Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43398
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇和平
dc.contributor.authorChuang-Ping Lienen
dc.contributor.author連莊平zh_TW
dc.date.accessioned2021-06-15T01:54:17Z-
dc.date.available2014-07-03
dc.date.copyright2009-07-03
dc.date.issued2009
dc.date.submitted2009-06-30
dc.identifier.citation參考文獻
宋文杰。2001。食用膠在烘焙產品的應用。烘焙工業。96: 41-49頁。
李建和。1997。滾筒混合熱風乾燥蛋片的開發及品質評估。碩士論文。靜宜大學 食品營養學系。
林頎生和葉瑞月。2003。感官品評應用與實作。睿煜出版社。台北。台灣。
林瑩禎、李河水和華傑。2002。機能性油脂在加工食品的應用研究。食品工業發 展研究所。台北。台灣。22頁。
張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城和林慶文。1995。食品化學。華香園出版社。台北。台灣。
郭春芳。2004。多醣膠質於食品工業之應用。烘焙工業。117:49-59頁。
郭煌林。1994。蛋白質與多醣類之交互作用在食品系統上之應用。食品工業。26 (10) : 45頁。
衛生署。1998。台灣地區食品營養成分資料庫。行政院衛生署員工消費合作社。台北。台灣。
陳怡宏。1995。三仙膠的性質與應用。食品工業。27: 24頁。
陳明造。1900。蛋品加工理論與應用。台北。台灣。307-313頁。
黃騰億。2006。食用膠於穀類相關產品之應用研究 (上) 。烘焙工業。127: 32-37 頁。
Abu-Jdayil, B. 2003. Modelling the time dependant rheological behavior of semi-solid foodstuffs. J. Food Eng. 57: 97-102.
ADA. 2005. Position of the American Dietetics Association: fat replacers. J. Am. Diet. Assoc. 105: 266-275.
Akoh, C. C. and D. B. Min. 2002. Food Lipids. Marcel Dekker. New York, New York.
Anton, M. and G. Gandemer. 1997. Composition, solubility and emulsifying properties of granules and plasma of egg yolk. J. Food Sci. 62: 484-487.
Almdal, K., J. Dyre, S. Hvidt and O. Kramer. 1993. Towards a phenomenological definition of the term gel. Polym. Gels Networks. 1(1): 5-18.
Babayan, V. K. 1987. Medium chain triglycerides and structured lipids. Lipids. 22: 417.
Barylko-Pikielna, N. 1988. Time- intensity studies on taste substances- an actual review. In M. Rothe (Ed.). Proceedings of 2nd Wartburg Aroma Sympositum, Characterization, production and application of food flavours. pp 335-348.
Becker, A., F. Katzen, A. Puhler and L. Ielpi. 1998. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl. Microbiol. 50: 145-152.
Braddock, R. J. 1995. By-products of citrus fruits. Food Technol. 49: 74-77.
Brennan C. S. and L. J. Cleary. 2005. The potential use of cereal (1-3, 1-4) -beta-D-glucans as functional food ingredients. J. Cereal Sci. 42: 1-13.
Buffo, R. A., G. A. Reineccius and G. W. Oehlert. 2001. Factors affecting the emulsifying and rheological properties of gum acacia in beverage emulsions. Food Hydrocolloids. 15: 53-66.
Burns, A. A., M. B. E. Livingstone, R. W. Welch, A. Dunne and I. R. Rowland. 2002. Dose-response effects of a novel fat emulsion (Olibra TM) on energy and macronutrient intakes up to 36 h post-consumption. Eur. J. Clin. Nutr. 56: 368-377.
Cairns, P., M. J. Miles, V. J. Morris and G. J. Brownsey. 1987. X-ray fiber-diffraction studies of synergistic, binary polysaccharide gels. Carbohydr. Res. 160: 411-423.
Chantrapornchai, W., F. Clydesdale and D. J. McClements. 1999. Influence of droplet characteristics on the optical properties of colored oil-in-water emulsions. Coll. Surf. Physicochem. Eng. Aspects 155: 373-382.
Chemical Rubber Company. 1975. CRC Handbook of Biochemistry and Molecular Biology, Physical and Chemical Data. 3rd (Ed.). vol. 1. CRC Press, Boca Raton, Fla. pp. 234-243.
Chirife, J., M. S. Vigo, R. G. Gómez and G. J. Favetto. 1989. Water activity and chemical composition of mayonnaises. J. Food Sci. 54: 1658-1659.
Conforti, F. D. and L. Archilla. 2001. Evaluation of a maltodextrin gel as a partial replacement for fat in a high-ratio white-layer cake. Int J Consumer Sci. 25: 238-245.
Delgado-Vargas, F., A. R. Jiménez and O. Paredes-López. 2000. Natural pigments: Carotenoids, anthocyanins, and betalains-characteristics, biosynthesis, processing, and stability. Crit. Rev. Nutr. 40: 173-289.
Depree, J. A. and G. P. Savage. 2001. Physical and flavour stability of mayonnaise. Trends Food Sci. Technol. 12(5-6): 157-163.
Dickinson, E. and G. Stainsby. 1982. Colloids in Foods. Applied Science Publ. London. England. pp. 126-129.
Dickinson, E. 1992. Introduction to Food Colloids. Oxford University Press, Oxford. England. pp. 234-242.
Dolz, M., M. J. Hernández, J. Delegido, M.C. Alfaro and J. Muñoz. 2007. Influence of xanthan gum and locust bean gum upon flow and thixotropic behavior of food emulsions containing modified starch. J. Food Eng. 81: 179-186.
Dyer-Hurdon, J. N. and I.A. Nnanna. 1993. Cholesterol content and functionality
of plasma and granules fractionated from egg yolk. J. Food Sci.58: 1277–1281.
Eastwood, M. A. 1987. Dietary fibre and risk of cancer. Nutrition Reviews. 7: 193.
Egelandsdal, B., Ø. Langsrud, T. Nyvold, P.K. Sontum, C. Sørensen, G. Enersen, S. Hølland. and R. Ofstad. 2001. Estimating significant causes of variation in emulsions’ droplet size distributions obtained by the electrical sensing zone and laser low angle light scattering techniques. Food Hydrocoll. 15: 521-532.
Elliot, J. H. and A. J. Ganz. 1977. Salad dressing: Preliminary rheological characterization. J. Texture Study. 8: 359-71.
Fabian, F. W. and M. C. Wetherington. 1950. Bacterial and chemical analysis of mayonnaise, salad dressing and related products. Food Research. 15: 138-145.
Farmer, E. H., G. F. Bloomfield, A. Sundralingam and D. A. Sutton. 1942. The course and mechanism of autooxidation reactions in olefinic and polyolefinic substances, including rubber. Trans. Faraday. 38: 348-356.
Fennema, O. R. 1985. Carbohydrates. In: Food Chemistry.
Fennema, O. R.1996. Food Chemistry, 3rd (Ed.). Marcel Dekker, Inc. New York. pp.158-220.
Ferguson, L. R. and P. J. Harris. 2005. Dietary fibres and human health. Mol. Nutr. Food Res. 49: 517.
Ferry, J. D. 1980. Viscoelastic Properties of Polymers, 3rd edn. John Wiley and Sons, Inc., New York. New York. pp. 421-431.
Fox, N. J. and C. W. Stachowiak. 2007. Vegetable oil-based lubricants: Areview of oxidation. Tribology International. 40: 1035-1046.
Franco, J. M., M. Berjano, A. Guerrero, J. Munoz and C. Gallegos. 1995. Flow behavior and stability of light mayonnaise containing a mixture of egg yolk and sucrose stearate as emulsifiers. Food Hydrocolloids. 9: 111-121.
Frankel, E. N. 1991. Recent advances in lipid oxidation. J. Sci. Food Agric. 54: 495-511.
Galvez, J., M.E. Rodriguez-Cabezas and A. Zarzuelo. 2005. Effects of dietary fiber on inflammatory bowel. Mol. Nutr. Food Res. 49: 601-608.
Gamier, C., C. Schorsch and J. L. Doublier. 1995. Phase separation in dextran/locust bean gum mixtures. Carbohydr. Polym. 28: 313-317.
Ghoush, M. A., M. Samhouri, M. Al-Holy and T. Herald. 2008. Formulation and fuzzy modeling of emulsion stability and viscosity of a gum-protein emulsifier in a model mayonnaise system. J. Food Eng. 84: 348-357.
Glicksman M. 1969. Starches. In: Gum Technology in the Food Industry. Glicksman M (Editor). Academic Press. New York. pp 278.
Gordon, M. H. 1990. The mechanism of antioxidant Action in vitro. Chapter 1, in Food Antioxidants, B. J . F. Hudson (Ed.). Elsevier Applied Science, London and New York. pp. 1-18.
Gorinstein, S., O. Martı´n-Belloso, Y. S. Park, R. Haruenkit, A. Lojek, M. Ciz, A. Caspi, I. Libman and S. Trakhtenberg. 2001. Comparison of some biochemical characteristics of different citrus fruits. Food Chem. 74: 309–315.
Gottenbos, J. J. 1988. Nutritional evaluation of n-6 and n-3 polyunsaturated fatty acids. In: Dietary Fat Requirements in Health and Development (J. Beare-Roger, ed.). American Oil Chemists’ Society, Champaign, IL. pp. 107-119.
Guilmineau, F. and U. Kulozik. 2007. Influence of a thermal treatment on the functionality of hen’s egg yolk in mayonnaise. J. Food Eng. 78 : 648-654.
Gutierrez, X., F. Siliva, M., Chirinos, J., Leiva and H. Rivas. 2002. Bitumen-in-water emulsion: An overview on formation, Stability and rheological properties. J. Dispers. Sci. Technol.23: 405-418.
Harrison, L. J. and F. E. Cunningham. 1985. Factors influencing the quality of mayonnaise. J. Food Qual. 8: 1-20.
Harrison, L. J. and F. E. Cunningham. 1986a. Influence of frozen storage time on properties of salted yolk and its functionality in mayonnaise. J. Food Qual.. 9: 167-174.
Harrison, L. J. and F. E. Cunningham. 1986b. Influence of salt on properties of liquid yolk and functionality in mayonnaise. Poult. Sci. 65: 915-921.
Hashim, A. and V. K. Babayan. 1978. Studies in man of partially absorbed dietary fats. Am. J. Clin. Nutr. 31: 273.
Hsieh Y.-T. L. and J. M. Regenstein. 1992. Storage Stability of Fish Oil, Soy Oil, and Corn Oil Mayonnaises as Measured by Various Chemical Indices. J. Aquat .Food Prod. Tech. 1(1): 97-106.
Hutchings, J. B.. 1994. Food colour and appearance. London: Blackie Academic and Professional. pp. 356-358.
Isaksen, A. and J. Adler-Nissen. 1997. Antioxidative effect of glucose oxidase and catalase in mayonnaises of different oxidative susceptibility. I. Product Trials. Lebensm. Wiss. Technol. 30 (8): 841-846 .
Jansson P-E, L. Keene and B. Lindberg. 1975. Structure of the extra-cellular polysaccharide from Xanthomonas campestris. Car- bohydr Res. 45: 275-282.
Johnston, P. V. 1988. Essential fatty acids and the immune response. In: Dietary Fat Requirements in Health and Development. J. Beare-Rogers (ed.). American Oil Chemists’ Society, Champaign, IL. pp. 151-162.
Kaláb, M. and G. Larocque.1996. Suitability of agar gel encapsulation of milk and cream for electron microscopy. LWT-Food Sci. Technol. 29: 368-371.
Karas, R., M. Skvarča and B. Žlender. 2002. Sensory quality of standard and light mayonnaise during storage. Food Technol. Biotechnol. 40(2): 119-127.
Kennedy, J. P. 1991. Structured lipids: Fats of the future. Food Technol. 45: 76.
Kim M. R., J. Y. Shim, K. H. Park, B. Y. Imm, S. Oh and J. Y. Imm. 2009. Optimization of the enzymatic modification of egg yolk by phospholipase A2 to improve its functionality for mayonnaise production. Food Sci. Technol. 42: 250-255.
Kiosseoglou, V. 2003. Egg yolk protein gels and emulsions. Curr. Opin. Colloid Interface Sci. 8: 365-370.
Kiosseoglou, V. D. and P. Sherman. 1983. Influence of egg yolk lipoproteins on the rheology and stability of oil/water emulsions 1and mayonnaise 1. Viscoelasticity of groundnut oil-in-water emulsions and mayonnaise. J. Texture Stud. 14: 397-417.
Kishk, Y. F.M., and M.A. Al-Sayed. 2007. Free-radical scavenging and antioxidative activities of some polysaccharides in emulsions. LWT 40: 270-277.
Kobayashi, Y., H. Ogawa and N. Iso. 1997. Influence of pH, salt and solid content on viscoelasticity of liquid egg. Nip. Sho. Ka. Ko. Ka. 44: 55-58.
Kostyra, E. and N. Barylko-Pikielna. 2006. Volatiles composition and flavor profile identity of smoke flavourings. Food Qual. Prefer.17: 85-95.
Kostyra, E. and Barylko-Pikielna. 2007. The effect of fat levels and guar gum addition in mayonnaise-type emulsions on the sensory perception of smoke-curing flavor and salty taste. Food Qual. Prefer.18: 872-879.
Krog, N. J., T. H. Riisom and K. Larsson. 1985. Application in the food industry: 1 Chap. 1. In: Encyclopaedia of emulsion technology. Becher, P. (Ed). New York. New York. pp.321.
Larrauri, J. A. 1999. New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends Food Sci. Technol. 10: 3 –8.
Leal-Calderon, F. Thivilliers and V. Schmitt. 2007. Structured emulsions. Curr. Opin. Colloid. Interface. Sci. 12: 206-212.
Le Denmat, M., M. Anton and G. Gandemer. 1999. Protein denaturation and emulsifying properties of plasma and granules of egg yolk as related to heat treatment. J. Food Sci. 64: 194-197.
Le Denmat, M., M. Anton and V. Beaumal. 2000. Characterisation of emulsion properties and of interface composition in O/W emulsions prepared with hen egg yolk, plasma and granules. Food Hydrocoll. 14: 539-549.
Lennersten, M. and H. Lignert. 2000. Influence of wavelength and packaging material on lipid oxidation and colour changes in low-fat mayonnaise. Lebensm Wiss. U. Tech. 33: 253-260.
Liu, H., X. M. Xu and S. D. Guo. 2007. Rheological, texture and sensory properties of low-fat mayonnaise with different fat mimetics. LWT-Food Sci. Technol. 40: 946-954.
Macrae, R., R. K. Robinson and M. J. Sadler. 1993. Encyclopaedia of food science Food Technol and nutrition. Academic press, New York. pp.1443,1577.
Ma, L. and G. V. Barbosa-Cánovas. 1995. Rheological Characterization of mayonnaise. Part I: Slippage at different oil and xanthan gum concentration. J. Food Eng. 25: 397-408.
Ma, L., and G. V. Barbosa-Cánovas. 1995. Rheological Characterization of mayonnaise. Part II: Flow and Viscoelastic properties at different oil and xanthan gum concentration. J. Food Eng. 25: 409-425.
Ma, Y., C. Cai, J. Wang and D. W. Sun. 2006. Enzymatic hydrolysis of corn starch for producing fat mimetics. J. Food Eng. 73: 297-303.
Marin, F. R., A. Garcia-Rosado, M. J. Frutos, J. A. Pe´ rez-Alvarez, O. Benavente-Garcia and J. Castillo. 2003. Industrial citrus byproducts. A source of
functional dietary fibre-flavonoids. In New functional ingredients and foods abstract book (2-A03), Copenhagen: 9–11
Marin, F. R., M. J. Frutos, J. A. Perez-Alvarez, F. Martinez-Sanchez and J. A. Del Rio. 2002. Flavonoids as nutraceuticals: structural related antioxidant properties and their role on ascorbic acid preservation. In Atta-Ur-Rahman (Ed.). Studies in natural products chemistry. vol. 26. Amsterdam: Elsevier Science. pp. 324–389.
Marshall, R. T. 1992. Standard methods for the examination of dairy products. American Public Health Association. Columbia. Washington.
McBee, L. E. and O. J. Cotterill. 1979. Ion-exchange chromatography and
electrophoresis of egg yolk proteins. J. Food Sci. 44: 656–660.
McClements D. J. 1999. Food emulsions: Principles, practice and techniques. CRC Press LLC. Boca Raton. pp. 243-254.
McClements, D. J. and K. Demetriades. 1998. An integrated approach to the development of reduced-fat food emulsions. Crit. Rev. Food Sci. Nutr. 38: 511-536.
McNulty, P. B. and M. Karel. 1973. Factors affecting flavour release and uptake in O/W emulsions:II. Stirred cell studies. Int. J. Food Sci. Nutr.8 (4): 319-331.
Megremis, C. J. 1991. Medium-chain triglycerides: A nonconventional fat. Food Technol. 45: 108-114.
Melnikov S. M. 2002. Effect of pH on the adsorption kinetics of egg yolk at the triacylglycerol–water interface and viscoelastic propertiesof interfacial egg yolk films: a dynamic drop tensiometry study. Colloid Surface B: Biointerfaces. 27: 265 -75.
Munoz, J. and P. Sherman. 1990. Dynamic viscoelastic properties of some commercial salad dressings. Journal of Texture Studies. 21(4): 411-426
Narwar, W. W. 1996. Lipids. In Food Chemistry. O. R. Frennema (Ed.). Marcel Dekker, Inc. New York. pp. 225-319.
O’Keefe, S. F. 2002. Nomenclature and classification of lipids. In Akoh, C. C. and D. B. Min (ed.). Food lipid. Marcel Dekker, Inc. New York, New York. pp 1-34.
Osilesi, O., D. L. Trout and E. E. Glover. 1985. Use of xanthan gum in dietary management of diabetes mellitus. Am. J. clin Nutr. 42: 597-603.
Ou S., K. C. Kwork, Y. Li and L. Fu. 2001. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. J. Agric. Food Chem. 49: 1026-1029.
Overbosch, P., W. G. M. Afterof and P. G. M. Haring. 1991. Flavor release in the mouth. Food Rev. Int. 7: 137-184.
Paraskevopoulou A., V. Kiosseoglou, S. Alevisopoulos and S. Kasapis. 1997. Small deformation properties of model salad dressings prepared with reduced cholesterol egg yolk. J. Texture Stud. 28: 221-37.
Peressini, D., A. Sensidoni and B. de Cindio. 1998. Rheological Characterization of traditional and light mayonnaises. J. Food Eng. 35: 409-417.
Rahalkar, R. B. 1992. Viscoelastic properties of oil-water emulsions. In Viscoelastic
Properties of Foods. M. A. Rao and J. F. Steffe (ed.). Elsevier Applied Science, New York, Ch. 12.
Rimm, E. B., A. Ascherio, E. Giovannucci, D. Spiegalman, M. Stampfer and W. Willett. 1996. Vegetable, fruits, and cereal fiber intake and risk of coronary heart disease among men. J. Am. Med. Assoc. 275: 447-451.
Robins, M. M., A. D. Watson and P. J. Wilde. 2002. Emulsions creaming and rheology. Curr. Opin. Colloid Interface Sci. 7: 419-25.
Ruthig D. J., D. Sider and K. A. Meckling- Gill. 2001. Health benefits of dietary fat reduction by a novel fat replacer: Mimix. Int J Food Sci Nutr. 52: 61-69.
Salah, N., N. J. Miller, G. Paganga, L. Tijburg, G. P. Bolwell and C. Rice Evans. 1995. Polyphenolic flavonols as scavenger of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys. 322: 339-346.
Sandrou, D. K. 2000. Low-fat/calorie foods: current state and perspectives. Crit. Rev. Food Sci. Nutr. 40 (5): 427-447.
Schramm, G. 1994. A practical approach to rheology and rheometry. Gebrueder HAAKE GmbH. Karlsruhe. Germany.
Schwenk, N. E. and J. F. Guthrie. 1997. Trends in marketing and usage of fat-modified food: Implication promotion. Fam. Econ. Nutr. Rev. 10:16-32.
Shahidi , F. and P. K. J . P. D. Wanasundara. 1992. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 32: 67-103.
Spiller, G. A. 1986. Suggestions for a basis on which to determine a desirable intake of dietary-fibre. In CRC handbook of dietary fibre in human nutrition. G. A. Spiller (Ed.). pp. 281-283.
Steffe, J. F. 1992. Yield stress: Phenomena and measurement. In Advances in Food
Engineering. R. P. Singh and M. A. Wirakartakusumah (ed.). CRC Press, London. England. 29: 363.
Stern, P., H. Valentova and J. Pokorny. 2001. Rheological properties and sensory texture of mayonnaise. Eur J Lipid Sci Technol 103: 23-28.
Stewart, J. W., K. D. Wigges, N. C. Jacobson and P. J. Berger. 1978. Effect of various triglycerides on blood and tissue cholesterol of calves. J. Nutr. 108: 561.
Sutherland I. W. 2001. Microbial polysaccharides from Gram-negative bacteria, Int. Dairy J. 11: 663-674.
Tester, R. F., J. Karkalas and X. Qi. 2004. Starch-composition, fine structure and architecture. J. Cereal Sci. 39: 151-165.
Thammakiti, S., M. Suphantharika, T. Phaesuwan, and C. Verduyn. 2004. Preparation of spent brewer’s yeast β-glucans for potential applications in the food industry. Int. J. Fd. Sci. Tech. 39: 21-29
Thomsen, M. K., C. Jacobsen and L. H. Skibsted. 2000. Initiation mechanisms of oxidation in fish oil enriched mayonnaise. Eur. Food. Res. Technol. 211: 381-386.
Tsutsui, T. 1988. Functional properties of heat-treated egg yolk low density lipoprotein. J. Food Sci. 53: 1103-1106.
Tuinier R., E. Grotenhuis and C. G. Kruif. 2000. The effect of depolymerised guar gum on the stability of skim milk. Food Hydrocolloids 14: 1-7.
Tung, M. A. and L. J. Jones. 1981. Microstructure of mayonnaise and salad dressing. Scan. Electron. Microsc. 3: 523-530.
Vliegenthart, J . F. G. and G. A. Veldink. 1982. Lipoxygenase. In Free Radicals in Biology. Ch. 2, vol. V. Pry, W. A. (Ed.). Academic Press, Inc., New York. pp. 29-64.
Walstra, P. 1996. Disperse systems: Basic considerations. In Food Chemistry. Fennema, O. R. (ed). Dekker. New York. pp 85.
Wang Q., P. R. Ellis and S. B. Ross-Murphy. 2000. The stability of guar gum in an aqueous system under acidic conditions. Food Hydrocolloids. 14: 129-134.
Warrand, J. 2006. Healthy polysaccharides: The next chapter in food products. Food Technol. Biotechnol. 44(3): 355-370.
Wendin, K., R., Ellkejair and R. Solheim. 1999. Fat content and homogenization effects on flavor and texture of mayonnaise with added aroma. Lebensm Wiss. U. Tech. (32): 377-383.
Wills, R. B. H. and C. L. Cheong. 1979. Use of peroxide value and carbonyl value to determine the onset of rancidity in mayonnaise. Food Chemi. 4: 259-261.
Woodward, S. A. and O.J. Cotterill. 1987. Texture and microstructure of cooked whole egg yolks and heat-formed gels of stirred egg yolk. J. Food Sci. 52: 68-74.
Worrasinchai, S., M. Suphantharika, S. Pinjai and P. Jamnong. 2006. β-Glucan prepared from spent brewer’s yeast as a fat replacer in mayonnaise. Food Hydrocoll. 20: 68-78.
Yamamoto, Y., I. Sogawa, A. Nishina, S. Saeki, N. Ichikawa and S. Iibata. 2000. Improved hypolipidemic effects of xanthan gum- -galactomannan mixtures in rats. Biosci. Biotechnol. Biochem. 64: 2165-2171.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43398-
dc.description.abstract蛋黃醬中添加油脂的主要目的在賦予其特殊滑潤之口感,但因含大量油脂使蛋黃醬被視為一種易引起心血管疾病之食品。因此本研究嘗試利用富含膳食纖維之多醣膠質及不同來源之食用油脂供開發機能性低脂蛋黃醬。試驗第一部分探討用三仙膠 (xanthan gum, XG) 、關華豆膠 (guar gum, GG) 及柑橘纖維 (citrus fiber, CF) 相互搭配,並與去離子水混合後作為降低蛋黃醬中脂肪的可行性,再依據流變儀分析之結果來尋找最適複合膠體配方,期能在不改變蛋黃醬之流體特性的前提下,降低蛋黃醬配方中一半的油脂 (36.5%);第二部分探討不同食用油脂 (包含大豆油、芥花油、葵花油、橄欖油及調合油) 與有無添加200 ppm抗氧化劑 (butyl hydroxy anisole, BHA) 對低脂蛋黃醬之黏稠度與氧化程度的影響。
第一部分結果顯示,利用1.5% XG + 1.0% GG或10% CF + 0.5% GG之複合膠體皆能使低脂蛋黃醬保有與對照組相似之流變特性。在成分分析方面,1.5% XG + 1.0% GG及10% CF + 0.5% GG能將蛋黃醬中膳食纖維含量分別提高至0.68與2.87%,且顯著降低熱量與脂肪含量 (P<0.05) 。在理化特性方面,利用1.5% XG + 1.0% GG與10% CF + 0.5% GG能顯著提升蛋黃醬之亮度 (P<0.05) 。1.5% XG + 1.0% GG與10% CF + 0.5% GG處理組之乳化安定性分別為90.7 ± 1.0及76.2 ± 3.8%,皆顯著高於對照組之43.9 ± 1.5% (P<0.05)。進一步利用掃描式電子顯微鏡觀察,顯示低脂處理組之油滴分布有較多空隙,其中10% CF + 0.5% GG處理組與對照組油滴較小且大小一致,而1.5% XG + 1.0% GG處理組之油滴大小不一且小油滴夾雜於大油滴之間。最後利用官能品評試驗比較與市售產品間的差異,結果顯示使用1.5% XG + 1.0% GG處理組在外觀、香味、風味、油膩感及總接受度皆與對照組及市售產品沒有顯著差異 (P>0.05) ,至於10% CF + 0.5% GG處理組在外觀、風味及總接受度則顯著低於對照組 (P<0.05)。
第二部分結果顯示,除了使用調合油之處理組的黏稠度顯著低於其餘各組外 (P<0.05) ,各處理組間無顯著差異 (P>0.05) 。然而添加200ppm BHA之各處理組,在儲藏8周期間具有延緩酸價、過氧化價及硫巴比妥酸價上升的現象,至於添加不同食用油脂方面,含200 ppm BHA之橄欖油與調合油之處理組,其POV及TBA值皆顯著低於其它處理組 (P<0.05) 。
綜合上述結果得知,1.5% XG + 1.0% GG與10% CF + 0.5% GG皆能扮演油脂在蛋黃醬中的功能性,且具有提高膳食纖維含量、降低油脂含量及降低熱量等優點;若以橄欖油或調合油作為原料油,能夠延長產品之保存期限,未來可進一步利用於各式低脂醬料中。
zh_TW
dc.description.abstractThe purpose of adding lipid in mayonnaise is to give its special creaming taste. However, using a great quantity of lipid in mayonnaise may lead to cardiovascular complications, so it is regarded as an unhealthy product. Thus, the objective of this study is to develop low-fat mayonnaise containing functional ingredients by adding polysaccharide gum and different edible oil. The first part of this study combined xanthan gum (XG), citrus fiber (CF) and guar gum (GG) with deionized water and formulated the optimum ratios of polysaccharide gum as fat replacers. The lipid ratio in mayonnaise can be cut down by half and the product can maintain suitable rheological properties. The second part of this trial investigated the influence on steady shear viscosity and oxidation degree of low-fat mayonnaise by adding different edible oil and 200 ppm antioxidant (BHA).
Results of the first part, the rheological parameters showed there were no significant differences of yield stress, viscosity and flow behavior index between 1.5% XG + 1.0% GG group, 10% CF + 0.5% GG group and control group (P>0.05). In section of chemical composition analysis, 1.5% XG + 1.0% GG and 10% CF + 0.5% GG groups could reduce half of caloric values and increase total dietary fiber percentage to 0.68 and 2.87 %, respectively. Lightness and stability of 1.5% XG + 1.0% GG and 10% CF + 0.5% GG groups were significantly higher than control group (P<0.05). Since quality of mayonnaise depends on oil droplets constitution, the texture of mayonnaise was observed by scanning electronic microscopy (SEM). The SEM micrographs showed the network of aggregated droplets in low-fat treatments contained a large number of interspaced voids of varying dimensions. The oil droplets polydispersed in 1.5% XG + 1.0% GG group, whereas monodispersed in 10% CF + 0.5% GG group Further compared sensory evaluation of low-fat treatments with commercial mayonnaise, there were no significant differences in all sensory scores between 1.5% XG + 1.0% GG group, control and commercial mayonnaise (P>0.05). However, there were significant differences of appearance, taste and overall acceptance between 10% CF + 0.5% GG group and control group (P<0.05).
The results of second part show that the viscosity of extender oil group was significantly lower than other groups (P<0.05), and there were no significant differences between other groups (P>0.05). During storage period, 200 ppm BHA could postpone mayonnaise samples oxidation. Moreover, POV and TBA values of olive oil and extender oil groups containing 200 ppm BHA were significantly lower than other groups (P<0.05).
In conclusion, 1.5% XG + 1.0% GG and 10% CF + 0.5% GG can substitute the functionality of lipid in mayonnaise. It can increase dietary fiber concentration, and also decrease fat and caloric values. The shelf life of mayonnaise can be postponed by using olive oil and extender oil. It might be used in variety of low-fat salad dressings for further application.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:54:17Z (GMT). No. of bitstreams: 1
ntu-98-R96626016-1.pdf: 4925847 bytes, checksum: 7b4cdab03f67cdf90feba68139094f43 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目 錄
口試委員審定書
誌謝
目錄 …………………………………………………………………………..……I
表目錄 ……………………………………………………………………………IV
圖目錄 ……………………………………………………………………….……V
中文摘要 ……………………………………………………………………...……i
英文摘要 …………………………………………………………………….……iii
緒言 ……………………………………………………………………….……..…v
第一章、文獻探討………………………………………………………….………1
一、蛋黃醬…………………………………………………………………….....…1
(一) 蛋黃醬的介紹…………..……………………………………………...…1
(二) 蛋黃醬油脂氧化作用……………………………………………….……2
(三) 蛋黃醬之流變特性………………………………………….……….…..10
二、脂肪替代物………………………………………………….……………………..13
(一) 多醣膠質…………………………………………………………………15
(二) 多醣膠質之特性…………………………………………………………18
(三) 多醣膠質在蛋黃醬上的應用……………………………………………22
三、乳化作用及蛋黃醬安定性……………………………………………….……24
(一) 乳化的機制……………………………………………………………….24
(二) 乳化液不安定的現象…………………………………………………….26
(三) 蛋黃的乳化性質………………………………………………………….30
(四) 影響蛋黃醬乳化安定性之因子………………………………………….33
第二章、材料與方法……………………………………………………………….36
一、試驗設計……………………………………………………………………….36
二、實驗材料……………………………………………………………………...…36
(一) 脂肪替代物之原料及抗氧化劑…………………………………….……..36
(二) 蛋黃醬之原料………………………………………………………………36
(三) 培養基………………………………………………………………………38
(四) 藥品與溶劑…………………………………………………………………38
(五) 實驗設備與器材……………………………………………………………39
三、實驗方法………………………………………………………………………….40
(一) 全脂蛋黃醬之製備流程…………………………………………………….40
(二) 脂肪替代物之預混………………………………………………………….40
(三) 低脂蛋黃醬之製備流程…………………………………………………….40
(四) 不同食用油與是否添加抗氧化劑之蛋黃醬製作 ………………………...41
(五) 成分分析……………………………………………………………….……41
(六) 理化特性分析……………………………………………………………….44
(七) 微細結構之觀察…………………………………………………………….46
(八) 乳化液油滴之粒徑分析………………………………………………….…48
(九) 乳化安定性之測定………………………………………………………….48
(十) 流變性質分析……………………………………………………………….49
(十一) 官能品評試驗…………………………………………………………….49
(十二) 統計方法………………………………………………………………….50
第三章、結果與討論 …………………………………………………………………55
一、低脂蛋黃醬配方之探討……………………………………………..………55
(一) 單一膠體配方….………………………………………………….……56
(二) 複合膠體配方…..……………………………………………….………58
二、低脂蛋黃醬配方理化特性之比較………………………………….……76
(一) 成分分析與熱量值………………………………………………….………76
(二) 理化特性探討……………………………………………………….………77
(三) 安定性之測定…………………………………………………………….…79
(四) 官能品評試驗…………………………………………………………….…81
三、添加不同食用油脂對低脂蛋黃醬配方之影響..………………………..……91
(一) 黏稠度……………………………………………………………….91
(二) 氧化程度…………………………………………………………….……91
第四章、結論……………………………………………………………………..……97
參考文獻………………………………………………………………………..…….99
作者小傳…………………………………………………………………………...…111
dc.language.isozh-TW
dc.subject多醣膠質zh_TW
dc.subject低脂蛋黃醬zh_TW
dc.subject流變特性zh_TW
dc.subject食用油脂zh_TW
dc.subjectRheological propertyen
dc.subjectLow-fat mayonnaiseen
dc.subjectEdible oilen
dc.subjectPolysaccharide gumen
dc.title利用多醣膠體及不同來源之食用油脂供開發機能性低脂蛋黃醬之研究zh_TW
dc.titleDevelopment of low-fat mayonnaise containing functional ingredients by adding polysaccharide gum and different edible oilen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王政騰,黃英豪,吳祥雲,駱秋英
dc.subject.keyword低脂蛋黃醬,流變特性,多醣膠質,食用油脂,zh_TW
dc.subject.keywordLow-fat mayonnaise,Rheological property,Polysaccharide gum,Edible oil,en
dc.relation.page111
dc.rights.note有償授權
dc.date.accepted2009-06-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved