Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43466
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹幸之
dc.contributor.authorChiung-Yi Huangen
dc.contributor.author黃瓊儀zh_TW
dc.date.accessioned2021-06-15T02:22:03Z-
dc.date.available2011-08-20
dc.date.copyright2009-08-20
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citation行政院農業委員會. 2005. 臺灣農家要覽-農作篇(二). 豐年社. 臺北.
行政院農業委員會農糧署. 2008. 臺灣地區主要農產品產銷及進出口量值(96年). 行政院農業委員會農糧署. 南投.
朱德民. 1995. 植物與環境逆境. 國立編譯館. 臺北.
李伯年. 1982. 蔬菜育種與採種. 國立編譯館. 臺北.
林上湖、姚士源、鐘文全. 2008. 臺灣馬鈴薯產業現況. 農業世界. 294:10-13.
王三太、廖文偉、曹幸之. 2008. 臺灣目前馬鈴薯品種介紹. 農業世界. 294:14-19.
許謙信、J.G. Atherton、P.G. Alderson. 2004. 利用葉綠素計量測菊花葉片老化. 臺中區農業改良場研究彙報. 83:39-51.
曹幸之、羅筱鳳. 2002. 蔬菜 (II) . 復文書局. 臺南.
戴振洋. 2001. 蔬菜耐熱品種篩選方法之探討. 臺中區農業改良場特刊. 51:20-21.
Abdul, K.S. and G.P. Harris. 1978. Control of flower number in the first inflorescence of tomato(Lycopersicon esculentum Mill.). Ann. Bot. 42:1631-1367.
Adachi, M., S. Kawabata and R. Sakiyama. 1999. Changes in carbohydrate content in cut chrysanthemum 'Shuho-no-chikara' stems kept at different temperature during anthesis and senescence. J. Jap. Soc. Hort. Sci. 68:505-512.
Adir, N., H. Zer, S. Shochat and I. Ohad. 2003. Photoinhibition-a historical perspective. Photosynthesis Research. 76:343-370.
Ahn, Y.J., K. Claussen and J.L. Zimmerman. 2004. Genotypic differences in the heat shock response and thermotolerance in four potato cultivars. Plant Sci. 166:901-911.
Alia and P. Saradhi. 1991. Proline accumulation under heavy metal stress. J. Plant. Physiol. 138:504-508.
Andre, C.M., M. Ghislain, P. Bertin, M. Oufir, M. Herrera, L. Hoffmann, J.F. Hausman, Y. Larondelle, D. Evers. 2007. Andean potato cultivars (solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J. Agric. Food Chem. 55:366-378.
Andrews, J.R., M.J. Fryer and N.R. Baker. 1995. Characterization of chilling effects on photosynthetic performance of maize crops during early season growth using chlorophyll fluorescence. J. Exp. Bot. 46:1195-1203.
Anderson, N.O., P.D. Ascher., R.E. Widmer and J.J. Luby. 1990. Rapid generation cycling of chrysanthemum using laboratory seed development and embryo rescue techniques. J. Amer. Soc. Hort. Sci. 115:329-336.
Asada, K., T. Endo, J. Mano and C. Miyake. 1998. Molecular mechanism for relaxation of and protection from light stress. p.37-52. In: K. Saton and N. Murata (eds.). Stress responses of photosynthetic organisms. Elsevier, Amsterdam.
AVRDC Progress Report. 1985. White potato. p.118-129. Asian Vegetable Research & Development Center, Shan-hwa, Tainan, Taiwan.
AVRDC Progress Report. 1988. White potato. p.26-33. Asian Vegetable Research & Development Center, Shan-hwa, Tainan, Taiwan.
Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examinaiton of future possibilities. J. Exp. Bot. 55:1607-1621.
Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39:205-207.
Ben Khedher, M. and E. E. Ewing. 1985. Growth analysis of eleven potato cultivars grown in the greenhouses under long photoperiods with and without heat stress. Am. Potato J. 62:537-554.
Bolhàr-Nordenkampf, H.R. and G. Öquist. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. p.193-206. In: Hall, D.O., J. M.O. Scurlock, H.R. Bolhàr-Nordenkampf, R.C. Leegood and S.P. Long (eds.). Photosynthesis and production in a changing environment: a field and laboratory manual. Chapman and Hall, London.
Briantais, J.M., J. Dacosta, Y. Goulas, J.M. Ducruet and I. Moya. 1996. Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, Fo: A time-resolved analysis. Photosyn. Res. 48:189-196.
