請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43418
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭宗甫 | |
dc.contributor.author | Yung-Hsuan Pao | en |
dc.contributor.author | 包庸宣 | zh_TW |
dc.date.accessioned | 2021-06-15T01:55:35Z | - |
dc.date.available | 2019-12-31 | |
dc.date.copyright | 2009-07-03 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-06-29 | |
dc.identifier.citation | 1. Akers RM, Denbow DM. Anatomy and physiology of domestic animal. Bone and skeletal system, 1ed 161-168, 2008.
2. Anitua E. Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. J Oral Maxillofac Implants 14: 529-535. 3. Anitua E, Sanchez M, Nurden AT, Nurden P, Orive G, Andia I. New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnology 24: 227-234, 2006. 4. Anitua E, Sanchez M, Orive G, Andia I. The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. Biomaterial 28: 4551-4560, 2007. 5. Askew MJ, Mow VC. The biomechanical function of the collagen fibril ultrastructure of articular cartilage. J Biomech Eng 100: 105-115, 1978. 6. Baumgaertner MR, Cannon WD, Vittori JM, Schmidt ES, Mauere RC. Arthroscopic debridement of the arthritic knee. Clin Orthop Relat Res 253: 197-202, 1990. 7. Behrens F, Kraft EL, Oegema TR. Biochemical changes in articular cartilage after joint immobilization by casting or external fixation. J Orthop Res 7: 335-343, 1989. 8. Bert JM, Maschka K. The arthroscopic treatment of unicompartmental gonarthrosis: A five-year follow-up study of abrasion arhroplasty plus arthroscopic debridement and arthroscopic alone. Arthroscopic 5: 25-32, 1989. 9. Brehm W, Aklin B, Yamashita T, Rieser F, Trub T, Jacob RP, Mainil-Varlet P. Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results, Osteoarthritis and Cartilage 14: 1214-1226, 2006. 10. Brown TD, Shaw DT. In vitro contact stress distirbution on the femoral condyles. J Orthop Res 2: 190-199, 1984. 11. Buchta C, Hedrich HC, Macher M, Hoccker P, Redl H. Biochemical characterization of autologous fibrin sealants produced by CryoSeal and Vivostat in comparison to the homologous fibrin sealant product Tissucol/Tisseel. Biomaterials 26: 6233-6241, 2005. 12. Capito RM, Spector M. Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering. Gene Therapy 14: 721-732, 2007. 13. Chang CH, Kuo TF, Lin CC, Chou CH, Chen KH, Lin FH, Liu HC. Tiisue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: A porcine model assessed at 18, 24, and 36 weeks. Biomaterials 27: 1876-1888, 2006. 14. Chiang H, Kuo TF, Tsai CC, Lin MC, She BR, Huang YY, Lee HS, Shieh CS, Chen MH, Ramshow JAM, Werkmeister JA, Tuan RS, Jiang CC. Repair of porcine articular acrtilage defect with autologous chondrocyte transplantation. J of Ortho Res 23: 584-593, 2005. 15. Chou CH, Cheng WTK, Kuo TF, Sun JS, Lin FH, Tsai JC. Fibrin glue mixed with gelatin/hyaluronic acid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering: the result of real-time polymerase chain reaction. J Biomed Mater Res 82A: 757-767, 2007. 16. Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, Dohan AJJ, Mouhyi J, Doham DM. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part IV: Clinical effects on tissue healing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101: e50-e60, 2006. 17. Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, Dohan AJJ, Mouhyi J, Doham DM. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part V: Histological evaluation of PRF effects on bone allograft maturation in sinus lift. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101: 299-303, 2006. 18. Dandy DJ. Arthroscopic debridement of the knee for osteoarthritis. J Bone Surg 73B: 877-888, 1991. 19. Danielsen P, Jorgensen B, Karlsmark T, Jorgensen LN, Agren MS. Effect of topcal autologous platelet-rich fibrin versus no intervention on epithelialization of donor sites and meshed split-thickness skn autografts: a randomized clinical trial. Plast Reconstr Surg 122: 1431-1440, 2008. 20. Dellmann HD, Eurell J. Veterinary histology. Connective and supportive tissue. 5ed 32-61, 1998. 21. Dohan DM. Safety issue associated with platelet-rich fibrin method. Oral Med Oral Radiol Endod 103: 587-592, 2007. 22. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B. Platelet-rich fibrin (PRF): a second- generation platelet concentrate. Part I: technological concepts and evolution. Oral Med Oral Radiol Endod 101: E45-50, 2006. 23. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B. Platelet-rich fibrin (PRF): a second- generation platelet concentrate. Part II: platelet-related biologic features. Oral Med Oral Radiol Endod 101: E45-50, 2006. 24. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B. Platelet-rich fibrin (PRF): a second- generation platelet concentrate. Part III: leucocyte activation: a new feature for platelet concentrates? Oral Med Oral Radiol Endod 101: E45-50, 2006. 25. Dohan DM, Rasmusson L, Alberktsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends in Biotechology 27: 158-167, 2009. 26. Diss A, Dohan DM, Mouhyi J, Mahler P. Osteotome sinus floor elevation using Choukroun’s platelet-rich fibrin as grafting material: a 1-year prospective pilot study with microthreaded implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105: 572-579, 2008. 27. Franz T, Hasler EM, Hagg R, Weiler C, Jakob RP, Mainil-Varlet P. In situ compressive stiffness test, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Osteoarthritis cartilage 9: 582-592, 2001. 28. Fuentes-Bouquete I, Lopez-Armada MJ, Maneiro E, Fernandez-Sueiro JL, Carames B, Galdo F, Toro FJ, Blanco F. Pig chondrocyte xenoimplants for human chondral defect repair: an in vitro model. Wound Rep Reg 12: 444-452, 2004. 29. Gelghorn JP, Jones ARC, Flannery CR, Bonassar LJ. Alteration of articular cartilage frictional properties by transforming growth growth factor, interleukin-1, and oncostatin M. Arthritis Rheum 60: 440-449, 2009. 30. Gillogly SD, Voight M, Blackburn T. Treatment of articular cartilage defects of the knee with autologous chondrocytes implantation. J Orthop Sports Phys Ther 28: 241-251, 1998. 31. Gratz KR, Sah RL. Experimental measurement and quantification of frictional contact between biological surfaces experiencing large deformation and slip. J Biomech 41: 1333-1340, 2008. 32. Gratz KR, Wong BL, Bae WC, Sah RL. The effects of focal articular defects on cartilage contact mechanics. J Orthop Res: 1-9, 2008. 33. Hedlund CS, Hulse DA, Johnson AL, Seim HB, Willard MD, Carroll GL. Small animal surgery. Disease of the joint, 2ed 1110-1142, 2002. 34. Herrmann JM, Pitris C, Bouma BE, Boppart SA, Jesser CA, Stamper DL, Fujimoto JG, Brezinski ME. High resolution imaging of normal and osteoarthritis cartilage with optical coherence tomography. J Rheumatol 26: 627-635, 1999. 35. Hsieh CH, Lee MC, Tsai JJ, Chen MH, Lee HS, Chiang H, Wu CHH, Jiang CC. Deleterious effects of MRI on chondrocytes. Osteoarthritis and Cartilage 16: 343-351, 2008. 36. Hunziker EB, Graber W. Differential extraction of proteoglycans from cartilage tissue matrix compartments in isotonic buffer salt solutions and commercial tissue-culture media. J Histochem Cytochem 34: 1149-1153, 1986. 37. Hunziker EB, Ludi A, Herrmann W. Preservation of cartilage matrix proteoglycans using cationic dyes chemically related to ruthenium hexaammine trichloride. J Histochem Cytochem 40: 909-917, 1992. 38. Hunziker EB, Rosenberg LC. Repair of partial thickness defects in articular cartilage: Cell recruitment from the synovial membrane. J Bone Surg 78: 721-733, 1996. 39. Iannotti J, Goldstein S, Kuhn J, Lipiello L, Kaplan F, Zaleske D. Orthopedic basic science .The formation and growth of skeletal tissues. 77-109, 2000. 40. Ito K, Yamada Y, Nagasaka T, Baba S, Ueda M. Osteogenic potential of injectable tissue-engineered bone: a comparison among autogenous bone, bone substitute (Bio-oss), platelet-rich plasma, and tissue-engineered bone with respect to their mechanical properties and histological findings. J Biomed Mater Res 73A: 63-72, 2005. 41. Jenniskens YM, Koevoet W, Bart ACW, Weinans H, Jahr H, Verhaar JAN, DeGroot J, Osch GJVM. Biochemical and functional modulation of the cartilage collagen network by IGF1, TGF-2 and FGF2. Osteoarthritis and Cartilage 14: 1136-1146, 2006. 42. Jiang HC, Chiang H, Liao CJ, Lin YJ, Kuo TF, Shieh CS, Huang YY, Tuan RS. Repair of porcine articular cartilage defect with biphasic osteochondral composite. J Ortho Res 10: 1277-1290, 2007. 43. Jurnelin J, Kiviranta I, Tammi M, Helminen JH. Softening of canine articular cartilage after immobilizationof the knee joint. Clin Orthop 207: 246-252, 1986. 44. Jurvelin J, Kiviranta I, Saamanen AM, Tammi M, Helminen HJ. Partial restoration of immobilization-induced softening of canine articular cartilage after remobilization of the knee joint. J Orthop Res 7: 352-358, 1989. 45. Kempson GE, Muir H, Swanson SA, Freeman MA. Correlations between stiffness and the chemical constituents of cartilage on the human femoral head. Biochim Biophys Acta 215: 70-77, 1970. 46. Kerker JT, Leo AJ, Sgaglione NA. Cartilage repair: synthetics and scaffolds. Sports Med Arthrosc Rev 16: 208-216, 2008. 47. Khan WS, Tew SR, Adetola AB, Hardinham TE. Human infrapatellar fat pad-derived stem cells express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2. Arth Res Ther 10: 1-11, 2008. 48. Kjaergard HK, Fairbrother JE, Cederholm -Williams SA. The vivostat system for automated preparation of autologous fibrin sealant. Cardiovasc Eng 2: 2004-2006, 1997. 49. Kjaergard HK, Weis F, Sorensen H, Thiis J, Rygg I. Autologous fibrin glue preparation and clinical use in thoracic surgery. Eur J Cardio-thora Surg 6: 52-54, 1992. 50. Kiraly K, Lammi M, Arokoski J, Lapvetelainen T, Tammi M, Helminen H, Kiviranta I. Safranin O reduces loss of proteoglycans from bovine articular cartilage during histological specimen preparation. Histochem J 28: 99-107, 1996. 51. Kiviranta I, Tammi M, Jurvelin J, Saamanen AM, Helminen HJ. Fixation, decalcification, and tissue processing effects on cartilage proteoglycans. Histochemistry 80: 569-573, 1984. 52. Laurens N, Koolwijk P, de Maat MP. Fibrin structure and wound healing. J Thromb Haemost 4: 932-939, 2006. 53. Leitner GC, Gruber R, Neumuller J, Wagner A, Kloimstein P, Hocker P, Kormoczi GF, Buchta C. Platelet content and growth factor release in platelet-rich plasma: a comparison of four different system. Vox Sang 91: 135-139, 2006. 54. Li WJ, Chaing H, Kuo TF, Lee HS, Jiang CC, Tuan R. Evaluation of articular cartilage repair using biodegradeble nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 3: 1-10, 2009. 55. Lind M, Larsen A, Clausen C, Osther K, Eveeland H. Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold: an in vivo study in goats. Knee Surg Sports Traumatol Arthrosc 2: 69-71, 2008. 56. Lu Y, Dhanaraj S, Wang Z, Bradley DM, Boeman SM, Cole BJ, Binette F. Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair. J Ortho Res 24: 1261-1270, 2006. 57. Lunquist R, Dziegiel MH, Agren MS. Bioactivity and stability of endogenous fibrinogen factors in platelet-rich fibrin. Wound Rep Reg 16: 356-363, 2008. 58. Lyyra T. Development, validation and clinical application of indentation technique for arthroscopic measurement of cartilage stiffness. Ph.D. Thesis, University of Kuopio, Finland, 1-99, 1998. 59. Lyyra T, Jurvelin J, Pitkanen P, Vaatainen U, Kiviranta I. Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med Eng Phys 17: 395-399, 1995. 60. Lyyra T, Kiviranta I, Vaatainen U, Helminen HJ, Jurvelin JS. In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J Biomed Mater Res 48: 482-487, 1999. 61. Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, Kandel R, Nehrer S, Pritzker K, Roberts S, Stauffer E. Histologicla assessment of cartilage repair: a report by the Histology Endpoint Committee of the Cartilage Repair Society (ICRS). J Bone Joint Surg Am 85: 45-57, 2003. 62. Malinin T, Thomas-Temple H, Buck BE. Transplantation of osteochodral allografts after cold storage. J Bone Joint Surg 88: 762-770, 2006. 63. Mankin HJ, Thrasher AZ. Water content and binding in normal and osteoarthritic human cartilage. J Bone Joint Surg [Am] 57: 76-80, 1975. 64. Maroudas AI. Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260: 808-809, 1976. 65. McCauley TR, Recht MP, Disler DG. Clinical imaging of articular cartilage in the knee. Semin Musculoskelet Radiol 5: 293-304, 2001. 66. McCormick F, Yanke A, Provencher MT, Cole BJ. Minced articular cartilage-basic science, surgical technique, and clinical application. Sports Med Arthrosc Rev 16: 217-220, 2008. 67. Mow VC, Setton LA. Mechanical properties of normal and osteoarthritic articular cartilage. In: Brandt DK, Doherty M, Lohmander SL, Eds. Osteoarthritis. Oxford, UK: Oxford University Press: 108-122, 1998. 68. Munirah S, Kim SH, Ruszymah BHI, Khang G. The use of fibrin and POLY (lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis. Eur Cel Mat 15: 41-52, 2008. 69. Murata M, Yudoh K, Masuko K. The potential role of vascular endothelial growth factor (VEGF) in cartilage: how the angiogenic factor could be involved in the pathogenesis of osteoarthritis? Osteoarthritis and cartilage 16: 279-286, 2008. 70. Nehrer S, Chiari C, Domayer S, Barkay H,Yayon A. Results of chondrocyte implantation with a Fibrin-Hyaluronan matrix. Cli Orthop Relat Res 446: 1849-1855, 2008. 71. O’Connell SM, Impeduglia T, Hessler K, Wang XJ, Carroll RJ, Dardik H. Autologous platelet-rich fibrin matrix as cell therapy in the healing ofchronic lower-extremity ulcers. Wound Rep Reg 16: 749-756, 2008. 72. O’Connell SM, Impeduglia T, Hessler K, Wang XJ, Carroll RJ, Dardik H. Autologous platelet-rich fibrin matrix as a stimulator of healing of chronic lower extremity ulcers. Wound Rep Reg 14: A76, 2006. 73. Osch-Gerjo JVM, Mandl EW, Marijnissen-Willem JCM, Veen-Simone W, Verwoerd-Verhoef HL, Verhaar JAN. Growth factors in cartilage tissue engineering. Bioheology 39: 215-220, 2002. 74. Palmoski MJ, Colyer RA, Brandt KD. Joint motion in the absence of normal loading does not maintain normal articular cartilage. Arthritis Rheum 23: 325-334, 1980. 75. Peterfy CG. Imaging of the disease process. Curr Opin Rheumatol 14: 590-596, 2002. 76. Poole AR. Proteoglycans in health and disease: structures and functions. Biochem J 236: 1-14, 1986. 77. Poole AR, Rizkalla G, Reiner A, Ionescu M, Bogoch E. Changes in the extracellular matrix of articular cartilage in human osteoarthritis. In: Hirohata K, Mizuno K, Matsubara T, Eds. Trends in research and treatment of joint disease. Tokyo: Springer Verlag: 3-12, 1992. 78. Pufe T, Kurz B, Petersen W, Varoga D, Mentlein R, Kulow S, Lemke A, Tillmann B. The influence of biomechanical parameters on the expression of VEGF and endostatin in the bone and joint system. Ann Anat 187: 461-472, 2005. 79. Radin EL, Martin RB, Burr DB, Caterson B, Boyd RD, Goodwin C. Effects of mechanical loading on the tissues of the rabbit knee. J Orthop Res 2: 221-234, 1984. 80. Ramaswamy S, Gurkan I, Blanka S, Cascio B, Fishbein KW, Spencer RG. Assessment of tissue repair in full thickness chondral defects in the rabbit using magnetic resonance imaging transverse relaxation measurements. J Biomed Master Res Part B 20: 221-234, 2007. 81. Ratcliffe A, Mow VC. Articular cartilage. In: Comper WD et al.. Extracellular matrix, Vol. 1, Tissue function. Amsterdam, NL: Hardwood Academic Publishers: 234-302, 1996. 82. Rybarczyk BJ, Lawrence SO, Simpson-Haidaris PJ. Matrix-fibringen enhances wound closure by increasing both cell proliferation and migration. Blood 102: 4035-4043, 2003. 83. Sahni A, Baker CA, Sporn LA, Francis CW. Fibrinogen and fibrin protect fibroblast growth factor-2 from proteolytic degradation. Thromb Haemost 83: 736-741, 2000. 84. Setton LA, Mow VC, Muller FJ, Pita JC, Howell DS. Altered structure-function relationships for articular cartilage in human osteoarthritis and an experimental canine model. Agents Aztions Suppl 39: 27-48, 1993. 85. Setton LA, Zhu W, Mow VC. The biphasic porovisco-elastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior. J Biomech 26: 581-592, 1993. 86. Sluijs JA, Geesink RGT, Linden AJ, Bulstra SK, Kuyer R, Drukker J. The reliability of the Mankin scores for osteoarthritis. J Ortho Res 10: 58-61, 1992. 87. Timoney JM, Kneisl JS, Barrack RL, Alexander AH. Arthroscopy update: 6. Arthroscopy in the osteoarthritis knee. Long-term follow-up. Orthop Rev: 19 371-373, 1990. 88. Ueda M, Yamada Y, Ozawa R, Okazaki Y. A clinical report of injectable tissue-engineered bone applied for alveolar augmentation with simultaneous implant placement. Inj J Periodont Restor Dent 25: 129-137, 2005. 89. Vadala G, Martino AD, Tirindelli MC, Denaro L, Denaro V. Use of autologous bone marrow cells concentrate enriched with platelet-rich fibrin on corticocencellous bone allograft for posterolateral multilevel cervical fusion. J Tissue Eng Regen 2: 515-520, 2008. 90. Wayne JS, McDowell CL, Shields KJ, Tuan R. In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tis Eng 11: 953-963, 2005. 91. Weibrich G, Kleis WK, Buch R, Hitzler WE, Hafner G.. The harvest smart PRePTM system versus the Friadent-Schutze platelet-rich plasma kit. Clin Oral Implants Res 14: 233-239, 2003. 92. Weibrich G, Kleis WK, Hafner G, Hitzler WE, Wagner W. Comparison of platelet, leukocyte, and growth factor levels in point-of-care platelet-enrich plasma, prepared using a modified Curasan kit, with preparations received from a local blood bank. Oral Implants Res 14: 357-362, 2003. 93. Wong BL, Bae WC, Chun J. Biomechanics of cartilage articulation: effects of lubrication and deformation on shear deformation. Arthitis Rheum 58: 2065-2074, 2008. 94. Yamada Y, Ueda M, Naiki T, Takahashi M, Hata K, Nagasaka T. Autogenous injectable bone for regeneration with dog messenchymal stem cell (dMSC) and platelet-rich plasma (PRP) tissue engineered bone regeneration. Tiss Eng 10: 955-964, 2004. 95. Yamada Y, Ueda M, Naiki T, Nagasaka T. Tissue- engineered injectable bone regeneration for osseointegrated dental implants. CLIN Oral Impl Res 15: 589-597, 2004. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43418 | - |
dc.description.abstract | 由於成熟關節軟骨本身並沒有血管分布,所以軟骨的修復並不容易。近年來因為關節退化而飽受疾病困擾的病患日進增加,發病的年齡也漸趨年輕化,關節軟骨的疾病已經不再是年老疾病。當關節軟骨受損引起退化性關節炎,會因為其不易修復甚至導致永久性破壞,因此組織工程再生在關節軟骨的研究就越來越重要。組織工程得領域中有三個要素,分別是細胞、細胞支架以及生長因子,這三者缺一不可。細胞支架本身是一個具有三度空間立體結構的材料,根據他的成份分為生物性及非生物性。要稱為良好的細胞支架必須具有良好生物降解性、低組織排斥性、可以幫助細胞移行及黏連、可促進細胞分化等多項優點。在關節軟骨的組織工程研究中,其中自體來源的纖維素不僅可作為良好的生物性材料,它同時具有低組織排斥性以及良好的生物降解性;而組織工程中細胞會因其來源有所不同,通常包括自體移植、異體移植以及異種移植。富血小板纖維素是一種第二代血小板衍生物,具有黃色凝膠樣的外觀,由於它是經過離心緩慢形成,所以在富血小板纖維素中同時含有許多生長因子。在我們的實驗中,是利用富血小板纖維素作為細胞支架同時混合自體來源的豬隻關節軟骨碎片進行關節軟骨組織工程再生。在經體內試驗六個月後,關節軟骨的外觀可以發現實驗組與對照組之間有明顯的差異(p<0.05);除此之外同時在顯微鏡下評估經過組之工程手術的部位,可以發現在細胞排列、細胞外基質的生長以及分佈,實驗組與對照組織間都有顯著的差異(p<0.05)。而在關節軟骨彈力試驗測得的結果,發現正常的軟骨彈性大於實驗組的軟骨彈性,又大於對照組的彈性。根據Alcian blue以及Safarnin O的染色結果發現在實驗組中大分子醣類與醣蛋白的表現,無論是表現量或是分佈都與正常的軟骨相近,而對照組則是低表現量,此外成不均質樣分佈。免疫組織化學染色的結果,實驗組的第二型膠原蛋白的分布情形,也與正常關節軟骨相近。綜合以上結果發現在關節軟骨經過組織工程手術後,無論是在外觀形態表現、關節軟骨彈性的恢復、組織學下細胞生長量以及細胞外基質的再生,都有顯著的再生結果;此外利用富血小板纖維素作為細胞支架同時移植細胞,不僅可將細胞保留局現在手術部位,也可幫助軟骨組織的再生。 | zh_TW |
dc.description.abstract | Introduction Adult articular cartilage is characterized by a poor ability to repair damage spontaneously. In the study of tissue engineering, scaffold provides a physicochemical and biological three-dimensional microenvironment for cell growth. Platelet rich fibrin (PRF) was a second-generation platelet concentrate that has a gel-like construct with plenty of growth factors. It composed of fibrin fibrilla, fibronectin, glycanic chain, and platelet to form a network structure.
Object Since most studies reported by means of transplantation, the aim of our study could be achieved by shifting this autologous cartilage shreds quickly during open articular surgery procedure. Experimental design, There were three experimental groups and control group (n=4), were established in our study. Experimental groups were separated into PRF group (implants with platelet-rich fibrin, n=4), CAR group (implants with cartilage fragments, n=4), and P/C group (cartilage fragments embedded with platelet-rich fibrin, n=4). The articular cartilages harvested from 16 Lan Yu pigs after implantation for 6 months. Result To inspect the defect margin of native and regenerated cartilage, the edge is almost invisible in P/C group and approximately visible present in control group. There are significantly different in the parameters of coverage color and defect margin (p>0.05). Matrix stiffness test is ranked as normal cartilage>experimental groups>control group; exactly, the stiffness test between three experimental groups are ranked as and was ranked as P/C group>PRF groups>CAR group (p<0.05). Under histological assessment, the gap of P/C group lefts only point historical remains and most of the repair cartilage is fusion with native cartilage. Besides, the surface of P/C group regenerates with mostly smooth surface, and result also equal to the gross appearance. The matrixes of P/C group augment with large partial of hyaline-like cartilage and the macromolecular of matrix displays homogenously under Alcian blue and Safranin O staining. Regeneration of P/C group under histological analysis was agreement to the cartilage compressive stiffness test. The repair matrix of P/C group was mostly near to native cartilage that could predict the well mechanical function in prognosis. Conclusion In summary, platelet-rich fibrin was able to help chondrocytes regeneration and cartilage fragments were proficient to deliver cartilage matrix and chondrocytes. Because of suitable tissue scaffold and cartilage fragments, our results suggested that the tissue regeneration of P/C group was facility to regenerate cartilage micro and macro-structure, the mechanical function and weight-bearing restored nearly to the native cartilage. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:55:35Z (GMT). No. of bitstreams: 1 ntu-98-R96629031-1.pdf: 8555415 bytes, checksum: 8d0af7f4b5996553420e67f825864c8c (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Chapter 1 Literature Review ……………………………………...1
Section 1 Articular Cartilage……………………………….....1 1.1 Cartilage types…………………………………………………..1 1.2 Components and Structure of Articular Cartilage…………2 1.3 Cartilage Function……………………………………………….4 1.4 Development and Repair of Articular Cartilage………....5 1.4.1 Growth of cartilage……………………………………………5 1.4.2 Repair Mechanism of Cartilage…………………………….6 Section 2 Tissue Engineering of Articular Cartilage………..7 2.1 Introduction …………………………………………….7 2.2 Growth Factors…………………………………………………….8 2.3 Scaffold……………………………………………………………9 2.4 Cell……………………………………………………………….10 Section 3 Introduction of Platelet-Rich Fibrin…………….11 3.1 Introduction of Choukroun’s Pletelet-rich fibrin....11 3.2 Introduction of Vivostat PRF……………………….13 Section 4 Achievement of Platelet-Rich Fibrin…………....14 Section 5 Assessment……………………………………………...17 5.1 In Situ Compressive Stiffness Test…………………………17 5.2 Gross Assessment of Articular Cartilage…………………19 5.3 Histological Assessment of Cartilage…………………….19 Chapter 2 Introduction…………………………………………….21 Chapter 3 Materials and Methods…………………………………23 Section 1 Materials………………………………………………..23 1.1 Solutions for Alcian blue staining………………………..23 1.2 Solutions for Safranin O Staining…………………………23 1.3 Preparation of Platelet-Rich Fibrin………………………23 1.4 Experimental Animals……………………………………………24 Section 2 Methods……………………………………………………25 2.1 Anesthesia…………………………………………………...25 2.2 Surgical Procedures ………………………………………...26 2.3 Cartilage Harvest………………………………………………27 2.4 Assessment of Articular Cartilage…………………………27 2.4.1 Articular Cartilage Gross Assessment ………………27 2.4.2 Articular Cartilage In Situ compressive Stiffness Test…………………………29 2.5 Articualr Cartilage Histological Analyses……………..30 2.5.1 Biopsy Technique and Fixation ……………………………30 2.5.2 Histological Grading Scale ……………………………….30 2.6 Gaps Investigation under Histological Analysis…………32 2.7 Alcian Blue Stain Analyses……………………………………32 2.8 Safranin O Stain Analysis ……………………………………33 2.9 Immunohistochemistry Analysis ………………………………33 Section 3 Statistical Analysis …………………………………34 Chapter 4 Result ………………………......................36 4.1 Surgical Procedure ……………………………………………36 4.2 Platelet-Rich Fibrin Preparation and Appearance………36 4.3 Gross Scaling Assessment …………………………….36 4.4 In Situ Compressive Stiffness Test ………………………37 4.5 Histological Assessment ………………………………………38 4.5.1 Gaps Investigation …………………………………………38 4.5.2 Analysis of Histological Scaling Assessment …………39 4.6 Outcome of Alcian Blue Stain ………………………………40 4.7 Outcome of Safranin O Stain ………………………………41 4.8 Outcome of Immunohistochemistry Stain ……………41 Chapter 5 Discussion ………………………………………………43 Chapter 6 References ……………………………………………52 Table ……………………………………………………………………65 Figure……………………………………………………………………70 | |
dc.language.iso | en | |
dc.title | 利用豬關節軟骨碎片混合富血小板纖維素進行豬隻自體關節軟骨組織工程再生 | zh_TW |
dc.title | Use of Platelet-rich Fibrin (PRF) as Scaffold Seeded with Porcine Articular Cartilage Fragments for Tissue Engineering: an in vivo Autologous Transplantation Analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳榮邦,陳敏慧,李勝揚,黃勇三 | |
dc.subject.keyword | 豬,關節軟骨,富血小板纖維素,組織工程, | zh_TW |
dc.subject.keyword | porcine,cartilage,platelet-rich fibrin (PRF),tissue engineering, | en |
dc.relation.page | 102 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-06-29 | |
dc.contributor.author-college | 獸醫專業學院 | zh_TW |
dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 8.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。