五、 討論…………………………………………………………………….44 六、 參考文獻……………………………………………………………….51 七、 表……………………………………………………………………….61 八、 圖……………………………………………………………………….71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 過氧化體增生活化受體 γ | zh_TW |
| dc.subject | 輪蟲 | zh_TW |
| dc.subject | n-3高度不飽和脂肪酸 | zh_TW |
| dc.subject | 石斑魚 | zh_TW |
| dc.subject | 花生四烯酸 | zh_TW |
| dc.subject | 二十二碳六烯酸 | zh_TW |
| dc.subject | 二十碳五烯酸 | zh_TW |
| dc.subject | PPAR γ | en |
| dc.subject | Grouper | en |
| dc.subject | Rotifer | en |
| dc.subject | n-3 HUFA | en |
| dc.subject | ARA | en |
| dc.subject | EPA | en |
| dc.subject | DHA | en |
| dc.title | 比較不同高度不飽和脂肪酸滋養之輪蟲餵食點帶石斑魚苗之發生與基因表現 | zh_TW |
| dc.title | Comparison of gene expression profile and development of red spotted grouper (Epinephelus coioides) larvae fed with various highly unsaturated fatty acids enriched rotifer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 廖文亮(Wen-Liang Liao) | |
| dc.contributor.oralexamcommittee | 蘇建國(Jyan-Gwo J. Su) | |
| dc.subject.keyword | 石斑魚,輪蟲,n-3高度不飽和脂肪酸,花生四烯酸,二十碳五烯酸,二十二碳六烯酸,過氧化體增生活化受體 γ, | zh_TW |
| dc.subject.keyword | Grouper,Rotifer,n-3 HUFA,ARA,EPA,DHA,PPAR γ, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