Brown, C.R., R. Wrolstadt, R. Durst, C.P. Yang and B. Clevi¬dence. 2003. Breeding studies in potatoes contain¬ing high concentrations of anthocyanins. Am. J. Potato Res. 80: 241-249.
Brüggemann, W. and P. Linger. 1994. Long-term chilling of young tomato plants under low light. IV. Differential responses of chlorophyll fluorescence quenching coefficients in Lycopersicon species of different chilling sensitivity. Plant and Cell Physiology. 35:585-591.
Brüggemann, W., A. Wenner and Y. Sakata. 1995. Long-term chilling of young tomato plants under low light. VII. Increasing chilling tolerance of photosynthesis in Lycopersicon esculentum by somatic hybridization with L. peruvianum. Plant Sci 108:23-30.
Burton, W.G. 1972. The response of potato plant and tuber to temperature. p.217-233. In: Rees, A.R., K.E. Cockshull, D.W. Hand and R.G. Hurd (eds.). Crop processes in controlled environments. Academic Press, London.
Bushnell, J. 1925. The relation of temperature to growth and respiration in the potato plant. Minn. Agric. Exp. Stn. Tech. Bull. 34:1-29.
Chaisompongpan, N., P.H. Li, D.W. Davis and A.H. Markhart III. 1990. Photosynthetic responses to heat stress in common bean genotypes differing in heat acclimation potential. Crop Sci. 30:100-104.
Camejo, D., P. Rodr´ıguez, M.A. Morales, J.M. Dell’amico, A. Torrecillas and J.J. Alarc´on. 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162:281-289.
Campbell, R.J., K.N. Mobley, R.P.Marini and D.G. Pfeiffer. 1990. Growing conditions alter the relationship between SPAD-501 values and apple leaf chlorophyll. HortScience. 25:330-331
Cao, J. and Govindjee. 1990. Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem II in thylakoid membrane. Biochim. Biophys. Acta. 1015:180-188.
Casa, R., F. Pieruccetti, G. Sgueglia and B.L. Cascio. 2005. Potato tuber quality improvement through nitrogen management optimisation: review of methodologies. Acta Hort. 684:65-71.
Chen, H.H., Z.Y. Shen and P.H. Li. 1982. Adaptability of crop plants to high temperature stress. Crop Sci. 22:719-725.
Chen, K., G. Hu, N. Keutgen, M.J.J. Janssens and F. Lenz. 1999. Effects of NaCl salinity and CO2 enrichment on pepino (Solanum muricatum Ait.) II. Leaf photosynthetic properties and gas exchange. Sci Hort. 81:43-56.
Claussen, W. 2005. Proline as a measure of stress in tomato plants. Plant Sci. 168:241-248.
Chauhan, Y.S. and T. Senboku. 1996. Thermostabilities of cell-membrane and photosynthesis in cabbage cultivars differing in heat tolerance. J. plant physiol. 149:729-734.
Coria, N.A., J.L. Sarquis, I. Penalosa and M. Urzua. 1998. Heat-induced damage in potato (Solanum tuberosum) tubers: membrane stability, tissue viability, and accumulation of glycoalkaloids. J. Agric. Food Chem. 46:4524-4528.
Cristinsen, M.N. 1978. The physiology of plant tolerance of temperature extremes. p.173-191. In: Jung, G.A. (eds.).Crop tolerance to suboptimal land conditions. Am. Soc. Agron. Madison, Wis.
Decoteau, D.R. 2000. Solanum crops. p.404-408. In: Decoteau, D.R. (eds.). Vegetable Crops. Prentice Hall. New Jersey, USA.
Dekov, I., T. Tsonev and Yordanov. 2000. Effect of water stress and hght-temperature stress on the structure and activity of photosynthetic apparatus of Zea mays and Helianthus annuus. Photosynthetica. 38 : 361-336.
Delauney, A. J. and D.P.S. Verma. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4:215-223.
Demmig-Adams, B., W.W. III Adams, D.H. Barker, B.A. Logan, D.R. Bowling and A.S. Verhoeven. 1996. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol. Plant. 98:253-264.
Ducruet J.M., V. Peeva and M. Havaux. 2007. Chlorophyll thermofluorescence and thermoluminescence as complementary tools for the study of temperature stress in plants. Photosynth Res. 93: 159-171.
Eldredge, E.P., Z.A. Holmes, A.R. Mosley, C.C. Shock and D.T. Stieber. 1996. Effects of transitory water stress on potato tuber stem-end reducing sugar and fry color. Am. J. Potato Res. 73:517-530.
Ewing, E.E. 1981. Heat stress and the tuberization stimulus. Am. Potato J. 58:31-49.
Faria, T., J.I. Garcia-Plazaola, A. Abadia, S. Cerasoli, J.S. Pereira and M.M. Chaves. 1996. Diurnal changes in photoprotective mechanisms in leaves of cork oak (Quercus suber) during summer. Tree Physiol. 16:115-123.
Food and Agriculture Organization of the United Nations Statistics database accessed on 2008. http://faostat.fao.org/
Fracheboud, Y. and J. Leipner. 2003. The application of chlorophyll fluorescence to study light, temperature and drought stress. p.125-150. In: DeEll, J.R. and P.M.A. Tiovonen (eds.). Practical applications of chlorophyll fluorescence in plant biology. Kluwer Academic Publishers, Boston.
Gawronska, H., R.B. Dwelle, J.J. Pavek and P. Rowe. 1984. Partitioning of photo-assimilates by four potato clones. Crop Sci. 24:1031-1036.
Ghoulam, C., A. Foursy and K. Fares. 2002. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot. 47:39-50.
Girousse, C., R. Bournoville and J.L. Bonnemain. 1996. Water deficit-induced changes in concentrations in proline and some other amino acids in the phloem sap of alfalfa. Plant Physiol. 111:109-113.
Gregory, L.E. 1956. Some factors for tuberization in the potato plant. Am. J. Bot. 43:281-288.
Guilioni, L., J. Wery and F. Tardieu. 1997. Heat stress-induced abortion of buds and flowers in pea: is sensitivity linked to organ age or to relations between reproductive organs? Ann. Bot. 80:159-168.
Hall, A.E. 2001. Crop responses to environment.CRC Press LLC, Boca Raton, Florida.
Hare, P.D. and W.A. Cress. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21:79-102.
Hare, P.D., W.A. Cress and J.V. Staden. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21:535-553.
Hawkes, J.G. 1978. Biosystematics of the potato. p.15-69. In: Harris, P.M. (eds.). The potato crop. Chapman and Hall, London.
Havaux, M. 1993. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell Environ. 16: 461-467.
Havaux, M. 1995. Temperature sensitivity of the photochemical function of photosynthesis in potato (Solanum tuberosum) and a cultivated Andean hybrid (Solanum ×juzepczukii). J. Plant Physiol. 146:47-53.
Haverkort, A.J. 1989. Ecology of potato cropping systems in relation to altitude and latitude. Agric Syst. 32:251-272.
Haverkort, A.J. and P.M. Harris. 1987. A model for potato growth and yield under tropical highland conditions. Agric For Meteorol. 39:271-282.
Haverkort, A.J. and A. Verhagen. 2008. Climate change and its repercussions for the potato supply chain. Potato Res. 51:223-237.
Haverkort, A.J., A. Verhagen, A.C. Grashoff and P.W.J. Uithol. 2004. Potato-zoning: a decision support system on expanding the potato industry through agro-ecological zoning using the LINTUL simulation approach. p.29-44. In: MacKerron, D.K.L. and A.J. Haverkort (eds.). Decision support systems in potato production: bringing models to practice. Wageningen Academic, Wageningen.
Hetherington, S.E., R.M. Smillie, P. Malagamba and Z. Huamfin. 1983. Heat tolerance and cold tolerance of cultivated potatoes measured by the chlorophyll-fluorescence method. Planta. 159:119-124.
Higuchi, H.T. Sakuratani and N. Utsunomiya. 1999. Photosynthesis, leaf morphology, and shoot growth as affected by temperatures in cherimoya (Annona cherimola Mill.) trees. Scientia Hort. 80:91-104.
Hossain, M.M., H. Takeda and T. Senboku. 1995a. Improved method of determination of membrane thermostability for screening heat-tolerant and sensitive varieties in Brassica. JIRCAS J. 2:19-27.
Hossain, M.M., H. Takeda and T. Senboku. 1995b. Proline content in Brassica under high temperature stress. JIRCAS J. 2:87-93.
Howarth, C.J. 2005. Genetic improvements of tolerance to high temperature. In: Ashraf, M. and P.J.C. Harris (eds.). Abiotic stresses: plant resistance through breeding and molecular approaches. Howarth Press Inc., New York.
Howarth, C.J., C.J. Pollock and J.M. Peacock. 1997. Development of laboratory-based methods for assessing seedling thermotolerance in pearl millet. New Phytol. 137:129-139.
Hua, B. and W.Y. Guo. 2002. Effect of exogenous proline on SOD and POD activity of soybean callus under salt stress. Acta Agric. Boreali-Sinica. 17:37-40.
Ierna, A. 2007. Characterization of potato genotypes by chlorophyll fluorescence during plant aging in a Mediterranean environment. Photosynthetica. 45:568-575.
Ismail, A.M. and A.E. Hall. 1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci. 39:1762-1768.
Jackson, S.D. 1999. Multiple signaling pathway control tuber induction in potato. Plant Physiol. 119:1-8.
Jain, M., G. Mathur, S. Koul and N.B. Sarin. 2001. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep. 20:463-468.
Kitao, M., T.T. Lei, T. Koike, H. Tobita, Y. Maruyama, Y. Matsumoto and L.H. Ang. 2000. Temperature response and photoinhibition investigated by chlorophyll fluorescence measurements for four distinct species of dipterocarp trees. Physiologia Plantarum. 109:284-290.
Kiyosue, T., Y. Toshiba, K. Yamaguchi-Shinozaki and K. Shinozaki. 1996. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell. 8:1323-1335.
Krause, G.H. and E. Weiss. 1991. Chlorophyll fluorescence and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:313-359.
Krauss, A. and H. Marschner. 1984. Growth rate and carbohydrate metabolism of potato tubers exposed to high temperatures. Potato Res. 27:297-303.
Ku, S.B., G.E. Edwards and C.B. Tanner. 1977. Effects of light, carbon dioxide, and temperature on photosynthesis, oxygen inhibition of photosynthesis, and transpiration in Solanum tuberosum. Plant Physiol. 59:868-872.
Kuo, C.G., H.M. Chen and L.H. Ma. 1986. Effect of high temperature on proline content in tomato floral buds and leaves. J. Am. Soc. Hort. Sci. 111:746-750.
Kuo, C.G., H.M. Chen and H.C. Sun. 1993. Membrane thermostability and heat tolerance of vegetable leaves. p.160-168. In: Kuo, C.G. (eds.). Adaptation of food crops to temperature and water stress. AVRDC, Shanhua, Taiwan.
Lafta, A.M. and J.H. Lorenzen. 1995. Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiol. 109:637-643.
Lester, G.E. 1985. Leaf cell membrane thermostabilities of Cucumis melo. J. Am. Soc. Hort.110:506-509.
Levitt, J. 1980. Responses of plants to environmental stresses. Vol. 1: Academic Press. New York.
Levy, D. 1983. Water deficit enhancement of proline and α-amino nitrogen accumulation in potato plants and its association with susceptibility to drought. Physiol. Plant. 57:169-173.
Lichtenthaler, H.K. 1996. Vegetation stress: an introduction to the stress concept in plants. J. Plant Physiol. 148:4-14.
Manrique, L.A. and D.P. Bartholomew. 1991. Growth and yield performance of potato grown at three elevations in Hawaii. Crop Sci. 31:367-372.
Martineau, J.R., J.E. Specht, J.H. Williams and C.Y. Sullivan. 1979. Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci. 19:75-78.
Martinez, D.E. and J.J. Guiamet. 2004. Distortion of the SPAD 502 chlorophyll meter readings by changes in irradiance and leaf water status. Agronomie. 24:41-46.
Mehta, S.K. and J.P. Gaur. 1999. Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phyto. 143:253-259.
Menzel, C.M. 1985. Tuberization in potato at high temperatures: interaction between temperature and irradiance. Ann. Bot. 55:35-39.
Midmore, D.J. and R.K. Prange. 1992. Growth responses of two Solanum species to contrasting temperatures and irradiance levels: Relations to photosynthesis, dark respiration and chlorophyll fluorescence. Man. Bot. 69: 13-20.
Minotti, P.L., D.E. Halseth and J.B. Sieczka. 1994. Fie1d ch1orophyll measurements to assess the nitrogen status of potato varieties. HortScience. 29:1497-1500.
Peterson, R.B., M.N. Sivak and D.A. Walker. 1988. Relationship between steady-state fluorescence yield and photosynthetic efficiency in spinach leaf tissue. Plant Physiol. 88:158-163.
Petkova, V., I.D. Denev, D. Cholakov and I. Porjazov. 2007. Field screening for heat tolerant common bean cultivars (Phaseolus vulgaris L.) by measuring of chlorophyll fluorescence induction parameters. Sci. Hort. 111:101-106.
Radeni, G. and K. Caesar. 1986. Effects of soil temperature on the carbohydrate status in the potato plant (S. tuberosum L.). J. Agron. Crop Sci. 156:217-24.
Raison, J.K., J.A. Berry, P.A. Armond and C.S. Pike. 1980. Membrane properties in relation to the adaptation of plants to temperature stress. p.261-273. In:Turner, N.C. and P.J. Kramer (eds.). Adaptation of plants to water and high temperature stress. Wiley, New York, USA.
Ranney, T.G. and M.M. Peet. 1994. Heat tolerance of five taxa of birch (Betula): physiological responses to supraoptimal leaf temperatures. J. Amer. Soc. Hort. Sci. 119:243-248.
Reddivari, L . A.L. Hale and J.C. Miller Jr. 2007a. Genotype, location, and year influence antioxidant activity, carotenoid content, phenolic content, and composition in specialty potatoes. J. Agric. Food Chem. 55:8073-8079
Reddivari, L . A.L. Hale and J.C. Miller Jr. 2007b. Determination of phenolic content, composition and their contribution to antioxidant activity in specialty potato selections. Am. J. Potato Res. 84:275-282
Reynolds, M.P. and E.E. Ewing. 1989. Effects of high air and soil temperature stress on growth and tuberization in Solanum tuberosum. Ann. Bot. 64:241-247.
Roháček, K. and M. Bartak. 1999. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica. 37:339-363.
Roháček, K. 2002. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica. 40:13-29.
Roosens, N.H.C.J., T.T. Thu, H.M. Iskandar and M. Jacobs. 1998. Isolation of the ornithine-δ- aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol. 117: 263-271.
Saadalla, M.M., J.F. Shanahan and J.S. Quick. 1990. Heat tolerance in winter wheat: I. Hardening and genetic effects on membrane thermostatbility. Crop Sci. 30:1243-1247
Sarquis, J.I., H. Gonzalez and I. Bernal-Lugo. 1996. Response of two potato clones
(S. tuberosum L.) to contrasting temperature regimes in the field. Am. J. Potato Res. 73:285-300.
Schaff, D.A., C.D. Claygerg and G.A. Milliken. 1987. Comparison of TTC and electrical conductivity heat tolerance screening technique in Phaseolus. HortScience. 22:642-645.
Schreiber, U. and P. Armond. 1978. Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochim. Biophys. Acta. 502:138-151.
Schreiber, U. and J.A. Berry. 1977. Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta. 136:233-238.
Schreiber, U., W. Bilger and C. Neubauer. 1995. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. p.49-70. In: Schulze E.D. and M.M. Caldwell (eds.). Ecophysiology of photosynthesis. Berlin, Springer-Verlag, Heidelberg.
Schreiber, U., W. Bilger, H. Hormann and C. Neubauer. 1998. Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. p.320-336. In: Raghavendra A.S. (eds.). Photosynthesis:a comprehensive treatise. Cambridge University Press, Cambridge, UK.
Shi, Y. and D.H. Byrne. 1995. Tolerance of prunus rootstocks to potassium carbonate induced chlorosis. J. Amer. Soc. Hort. Sci. 120:283-285.
Shutilova, N., G., Semenova, V. Klimov, and V. Shnyrov. 1995. Temperature-induced functional and structural transformation of the photosystem II oxygen-evolving complex in spinach subchloroplast preparations. Biochem. Mol. Biol. 35:1233-1243.
Siddique, K.H.M., S.P. Loss, K.L. Regan and R.L. Jettner. 1999. Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Aust. J. Agric. Res. 50:375-387.
Silva, J. and R. Santos. 2004. Can chlorophyll fluorescence be used to estimate photosynthetic production in the seagrass Zostera noltii? J. Exp. Marine Biol. Ecol. 307:207-216.
Sipos, J. and R.K. Prange. 1986. Response often potato cultivars to temperature as measured by chlorophyll fluorescence in vivo. Am. Potato J. 63:683-94.
Smillie, R.M. and R. Nott. 1979. Heat injury in leaves of alpine, temperate and tropical plants. Aust. J. Plant Physiol. 6:135-141.
Smirnoff, N. and Q.J. Cumbes. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 28:1057-1060.
Snyder, R.G. and E.E. Ewing. 1989. Interactive effects of temperature photoperiod and cultivar on tuberization of potato cuttings. HortScience. 24:336-338.
Srinivasan, A., H. Takeda and T. Senboku. 1996. Heat tolerance in food legumes as evaluated by cell membrane thermostability and chlorophyll fluorescence techniques. Euphytica. 88:35-45.
Taiz, L. and E. Zeiger. 2002. Photosynthesis: the light reactions. p.114-143. In: Taiz, L. and E. Zeiger (eds). Plant physicalogy 3rded. Sinaure Associates. Sunderland, Massaxhusetts.
Tenga, A.Z., B.A. Marie and D.D. Ormrod. 1989. Leaf greenness meter to assess ozone injury to tomato leaves. HortScience. 24:514.
Tsonev, T. and D. Hikosaka. 2003. Contribution of photosynthetic electron transport, heat dissipation, and recovery of photoinactivated photosystem II to photoprotection at different temperatures in Chenopodium album leaves. Plant Cell Physiol. 44: 828-835.
Viola, R., A.G. Roberts, S. Haupt, S. Gazzani, R.D. Hancock, N. Marmiroli, G.C. Machray and K.J. Oparka. 2001. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell. 13:385-398.
Vollenweider, P. and M.S. Gunthardt-Goerg. 2005. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut. 137:455-465.
Wahid, A., S. Gelani, M. Ashraf and M.R. Foolad. 2007. Heat tolerance in plants: An overview. Environ. Exp. Bot. 61:199-223.
Wang, W.X., B. Vinocur, O. Shoseyov and A. Altman. 2001. Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations. Acta Hort. 560:285-292.
Whealy, C.A., T.A. Nell, J.B. Barrett and R.A. Larson. 1987. High temperature effects on growth and floral development of Chrysanthemum. J. Am. Soc. Hort. Sci. 112:464-468.
Willits, D.H. and M.M. Peet. 2001. Measurement of chlorophyll fluorescence as a heat stress indicator in tomato: Laboratory and greenhouse comparisons. J. Am. Soc. Hort. Sci. 126:188-194.
Winkler, E. 1971. Potato cultivation in Tyrol. II. Photosynthetic efficiency and respiration in different potato varieties. Potato Res. 14:1-18.
Wise, R.R. and R.R. Ort. 1989. Photophosphorylation after chilling in the light. Plant Physiol. 90:657-664.
Wise, R.R., A.J. Olson, S.M. Schrader and T.D. Sharkey. 2004. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ. 27:717-724.
Wolf, S., A. Marani and J. Rudich. 1990. Effects of temperature and photoperiod on assimilate partitioning in potato plant. Ann. Bot. 66:515-520.
Wu, M.T. and S.J. Wallner. 1983. Heat stress responses in cultured plant cells: Development and comparison of viability tests. Plant Physiol. 72:817-820.
Xu, D.Q. and S. Wu. 1996. Three phases of dark-recovery course from photoinhibition resolved by the chlorophyll fluorescence analysis in soybean leaves under field conditions. Photosynthetica. 32:417-423.
Yamada, M., T. Hidaka, and H. Fukamachi. 1996. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci. Hort. 67:39-48.
Yamane, T., Y. kashino, H. Koike and K. Satoh. 1997. Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature in higher plants. Photosynth. Res. 52: 57-64.
Yamane, Y., T. Shikanai, Y. Kashino, H. Koike and K. Satoh. 2000. Reduction of QA in dark: another cause of fluorescence Fo increases by high temperatures in higher plants. Photosynth. Res. 63:23-34.
Yan, H., L.Z. Gang, C.Y. Zhao and W.Y. Guo. 2000. Effects of exogenous proline on the physiology of soybean plantlets regenerated from embryos in vitro and on the ultrastructure of their mitochondria under NaCl stress. Soybean Sci. 19:314-319.
Yordanov, I., T. Tsonev, V. Goltsev, L. Kruleva and V. Velikova. 1997. Interactive effect of water deficit and high temperature on photosynthesis of sunflower and maize plants: 1. Changes in parameters of chlorophyll fluorescence induction kinetics and fluorescence quenching. Photosynthetica. 33:391-402.
Zlatev, Z.S. and I.T. Yordanov. 2004. Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulg. J. Plant Physiol. 30:3-18.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43466-
dc.description.abstract高溫逆境會造成馬鈴薯(Solanum tuberosum L.)植株形態、生理與生化之改變,而影響馬鈴薯的結球與產量。本研究以葉片細胞膜熱穩定性 (cellular membrane thermostatbility)、脯胺酸含量(proline content)、葉綠素螢光參數(chlorophyll fluorescence parameters)與葉綠素計(Chlorophyll meter, SPAD)讀值四種生理指標之變化,探討馬鈴薯在不同高溫逆境下的反應,並以‘克尼伯’(Kennebec)為對照,比較不同馬鈴薯品系的耐熱程度。由嘉義溪口鄉馬鈴薯田間取樣種植後30-52天的‘克尼伯’其葉片相對熱傷害值介於62-95.8%,有隨時間略降低的趨勢,但差異不顯著。分析農業試驗所夏作馬鈴薯之細胞膜熱穩定性,並與最後收成之塊莖重量比對,結果為有薯球的品系其相對熱傷害值較低。‘克尼伯’沒有結薯,其它27種供試品系中有兩個97.1之實生品系之熱傷害值較‘克尼伯’低。於九月中提早種植之農業試驗所秋作中,22種供試馬鈴薯中有PS3-2與97.1之實生品系兩種較‘克尼伯’之熱傷害值低。以35/30℃熱馴化一天可增加‘克尼伯’、LT-7之熱適應性,它們的熱傷害值均比未馴化株低,其它13種供試品系中,PS3-1、PS3-2兩種之相對熱傷害值較‘克尼伯’低。日、夜溫30/25℃處理7天對四種馬鈴薯‘克尼伯’、LT-7、97.1-28與PS3-2造成脯胺酸含量上升、處理14天結果葉綠素計讀值減少,最後‘克尼伯’薯球鮮重減少79 %,沒有結薯的品系其脯胺酸含量增加最多。種後一個月給予40℃黑暗處理3小時,4種馬鈴薯中以‘克尼伯’之葉綠素螢光參數值(Fv/Fm及ΦPSII)降低幅度較大,‘大西洋’ (Atlantic)的 Fv/Fm 值在處理6小時降到最低,其它各品種(系)的Fv/Fm值及其它螢光參數此時無顯著差異。比較相同四種馬鈴薯在生長箱定溫20℃及30℃處理三週的葉綠素螢光參數變化,在30℃處理7天,四種馬鈴薯Fm值均比20℃處理低;‘克尼伯’之Fo值最低。30℃處理21天有三種馬鈴薯的 Fv/Fm 值顯著降低,其中‘大西洋’及‘克尼伯’的 Fv/Fm 值低於0.8,‘克尼伯’之ΦPSII值且為最低。採收時‘大西洋’及‘克尼伯’ 的地上部鮮重減少70%以上,‘克尼伯’沒有結薯,另兩種馬鈴薯地上部鮮重及薯球鮮重分別維持20℃處理的55%與30%以上。將6種馬鈴薯分別給予20/15℃與30/25℃兩種處理,調查同一葉片在一週內的葉綠素螢光參數變化,97.1-19於高溫處理第一天其Fv/Fm值即顯著低於20/15℃處理,LT-7與‘克尼伯’於高溫處理第4天,97.1-47於第7天Fv/Fm值才明顯較低。採收時97.1-47有最高的地上部鮮重及薯球鮮重,比20/15℃處理減少幅度相對最低,而維持相同的莖葉與薯球鮮重比。在田間初夏測量14個馬鈴薯品系的Fv/Fm值介於0.46-0.70,‘台農一號’維持比‘台農三號’顯著較高的Fv/Fm 值。以97.1與295兩種馬鈴薯比較35/30℃、30/25℃與20/15℃三種溫度處理對植株營養生長的影響,結果顯示栽培於35/30℃處理14天的植株最矮,葉綠素計讀值最低,葉色最早也最快變淺。植株在30/25℃下即生長受抑制,地上部重量為20/15℃處理之70%,薯球生成少,於35/30℃處理下,兩種馬鈴薯皆不能結球。整體而言,馬鈴薯品系07-237選1 (97.1-45)、PS3-2、06-674與97.1-47具有比‘克尼伯’更耐熱之生理性狀。zh_TW
dc.description.abstractHeat stress causes a series of morphological, physiological and biochemical changes in potato (Solanum tuberosum L.) plants and results in adverse effect on the tuber production. In this study, the responses of potato to high temperature were monitored by the variation of the cellular membrane thermostability, proline content, chlorophyll fluorescence parameters and chlorophyll meter reading (SPAD values) in leaf. The clonal difference in heat tolerance was evaluated with ‘Kennebec’ as a reference. The relative injury values ranged between 62% and 95.8% with a decreasing tendency along with increasing growth period in ‘Kennebec’ when sampled at 30-52 days after planting from a farmer’s field in Chia-yi. The analyses of cellular membrane thermostability of potatoes at TARI in summer showed that clones with lower relative injury (RI) values had higher tuberization rate. The ‘Kennebec’ failed to produce any tuber and, out of other 27 clones tested only two of 97.1 seed progenies had significantly lower RI value than that of ‘Kennebec’. In 22 clones tested from the fall crop (planted in mid September) of TARI, clone PS3-2 and one clone of 97.1 had RI value significantly lower than that of ‘Kennebec’. The effect of acclimation at 35/30℃(day/night) for 24 hours was revealed by the reduced RI value in both ‘Kennebec’ and LT-7, and among 13 other tested clones, PS-1 and PS-2 were considered more heat tolerant than ‘Kennebec’ for their low RI values. Proline content of four potato varieties increased under 30/25℃ for 7 days , the respective SPAD values taken at 14 days of treatment decreased. At harvest, ‘Kennebec’ had 79% reduction in tuber fresh weight and the clone without tuber production had leaf proline content much increased. The chlorophyll fluorescence responses to high temperature were used to determine heat tolerance of potato plants. At 3 hours of 40℃ in dark, ‘Kennebec’ showed more reduction in Fv/Fm and ΦPSII than other 3 lines examined. The Fv/Fm value of ‘Atlantic’ dropped to the lowest at 6 hr of treatment, and all 4 variety/lines showed similar Fv/Fm and other parameters then. The same 4 potato variety/lines were examined under temperature treatments of 20℃ and 30℃ for 3 weeks. The Fm of all 4 at 30℃ were lower than at 20℃. ‘Kennebec’ had the lowest Fo. At 30℃ for 21 days, three variety/lines showed significant reduction in Fv/Fm and both ‘Atlantic’ and ‘Kennebec’ had a value less than 0.8. ‘Kennebec’ also had the lowest ΦPSII value. At harvest, the shoot fresh weight of both ‘Atlantic’ and ‘Kennebec’ was reduced by more than 70%, and no tuber was produced in ‘Kennebec’. The other two lines at 30℃ produced 55% of shoot and 30% of tuber fresh weight obtained at 20℃. The Fv/Fm of the same leaf was monitored for one week on 6 potato lines grown under 20/15℃ and 30/25℃. The value declined under 30/25℃ treatment at one day in 97.1-19, at 4th day in LT-7 and ‘Kennebec’ and 7th day in 97.1-47, and the latter had the highest shoot and tuber fresh weight at harvest. 97.1-47 kept similar ratio of shoot to tuber fresh weight under both 20/15℃ and 30/25℃. The Fv/Fm values of 14 potato lines examined in field ranged between 0.46 and 0.70. Among them, ‘TN 1’ had higher Fv/Fm value than ‘TN 3’. To evaluate the vegetative growth of potato under heat stress, two clones were grown at 35/30℃, 30/25℃ or 20/15℃. Plants at 35/30℃ for 14 days had the smallest plant height and leaf SPAD values. The temperature of 30/25℃ restricts haulm growth, resulting in 70% of the shoot fresh weight of 20/15℃ treatment and very limited tuberization. Under 35/30℃ treatment, leaf SPAD value rapidly decreased and there was no tuberization. In all, potato clones like 07-237-1 (97.1-45)、PS3-2、06-674 and 97.1-47 showed physiological response related to better heat tolerance than ‘Kennebec’.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:22:03Z (GMT). No. of bitstreams: 1
ntu-98-R95628122-1.pdf: 907794 bytes, checksum: 5e5c5eea1579241e2eed5cd53b8e0d41 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄
口試委員會審定書………………………i
誌謝………………………………………ii
中文摘要…………………………………iii
英文摘要…………………………………v
目錄………………………………………vii
表目錄……………………………………viii
圖目錄……………………………………ix
第一章 前言…………………………………………………1
第二章 前人研究……………………………………………2
一、馬鈴薯之原產地與栽培地區……………………………2
二、高溫逆境對馬鈴薯生長及薯球質與量的影響…………4
三、耐熱性之篩選指標………………………………………7
四、葉綠素計與葉綠素含量…………………………………12
第三章 材料與方法…………………………………………13
第四章 結果…………………………………………………19
第五章 討論…………………………………………………54
第六章 結論…………………………………………………59
參考文獻………………………………………………………60
dc.language.isozh-TW
dc.title馬鈴薯在高溫下的生理反應zh_TW
dc.titlePhysiological Response of Potatoes (Solanum tuberosum L.) to High Temperatureen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor羅筱鳳
dc.contributor.oralexamcommittee林冠宏
dc.subject.keyword馬鈴薯,細胞膜熱穩定性,脯胺酸,葉綠素螢光,zh_TW
dc.subject.keywordpotato,cell membrane thermostability,proline,chlorophyll fluorescence,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2009-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
886.52 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved