Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43446
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何志浩(Jr-Hau He)
dc.contributor.authorYu-An Daien
dc.contributor.author戴育安zh_TW
dc.date.accessioned2021-06-15T02:21:50Z-
dc.date.available2012-08-20
dc.date.copyright2009-08-20
dc.date.issued2009
dc.date.submitted2009-08-19
dc.identifier.citationCH1 Reference
1. W.H. Miller, vol. VII/6A, (ed. H. Autrum), p. 69.
2. P. B. Clapham, M.C. Hutley, Nature 244 (1973), p.281.
3. C.C. Lee, Thin Film Optics and Coating Technology, (Yi Hsien,
Publishing Co., Taipei, Taiwan, 2002).
4. Xu, H. B. Lu, N. Qi, D. P. Hao, J. Y. Gao, L. G. Zhang, B. Chi, L.
F. Small 4 (2008), p.1972.
5. W.L. Min, B. Jiang, and P. Jiang, Advanced Materials 20 (2008),
p.3914.
6. C.H. Sun, W.L. Min, N.C. Linn, P. Jiang, B. Jiang, Applied Physics
Letters 91(2007) , p.231105.
7. J. Zhu, Z. Yu, G.F. Burkhard, C.M. Hsu, S.T. Connor, Y. Xu, Q.
Wang, M. McGehee, S. Fan, and Y. Cui, Nano Letters 9 (2009), p.279.
8. D. Brundrett, E.N. Glytsis, and T. K. Gaylord, Applied Optics 33,
(1994), p.2695.
9. S. J. Wilson, and M.C. Hutley, Optica ACTA, 29, (1982), p.993.
10. J. Goodman, , Introduction to Fourier Optics, (McGraw-Hill, New
York, New York, 1996)
11. T. Glaser, S. Schroter, H. Bartelt, H.J. Fuchs, and E.B. Kley,
Applied Optics 41, (2002), p.3558.
12. J.N. Mait, D.W. Prather, and M.S. Mirotznik, Optics Letters 23,
(1998), p.1343.
13. L. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois,
Journal of the Optical Society of America A 16 (1999), p.1143.
14. L. Lalanne, and M. Hutley, Encyclopedia of Optical Engineering,
(Marcel Dekker, Inc., New York, 2003.
15. D.J . Griffiths, Introduction to Quantum Mechanics, (Prentice Hall
International, Englewood Cliffs, New Jersey, 1995).
16. W. Barthlott and C. Neinhuis, Planta 202, (1997), p.1.
17. R.N. Wenzel, Industrial & Engineering Chemistry Research 28,
(1936), p.988.
18. A. Cassie, and S. Baxter , Translations of the Faraday Society 40,
(1944), p.546.
19. J. Jopp, H. Grüll, Yerushalmi-Rozen, R. Langmuir 20 (2004),
p.10015.
20. C.G.L. Furmidge, Journal of Colloid Science 17,(1962), p.309.
21. The two images come from Proceedings the Royal of Society B (2006)
273, p. 661.
22. http://pvcdrom.pveducation.org.
23. http://en.wikipedia.org/wiki/Lotus_effect.
CH 2 Reference
1. Y.F. Huang, S. C., Y.J. Jen, C.Y. Peng, T.A. Liu, Y.K. Hsu, C.L.
Pan, H.C. Lo, C.H. Hsu, Y.H. Chang, C.S. Lee, K.H. Chen and L.C. Chen,
Nature Nanotechnology 2 (2007), p.770.
2. R.A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J.R.
Cournoyer, and E. Olsona, Nature Photonics 1 (2007), p.123.
3. Parker, A. R. & Townley, H. E. , Nature Nanotechnology 2 (2007),
p.347.
4. J.Y. Huang, X.D. Wang and Z.L. Wang, Nano Letters, 6 (2006),
p.2325.
5. J.Y. Huang, X.D. Wang and Z.L. Wang, Nanotechnology, 19 (2008),
p.025602.
6. Xu, H. B. Lu, N. Qi, D. P. Hao, J. Y. Gao, L. G. Zhang, B. Chi, L.
F. Small 4 (2008), p.1972.
7. Xi, J. Q. Schubert, M. F. Kim, J. K. Schubert, E. F. Chen, M. Lin,
S. Y. Liu, W.; Smart, J. A. Nature Photonics 1 (2007), p.176.
8. D. G. Stavenga1, S. Foletti, G. Palasantzas and K. Arikawa,
Proceedings of the Royal Society B 273 (2006), p.661.
9. D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, Proceedings of
the SPIE 6545 (2007), p.65450.
10. C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, Nano Letters 5
(2005), p.2438.
11. S. Wang, X. Z. Yu, and H. T. Fan, Applied Physics Letters 91
(2007), p.061105.
12. B. G. Prevo, E. W. Hon, and O. D. Velev, Journal of Materials
Chemistry 17 (2007), p.791.
13. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, Applied Physics
Letters 78 (2001), p.142.
14. S. Chhajed,M.F. Schubert, J.K. Kim, E.F. Schubert, Applied.
Physics Letters 93 (2008), p.251108.
15. L. Tsakalakos, J. Balch, J. Fronheiser, M.Y. Shih, S.F. LeBoeuf,
M. Pietrzykowski, P.J. Codella, B.A. Korevaar, O. Sulima, J. Rand, A.
Davuluru, and U. Rapol, Journal of Nanophotonics 1 (2007), p.013552.
16. W. Barthlott, and C. Neinhuis, Planta, 202 (1997), P.1.
17. R. L. Smith, S. D. Collins, Journal of Applied Physics 71 (1992),
R1.
18. S. Ottow and V. Lehmann, Journal of Electrochemical Society 140
(1993), p.2836.
19. C.Y. Chen, C.S. Wu, C.J. Chou and T.J. Yen, Advanced Materials 20
(2008), p.3811.
20. Y.Y. Wu and P.D. Yang, Journal of American Chemical Society 123
(2001), p.3165.
21. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang,
Nature Materials 4 (2005), p.455.
22. S.L. Diedenhofen, G. Vecchi, R.E. Algra, A. Hartsuiker, O.L.
Muskens, G. Immink, Erik P. A. M. Bakkers, W.L. Vos, and J. Go´mez Rivas,
Advanced Materials 21 (2009), p.1.
23. Bruggeman, D. A. G., Annalen der Physick 24 (1935), p.636.
24. L. Hu and G. Chen, Nano Letters 7(2007), p.3249
25. O.L. Muskens, J.G. Rivas, R.E. Algra, Erik P. A. M. Bakkers, and
A. Lagendijk, Nano Letters 8 (2008), p.2638.
26. D. E. Aspnes and A. A. Studna, Physics Review B 27 (1983), p.985.
27. S. Adachi, Journal of Applied Physics 66 (1989), p.3224.
28. N. Layadi, V. M. Donnelly, J. T. C. Lee, and F. P. Klemens,
Journal of Vacuum Science and Technology A 15 (1997), p.604.
29. D. J Burbridge and S. N Gordeev, Nanotechnology 20 (2009),
p.285308.
CH3 Reference
1. A.W. Blakers, A. Wang, A.M. Milne, J.H. Zhao, and M.A. Green,
Applied Physics Letters 55 (1989), p.1363.
2. J.H. Zhao, A. Wang, and M.A. Green, IEEE Transaction on Electron
Devices 41 (1994), p.1592.
3. Y.F. Li, J.H. Zhang, S.J. Zhu, H.P. Dong, Z.H. Wang, Z.Q. Sun,
J.R. Guo and B. Yang, Journal of Materials Chemistry 19 (2009), p.1806.
4. Y.F. Huang, S. C., Y.J. Jen, C.Y. Peng, T.A. Liu, Y.K. Hsu, C.L.
Pan, H.C. Lo, C.H. Hsu, Y.H. Chang, C.S. Lee, K.H. Chen and L.C. Chen,
Nature Nanotechnology 2 (2007), p.770.
5. R.A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J.R.
Cournoyer, and E. Olsona, Nature Photonics 1 (2007), p.123.
6. E.C. Garnett and P.D Yang, Journal of America Chemical Society 130
(2008), p.9224.
7. P. Balk, The Si-SiO2 System, Elsevier, Amsterdam, 1988, p. 234.
8. J.E. Spanier, G.S. Cargill, I.P. Herman, S. Kim, D.R. Goldstein,
A.D. Kurtz, and B.Z. Weiss, Materials Research Society Symposium
Proceeding 452 (1997), p.237.
9. B.E. Deal, and A.S. Grove, Journal Applied Physics 36 (1965),
p.3770.
10. D.B. Kao, J.P. McVittie, W.D. Nix, and K.C. Saraswat, IEEE
Transaction Electron Devices, ED-35 (1988), p.25.
11. D. Shir, B.Z. Liu, A.M. Mohammad K.K. Lew and S.E. Mohney, Journal
of Vacuum Science and Technology B 24 (2006), p.1333.
CH5 Reference
1. L. Tsakalakos, J. Balch, J. Fronheiser, M.Y. Shih, S.F. LeBoeuf,
M. Pietrzykowski, P.J. Codella, B.A. Korevaar, O. Sulima, J. Rand, A.
Davuluru, and U. Rapol, Journal of Nanophotonics 1 (2007), P.1.
2. S.L. Diedenhofen, G. Vecchi, R.E. Algra, A. Hartsuiker, O.L.
Muskens, G. Immink, E.P.A.M. Bakkers, W.L. Vos, and J.Go´mez Rivas,
Advanced Materials 21(2009). P1.
3. E.C. Garnett and P.D. Yang, Journal of American Chemical Society
130 (2008), p.9224.
4. K.Q. Peng, X. Wang, and S.T. Lee, Applied Physics Letters 92
(2008), p.163103.
5. Th Stelzner, M Pietsch, G Andr¨a, F Falk, E Ose and S
Christiansen, Nanotechnology 19 (2008), p .295203.
6. K.Q. Peng, Y. Xu, Y. Wu, Y.J. Yan, S.T. Lee, and J. Zhu, Small 1
(2005), p.1062.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43446-
dc.description.abstract成長一維矽奈米線已被透過許多方法來實現,最近更應用在許多元件上,例如:抗反射和具有自我清潔能力。而在太陽能元件的設計上,主要著重在減少表面的反射和增強疏水的特性,我們則是利用表面的改變以及密度的改變來控制這些特性,這些在過去的文獻上並沒有討論這之間的關係。
我們在室溫下透過HF/AgNO3的混和溶液成長一維單晶的奈米線陣列,首先我們可以改變蝕刻時間藉以控制奈米線的長度和密度,我們可以得到線性的成長速率。然後我們透過等效介質理論來計算不同的填充密度的等效折射率,以及利用濕蝕刻的成長機制發展出具有梯度變化的折射率的奈米線陣列,在反射率的表現上具有寬頻譜的良好的抗反射特性平均在1~2%,除此之外與角度相關的反射率也顯示出TE和TM的偏極化光在小入射角(8°)到大入射角(80°)也都具有很不錯的抗反射特性。除此之外我們藉由液滴以及基材的接觸角量測實驗,透過Cassie’s 理論得到不同的填充密度會具有不同的接觸角,同時也具有很好的疏水特性。如果能利用具有抗反射以及表面清潔能力的結構來做元件是一個非常能被期待的發展重點之一。
zh_TW
dc.description.abstractVarious methods to synthesize Si nanowire arrays (Si NWAs) have been developed. Very recently, Si NWAs have been widely utilized for the device applications, such as antireflection (AR) or self-cleaning. The reduction of surface reflection and the super-hydrophobic effect are desirable to apply for solar cells. To the best of our knowledge, there are no reports on the AR and super-hydrophobic effect on the structural properties, such as morphology and density of Si NWAs.
In this work, the galvanic wet etching was adopted to fabricate disordered single-crystalline Si NWAs at room temperature in HF/AgNO3 solution. The length and density of Si NWAs could be controlled by adjusting the etching time, and the growth rate is estimated to be linear behavior. An average total reflectance 1~2% over a wide range of wavelength showed the broadband AR characteristics of Si NWAs. Angular dependent of spectral measurements of the Si NWAs are insensitive to TE and TM polarization, demonstrating omnidirectional AR characteristics. Excellent AR behavior is due to the gradient refractive index profile of Si NWAs. The effective index of Si NWAs was calculated by the effective medium theory. Morphology-dependent Brewster angle was observed. Moreover, the self-cleaning effect was examined by the basic contact angle and hysteresis theories. According to the Cassie’s theory, the calculation results agree well with the measured data, showing super-hydrophobic effect. Building self-cleaning feature into a broadband and omnidirectional AR coating can keep contamination to a minimum so that long-term performance of optoelectronic device can be maintained.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:21:50Z (GMT). No. of bitstreams: 1
ntu-98-R96941098-1.pdf: 2904518 bytes, checksum: d0a2b39afeb8cbbb414d54e5601f04c7 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContent
謝 誌...........................................................................................................i
摘 要..........................................................................................................ii
Abstract ....................................................................................................iii
Content .....................................................................................................iv
List of figures……………………………………………………………vi
Chapter 1 Introduction ............................................................................................1 1.1Prefaces.....................................................................................................................1
1.2 Review of existed technologies................................................................................3
1.2.1 Anti-reflection (AR) effect............................................................................3
1.2.1.1 Effective medium theory (EMT) .…………………………………..9
1.2.1.2 AR surfaces by subwavelength gratings…………………………..15
1.2.2 Self-cleaning effect......................................................................................22
1.2.2.1 Contact angle theory……………………………………………….23
1.2.2.2 Hysteresis effect…………………………………………………...26
1.3 Reference…………………………………………………………………………29
Chapter 2 Room-Temperature Growth of Disordered Si Nanowire Arrays as Biomimetic Subwavelength Surfaces for Self-Cleaning and Antireflection Applications…….............................................................32
2.1 Introduction………………………………………………………………………33
2.2 Experimental……………………………………………………………………..35
2.3 Results and discussion……………………………………………………………36
2.4 Summary………………………………………………………………………....44
2.5 Reference…………………………………………………………………………46
Chapter 3 Si Nanowire Arrays Structure with Core-shell Oxide as an Antireflection Layer…………………….………………………….49
3.1 Introduction………………………………………………………………………50
3.2 Experimental…………………………………………………………………......51
3.3 Results and discussion……………………………………………………………52
3.4 Summary…………………………………………………………………………56
3.5 Reference…………………………………………………………………………58
Chapter 4 Conclusion.............................................................................................60
Chapter 5 Future Works Core-Shell SiNWAs-based solar cell..…………61
5.1 Introduction……………………………………………………….………….…..61
5.2 Approach………………………………………………….………….…………..63
5.3 Reference…………………………………………………………………………63
dc.language.isoen
dc.subject等效介質理論zh_TW
dc.subject矽奈米線zh_TW
dc.subject抗反射zh_TW
dc.subject自我清潔zh_TW
dc.subject接觸角zh_TW
dc.subjectself-cleaningen
dc.subjecteffect medium theoryen
dc.subjectcontact angleen
dc.subjectSilicon nanowireen
dc.subjectantireflectionen
dc.title室溫下控制一維奈米線陣列結合疏水表面與抗反射之應用zh_TW
dc.titleControlled Growth of Disordered Si Nanowire Arrays at Room Temperature for Self-Cleaning and Anti-Reflection Applicationsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林恭如(Gong-Ru Lin),林清富(Ching-Fuh Lin),陳玉彬(Yu-Bin Chen)
dc.subject.keyword矽奈米線,抗反射,自我清潔,接觸角,等效介質理論,zh_TW
dc.subject.keywordSilicon nanowire,antireflection,self-cleaning,contact angle,effect medium theory,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2009-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved