請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43391完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林峰輝 | |
| dc.contributor.author | Moon-Pei Chen | en |
| dc.contributor.author | 陳孟珮 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:53:50Z | - |
| dc.date.available | 2010-07-14 | |
| dc.date.copyright | 2009-07-14 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2009-06-30 | |
| dc.identifier.citation | [1] Huang, M-H., Chen, C-H., Chen, T-W., Weng, M-C., Wang, W-T., and Wang, Y-L., ” The effects of weight reduction on rehabilitation of patients with knee osteoarthritis obesity.” Arthritis Care Research 2000; 13: 398-405
[2] Wolfe MM, Lichtenstein Dr, Singh G.,” Gastrointestinal toxicity of nonsteroidal anti-inflammatory drugs” New England Journal of Medcine. 1999;340:1888–1899 [3] Timothy M. Simon, PhD and Douglas W. Jackson, MD,” Articular cartilage: injury pathways and treatment options”, Sports Medicine & Arthroscopy Review 2006; 14:146–154 [4] Sally R. Frenkel and Paul E. Di Cesare, “Degradation and repair of articular cartilage”, Frontiers in Bioscience 1999; 4: 671-685 [5] I.M. Khan, S.N. Redman, R. Williams, G.P. Dowthwaite, S.F. Oldfield and C.W. Archer, “The Development of Synovial Joints”, Current Topics in Developmental Biology, 2007; 79: 1-36 [6] Buckwalter JA, Mankin HJ, Grodzinsky AJ, “ Articular cartilage and osteoarthritis”, Instr Course Lect. 2005;54:465-80. [7] Felson DT. “Risk factors for osteoarthritis: understanding joint vulnerability.” Clinical Orthopaedics and Related Research 2004; 427: s16-s21 [8] T. Aigner, A. Sachse, P.M. Gebhard, H.I. Roach,” Osteoarthritis: Pathobiology - targets and ways for therapeutic intervention”, Advanced Drug Delivery Reviews 2006; 58: p128-149 [9] L.J. Sandell, “Anabolic factors in degenerative joint disease”, Current Drug Targets, 2007; 8:p359-365 [10] Takahashi N, Rieneck K, van der Kraan PM et al.,” Elucidation of IL-1/TGF-beta interactions in mouse chondrocyte cell line by genome-wide gene expression.”, Osteoarthritis and Cartilage 2005; 13: p426-438. [11] Scharstuhl, A.; Glansbeek, H. L.; van Beuningen, H. M.; Vitters, E. L.; van der Kraan, P. M. and van den Berg, W. B., (2002) J. Immunol., 169, 507-514 [12] Moulharat N, Lesur C, Thomas M et al., “Effects of transforming growth factor-beta on aggrecanase production and proteoglycan degradation by human chondrocytes in vitro.”, Osteoarthritis and Cartilage 2004; 12: p296-305. [13] Stephen B. Trippel,” Growth factor inhibition”, Clinical Orthopedics and Related Research 2004; 427: p. S47–S52 [14] Olney RC, Tsuchiya K, Wilson DM, et al,” Chondrocytes from osteoarthritic cartilage have increased expression of insulin-like growth factor I (IGF-I) and IGF-binding protein-3 (IGFBP-3) and -5, but not IGF-II or IGFBP-4.”, Journal of Clinical Endocrinology and Metabolism 1996;81:p1096–1103 [15] Purple CR, Untermann TG, Pichika R, et al,” Fibronectin fragments upregulate insulin-like growth factor binding proteins in chondrocytes.”, Osteoarthritis Cartilage 2002;10:p734–746 [16] Mary B. Goldring,* Kaneyuki Tsuchimochi, and Kosei Ijiri, “The Control of Chondrogenesis”, Journal of Cellular Biochemistry, 2006, 97:33–44 [17] Heldin, C.H., Miyazono, K., Ten Dijke, P., “TGF-b signaling from cell membrane to nucleus through SMAD proteins”, Nature, 1997, 390-465. [18] Massague, J., Hata, A., Liu, F., “TGF-b signaling through the Smad pathway”, Trends Cell Biol., 1997, 7,187. [19] Zhu, H., Kavsak, P., Abdollah, S., Wrana, J.L., Thomsen, G.H., 1999. A Smad ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation”, Nature, 1999, 400-687.. [20] Hicham Drissi *, Michael Zuscik, Randy Rosier, Regis O_Keefe,” Transcriptional regulation of chondrocytes maturation: Potential involvement of transcription factors in OA pathogenesis”, Molecular Aspects of Medicine 26 (2005) 169–179 [21] DeChiara TM, Kimble RB, Poueymirou WT, et al: Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nat Genet 24:271–274, 2000. [22] Lefebvre V, de Crombrugghe B: Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol 16:529–540, 1998. [23] Legendre F, Dudhia J, Pujol J-P, Bogdanowicz P: JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/soluble IL-6R down-regulation of Type II collagen, aggrecan core, and link protein transcription in articular chondrocytes. Association with down-regulation of SOX9 expression. J Biol Chem 278:2903–2912, 2003. [24] Hicham Drissi , Michael Zuscik, Randy Rosier, Regis O_Keefe, “Transcriptional regulation of chondrocytes maturation: potential involvement of transcription factors in OA pathogenesis”, Molecular Aspects of Medicine 26 (2005) 169–179 [25] Thomas Aigner, Stephan Soeder, Jochen Haag, “IL-1β and BMPs- interactive players of cartilage matrix degradation and regeneration”, European Cells and Materials 2006; 12: 49-56 [26] Lujian Tan, Haibing Peng, Makoto Osaki, Bob K. Choy, Philip E. Auron, Linda J. Sandell, and Mary B. Goldring” Egr-1 Mediates Transcriptional Repression of COL2A1 Promoter Activity by Interleukin-1” The Journal if Biological Chemistry 2003; 278: 17688-17700 [27] E. Hedbom* and H. J. Häuselmann, “Molecular aspects of pathogenesis in osteoarthritis: the role of inflammation”, Cell. Mol. Life Sci. 59 (2002) 45–53 [28] Jo A. Hannafin George A. C. Murrell, Martin M. Dolan, Daniel Jang, Csaba Szabo, Russell F. Warren, “Nitric Oxide: an Important Articular Free Radical”, J Bone Joint Surg Am. 1996;78:265-74. [29] R. Studer, D. Jaffurs, M. Stefanovic-Racic, P. D. Robbins and C. H. Evans, “Nitric oxide in osteoarthritis”, Osteoarthritis and Cartilage (1999) 7, 377–379 [30] Mary B. Goldring, PhD; and Francis Berenbaum, MD, PhD†,” The Regulation of Chondrocyte Function by Proinflammatory Mediators”, Clinical orthopaedics and related research 427S, pp. S37–S46 [31] Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2”, Annu Rev Pharmacol Toxicol 1998;38:97–120. [32] Amin AR, Attur M, Patel RN, Thakker GD, Marshall PJ, Rediske J, Stuchin SA, Patel IR, Abramson SB, ” Superinduction of cycloxygenase-2 activity in human osteoarthritis-affected cartilage. Influence of nitric oxide”, J Clin Invest 1997;99:1231–7 [33] S. Bombardier, P. Cattani, G. Ciabattoni, O. Di Munno, G. Paero, C. Patrono, E. Pinca, F. Pugliese, “The synovial prostaglandin system in chronic inflammatory arthritis: differential effects of steroidal and non-steroidal anti-inflammatory drugs”, Br. J. Pharmacol. 73 (1981) 893–901. [34] A.R. Amin, M. Attur, R.N. Patel, G.D. Thakker, P.J. Marshall, J. Rediske, S.A. Stuchin, I.R. Patel, S.B. Abramson, Superinduction of cyclooxygenase-2 activity in human osteoarthritis affected cartilage: influence of nitric oxide, J. Clin. Invest. 99 (1996) 1231–1237. [35] P. Needleman and P. T. Manning, “Interactions between the inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) pathways: implications for therapeutic intervention in osteoarthritis”, Osteoarthritis and Cartilage (1999) 7, 367–370 [36] Choi, Y. A., Lee, D. J., Lim, H. K., Jeong, J. H., Sonn, J. K., Kang, S. S., and Baek, S. H., “Interleukin-1beta stimulates matrix metalloproteinase-2 expression via a prostaglandin E2-dependent mechanism in human chondrocytes”, EXP Mol Med, 2004, 36:226-232 [37] Amin, A. and Abramson, S., “The role of nitric oxide in articular cartilage breakdown in osteoarthritis”, Curr Opin Rheumatol, 1998, 10:263-268. [38] Notoya, K., Jovanovic, D. V., Reboul, P., Martel-Pelletier, J., Mineau, F., and Pelletier, J. P.,”The Induction of Cell Death in Human Osteoarthritis Chondrocytes by Nitric Oxide Is Related to the roduction of Prostaglandin E2 Via the Induction of Cyclooxygenase-2”, The Journal of Immunology, 2000, 165:3402-3410 [39] Geng Y, Valbracht J, Lotz M, ”Selective activation of the mitogen-activated protein kinase subgroups c-Jun NH2 terminal kinase and p38 by IL-1 and TNF in human articular chondrocytes”, J Clin Invest 1996, 98:2425–2430. [40] Menghshol JA, Vincenti MP, Coon CI, et al., “Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3”, Arthritis Rheum 2000, 43:801–811. [41] Walter Kolch, “Coordinating ERK/MAPK signalling through scaffolds and inhibitors”, Nature Reviews Molecular Cell Biology 2005, 6:827 - 837 [42] N. Jallali B.Sc., M.B., Ch.B. (Hons.), M.R.C.S.y, H. Ridha B.Sc., M.B., B.S.z, C. Thrasivoulou Ph.D.z, C. Underwood H.N.D.z, P. E. M. Butler F.R.C.S(I)., F.R.C.S. (Plast)y and T. Cowen B.Sc., Ph.D.z, “Vulnerability to ROS-induced cell death in ageing articular cartilage: The role of antioxidant enzyme activity”, OsteoArthritis and Cartilage 2005; 13, 614-622 [43] C Bubici, S Papa, K Dean and G Franzoso, “Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance.”, Oncogene 2006; 25, 6731-6748 [44] Moti L. Tiku, Rahul Shah, and Greg T. Allison, “Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation”, The Journal of Biological Chemistry 2000; 275, 20069-20076 [45]Situnayake RD, Thurnham DI, Kootathep S, Chirico S, Lunec J, Davis M, et al.”Chain breaking antioxidant status rheumatoid arthritis: clinical and laboratory correlates.” Ann Rheum Dis 1992; 50:81-6 [46] S. Taysi, F. Polat, M. Gul, R.A. Sari, E. Bakan,”Lipid peroxidation,some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis.” Rheumatol Int 2002; 21: 200-204 [47] Henrotin Y, Deberg M, Christgau S, Henriksen D, Seidel L, Reginster J-Y. “Type II collagen derived fragment is a new marker predictive of osteoarthritic progression.” Osteoporos Int 2002;13:S17 [48] Y. Henrotin Ph.D., B.Kruz Ph.D., T. Aigner M.D.DSc. ”Oxygen and reactive oxygen species in cartilage degradation: friends or foes” Osteoarthritis and Cartilage 2005; 13, 643-654 [49] John J. Haddad.” Antioxidant and prooxidant mechanisms in the regulation of redox-sensitive transcription factors.” Cellular Signalling 2002; 14, 879-897 [50] Valery Afonso, Romuald Champy, Dragoslav Mitrovic, Pascal Collin, Abderrahim Lomri. ”Reactive oxygen species and superoxide dismutases: role in joint diseases” Joint Bone Spine xx 2007, 1-6 [51] Grazioli V., Schiavo R., Casari E., Marzatico F., Rodriguez y Baena R., Gaetani P., FEBS Lett 1998; 431, 149-53 [52] Deberg M., Clippe A., Bogard C., Arsalane K., Wattiez R., Hermans C., Duconseille E., Falmangne P., Bernard A. J. Biol. Chem. 274; 43, 30451-8 [53] Henrotin Y., Kurz B.” Antioxidant to treat osteoarthritis: dream or reality” Current Drug Target 2007; 8: 347-357 [54] Henrotin Y., Bruckner P., Pujol J.” The role of reactive oxygen species in homeostasis and degradation of cartilage” Osteoarthritis and Cartilage 2003; 11: 747-755 [55] Harman D.,“Free radical theory of aging”, Mutation Research 1992; 275;257-266 [56] Joost Schalkwijk, Wim B. van den Berg, Levinus B. A.van de Putte, and Leo A. B. Joosten, “ An experiment model for hydrogen peroxide-induced tissue damage”, Arthritis and Rheumatism 1986; 29: p532-537 [57] Kazuo Yudoh, Nguyen van Trieu, Hiroshi Nakamura, Kayo Hongo-Masuko, Tomohiro Kato and Kusuki Nishioka, “Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function”, Arthritis Research and Therapy 2005, 7:R380-R391 [58] Harry M. Lander, “An essential role for free radicals and derived species in signal transduction” FASEB J. 1997; 11: p118-124 [59] Y.Y.C. Lo, J.A. Conquer, S. Grinstein and T.F. Cruz, “Interleukin-1β induction of c-fos and collagenase expression in articular chondrocytes: involvement of reactive oxygen species.” Journal of Cellular Biochemistry 1998; 69: 19-29. [60] Y.Y.C. Lo and T.F. Cruz,“Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes”. J Biol Chem 270 (1995) [61] John J. Haddad,” antioxidant and prooxidant mechanisms in the regulation of redox-sensitive transcription factors”, cellular signaling 2002; 13: p879-897 [62] R. G.. Allen and Maria Tresini,” Oxidative stress and gene regulation”, Free Radical Biology and Medicine 2000; 28: pp.463-499 [63] Alexandrina Ferreira Mendes, M. Margarida Caramona, A. Pato Carvalho, and M. Celeste Lopes, “ Diffenetial roles of hygrogen peroxide and superoxide in mediating IL-1-induced NF-kB activation and iNOS expression in bovine articular chondrocytes”, Journal of Cellular Biochemistry 2003; 88:783–793 [64] G. Martin, R. Andriamanalijaona, M. Mathy-Hartert, Y. Henrotin Ph.D.z and J.-P. Pujol,” Comparative effects of IL-1b and hydrogen peroxide (H2O2) on catabolic and anabolic gene expression in juvenile bovine chondrocytes”, OsteoArthritis and Cartilage 2005; 13:915-924 [65] S. Asada, K. Fukuda, M. Oh, C. Hamanishi and S.Tanaka, “Effect of hydrogen peroxide on the metabolism of articular chondrocytes”, Inflammatory Research 1999;48 :399–403 [66] A. Ferreira Mendes, M.M. Caramona, A.P. Carvalho and M.C. Lopes, ” Hydrogen peroxide mediates interleukin-1beta-induced AP-1 activation in articular chondrocytes: implications for the regulation of iNOS expression.”, Cell Biology and Toxicology 2003; 19: 203-214. [67] M. Mathy-Hartert, G. P. Deby-Dupont, J.-Y. L. Reginster, N. Ayache, J.-P. Pujol and Y. E. Henrotin,” Regulation by reactive oxygen species of interleukin-1_, nitric oxide and prostaglandin E2 production by human chondrocytes”, Osteoarthritis and Cartilage 2002; 10: 547–555 [68] Marcello Del Carlo , Daniel Schwartz , Elizabeth A. Erickson ,and Richard F. Loeser,” Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments”, Free Radical Biology & Medicine 42 (2007) 1350–1358 [69] M. Sri Balasubashini1, R. Rukkumani1, P. Viswanathan2 and Venugopal P. Menon1,” Ferulic acid alleviates lipid peroxidation in diabetic rats.” , Phytotherapy Research 2004;18: 310–314 [70] Sudheer, A.R. et al., “Protective effect of ferulic acid on nicotine-induced DNA damage and cellular changes in cultured rat peripheral blood lymphocytes.”, Toxicology. In Vitro 2007, doi:10.1016/j.tiv.2006.11.006 [71] Sonia Trombino, Simona Serini, Fiorella Dinicuolo, Leonardo Celleno, Sebastiano, Nevio Picci, Gabriella Calviello, and Paola Palozza., “ Antioxidant effect of ferulic aicd in isolated membranes and intact cells: synergistic interactions with tocopherol, carotene, and ascorbic acid.”, Journal of Agricultural and Food Chemistry 2004; 53: 2411-2420 [72.] Kueng W, Silber E, Eppenberger U. Quantification of cells cultured on 96-well plates. Analyt Biochem 1989;182:16-9. [73] Charles J. Malemud, PhD,”Protein Kinases in Chondrocyte Signaling and Osteoarthritis”, Clinical Orthopaedics and Related Research, Number 427S, pp. S145–S151 [74] Thomas Klein a, Pierre Shephard a, Hartmut Kleinert b, Martin Kömhoff, “Regulation of cyclooxygenase-2 expression by cyclic AMP”, Biochimica et Biophysica Acta 1773 (2007) 1605–1618 [75] Morten Asser Karsdal, Eren Ufuk Sumer, Helle Wulf, Suzi H. Madsen, Claus Christiansen, Amanda J. Fosang, and Bodil-Cecilie Sondergaard, “Induction of Increased cAMP Levels in Articular Chondrocytes Blocks Matrix Metalloproteinase–Mediated Cartilage Degradation, but Not Aggrecanase-Mediated Cartilage Degradation”, ARTHRITIS & RHEUMATISM Vol. 56, No. 5, May 2007, pp 1549–1558 [76] Caroline Miller,1 Mengkun Zhang,1,2 Yulan He,2 Jie Zhao,3,4 Jean-Pierre Pelletier,2 Johanne Martel-Pelletier,2 and John A. Di Battista, “Transcriptional Induction of Cyclooxygenase-2 Gene by Okadaic Acid Inhibition of Phosphatase Activity in Human Chondrocytes: Co-Stimulation of AP-1 and CRE Nuclear Binding Proteins”, Journal of Cellular Biochemistry 69:392–413 (1998) [77] Ozlem Altindag A Ozcan Erel A Nurten Aksoy A Sahabettin Selek A Hakim Celik A Mustafa Karaoglanoglu, “Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis”, Rheumatol Int (2007) 27:339–344 [78] Rahul Shah, Karel Raska, Jr., and Moti L. Tiku ,”The Presence of Molecular Markers of In Vivo Lipid Peroxidation in Osteoarthritic Cartilage”, Arthritis & Rheumatism Vol. 52, No. 9, September 2005, pp 2799–2807 [79] M. Mathy-Hartert Ph.D.y, L. Hogge B.Sc.y, C. Sanchez Ph.D.y, G. Deby-Dupont Ph.D.z, J. M. Crielaard M.D.y and Y. Henrotin Ph.D.,” Interleukin-1b and interleukin-6 disturb the antioxidant enzyme system in bovine chondrocytes: a possible explanation for oxidative stress generation”, Osteoarthritis and Cartilage (2008) 16, 756e763 [80] S. Taysi, F. Polat, M. Gul, R.A. Sari, E.Bakan, “ Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis”, Rhenmatol Int, 2002, 32: 200-204 [81] Sue Goo Rhee, Yun Soo Bae, Seung-Rock Lee, and Jaeyul Kwon, “Hydrogen Peroxide: A Key Messenger That Modulates Protein Phosphorylation Through Cysteine Oxidation”, Sci. STKE 2000 (53), pe1. [DOI: 10.1126/stke.2000.53.pe1] [82] Richard O. Day,1 Andrew J. McLachlan,2 Garry G. Graham1 and Kenneth M. Williams1,” Pharmacokinetics of Nonsteroidal Anti-Inflammatory Drugs in Synovial Fluid”, Clin Pharmacokinet 1999 Mar; 36 (3): 191-210 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43391 | - |
| dc.description.abstract | 退化性關節炎是一種和老化相關的疾病,它會造成患者的疼痛及行動不便。由於關節軟骨處於無血管、無神經的環境,並且代謝速率緩慢,因此軟骨的自我修復能力並不良好。抑制關節炎軟骨中不正常的細胞外基質降解,以及維持軟骨細胞的正常表現,是目前研究治療關節炎的一個方向。
自由基是一種高反應性的化學物質,在體內的形成和發炎免疫反應有關。雖然體內自由基的偵測並不十分容易,但在關節炎患者體內,可以檢查出一些過氧化的產物以及被硝基化的第二型膠原蛋白,顯示自由基對於關節炎的病理過程有著相當程度的影響。除此之外,越來越多研究證實,自由基影響了關節炎軟骨中不正常的代謝因子訊息傳遞。由於研究指出,在退化性關節炎者的體內所偵測到清除雙氧水的酵素,含量較正常者為低,因此雙氧水的累積是可以預期的。本篇研究的第一部分,即以雙氧水作為自由基的模型,測試雙氧水對於軟骨細胞基因表現的調控。結果顯示,被雙氧水所刺激的軟骨細胞,其發炎前驅因子 IL-1、TNF-α,以及金屬蛋白酵素 MMP-1、MMP-13的基因表現皆被向上調控。另一方面,維持軟骨細胞顯性的SOX-9基因則是被向下調控。這樣的基因表現與退化性關節炎軟骨細胞的表現,有著極為類似的趨勢。這些數據將雙氧水的影響與退化性關節炎的形成,做了一個更直接的連結。 本研究的第二部分,則是測試中藥抗氧化劑阿魏酸,對於被雙氧水調控的細胞是否有保護以及治療的能力。阿魏酸的抗氧化能力被證實比維生素B,維生素C,以及胡蘿蔔素還優異。經由WST-1, LDH, 以及 crystal violet的細胞活性測試,初步的實驗數據顯示阿魏酸對於軟骨細胞並沒有明顯的細胞毒性。在基因表現的調控上,預先加入阿魏酸以及事後加入阿魏酸,對於被雙氧水向上調控的發炎前驅因子IL-1、TNF-α,以及金屬蛋白酵素 MMP-1、MMP-13,皆有抑制的效果。而在SOX-9的表現上面則是有部分回復的作用。 本研究的第三部分,是將阿魏酸更進一步的混合在一般用來輔助治療關節炎的透明質酸中,評估添加阿魏酸是否可提升透明質酸對於軟骨保護以及治療的效果。結果顯示,和無添加物的透明質酸相比,添加阿魏酸的透明質酸,對於被雙氧水刺激的發炎前驅因子IL-1、TNF-α,以及金屬蛋白酵素 MMP-1、MMP-13皆有向下調控的效果;並且對SOX-9的基因表現亦可以向上調控。 以上的數據結果證實,雙氧水的確可能參與了退化性關節炎軟骨細胞的病理形成;而阿魏酸對於被雙氧水刺激的軟骨細胞,有保護以及治療的功能。更甚者,添加阿魏酸的透明質酸,讓透明質酸除了單純提供關節潤滑的同時,亦有著保護軟骨細胞不受自由基影響,以及將受雙氧水刺激的細胞調整回正常的潛力。 | zh_TW |
| dc.description.abstract | Osteoarthritis is one of the major degenerative diseases which affects millions people these days. Due to the tissue specificity, such as low turnover rate and avascular environment, the self-repair of cartilage is considered to be limited. For the intervention of cartilage destruction in OA, inhibition of enzymatic degradation of extracellular matrix (ECM) as well as maintaining the cellular phenotype is one of the major goals of interest.
Free radicals, including reactive oxygen speicies (ROS) and reactive nitrogen species (RNS), are the active biochemical compounds that associated with the chronic inflammatory reaction in osteoarthritis. Observation of lipid peroxidation products and nitrated collagen peptide in the serum of patient implicates the role of free radicals in the pathology osteoarthritis. The first part of this study is to use to hydrogen peroxide to provide the oxidative stress and assess the gene expression of chondrocytes cultured within it. Results from real-time PCR reveal that incubated chondrocytes in hydrogen peroxide in either short term or long term did up-regulate the inflammatory gene IL-1 and TNF-α expression in mRNA level. It also triggered the expression of metalloproteinase MMP-1 and MMP-13, which are both crucial enzymes responsible for cartilage destruction in OA. The down-regulation of SOX-9 also implicates the involvement of ROS in the loss of phenotype in osteoarthritic cartilage. The similar gene expression pattern between hydrogen peroxide-stimulated chondrocytes and osteoarthritic chodrocytes provides stronger evidence that link ROS to the pathology of OA. The second part in my study is to use ferulic acid, the natural antioxidant compound from Chinese herb Angelica (Dong-Gui) which is reported to have excellent antioxidant property compared to γ-tocopherol, α-carotene, and ascorbic acid, to retrieve the effects result from excess produced free radical. In our preliminary results, ferulic acid shows low cytotoxicity on chondrocytes according to the WST-1, LDH, and crystal violet assay. Within the safety concentration, pre-treat ferulic acid can down-regulate hydrogen peroxide-induced IL-1, TNF-α, MMP-1 and partially restore SOX-9 gene expression in mRNA level. Post-treatment of ferulic acid also intervened MMP-1, MMP-13 gene expression showing the potential of ferulic acid blocking the unusual catabolic activity that trigger by hydrogen peroxide. Furthermore, while HA alone did not do much effect on hydrogen peroxide-treated chondrocytes, ferulic acid containing HA gel showed protective and therapeutic effects by down-regulating IL-1, TNF-α, MMP-1, MMP-13 and up-regulating SOX-9 gene expression in pre-treatment and post-treatment model. The result in this study provided stronger evidence that implicate hydrogen peroxide in the pathology of OA and shows the potential of ferulic acid- containing HA gel in providing extra protective and therapeutic effect in treatment of OA. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:53:50Z (GMT). No. of bitstreams: 1 ntu-97-R93548029-1.pdf: 1185146 bytes, checksum: b8232a4ff349be709ccf428e1e16fd6b (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
誌謝……………………………………………………………………………………ii 中文摘要……………………………………………………………………………...iii Abstract………………………………………………………………………………v Table of content……………………………………………………………………viii List of figures………………………………………………………………………xiii List of tables………………………………………………………………………xvi Chapter 1 Introduction………………………………………………………………1 1.1 Preface: The degenerative disease: osteoarthritis………………………………1 1.2 Therapies for osteoarthritis……………………………………………………2 1.2.1 Non-pharmaceutical intervention……………………………………2 1.2.2 Pharmaceutical intervention…………………………………………2 1.2.3 Surgical options………………………………………………………3 1.3 Tissue engineering and osteoarthritis…………………………………………4 1.4 Purpose of study………………………………………………………………5 Chapter 2 Theoretical Basis…………………………………………………………6 2.1 Cartilage in human body………………………………………………………6 2.1.1 The adult articular cartilage: chondrocytes and extracellular matrix………………………………………………………………………6 2.1.2 The biology of chondrocytes…………………………………………8 2.1.3 The extracellular matrix: collagen, proteoglycans, and non-collagenous proteins………………………………………………………………………8 2.2 The anabolic and catabolic activities in chondrocytes…………………12 2.2.1 Inflammtory gene expression in osteoarthritis……………………14 2.2.2 Proteinases in cartilage degradation…………………………………14 2.3 Signal Transduction in Cartilage Homeostasis……………………………17 2.3.1 Signal pathway in chondrogenesis and the chondrogenic phenotype………………………………………………………………………………………………………………………………17 2.4 Osteoarthritis and Inflammation: Pro-Inflammatory Gene Expression and the involvement of inflammatory mediators………………………………………21 2.4.1 The Hypertrophic Phenotype in Osteoarthritic Chondrocytes………21 2.4.2 Proinflammatory cytokine and inflammatory mediators in OA………21 2.4.3 Signal Transduction in Response to Cytokines and Soluble Mediators of Inflammation: MAPKs………………………………………………………24 2.5 Free radicals and osteoarthritis……………………………………………26 2.5.1 The formation of free radicals………………………………………26 2.5.2 The natural antioxidant system ………………………………………28 2.5.2.1Enzymatic defense…………………………………28 2.5.2.2Non enzymatic defense……………………………30 2.5.3 Oxidative stress………………………………………………………32 2.5.4 Effect of oxidative stress on chondrocyte……………………………32 2.5.5 Free radicals in signal transduction……………………………………33 2.5.6 The redox-sensitive transcriptional factors……………………………33 2.5.7 Antioxidant therapy for osteoarthritis…………………………………35 2.6 Antioxidant in Chinese herb: ferulic acid ……………………………………42 Chapter 3 Material and method……………………………………………………44 3.1 Experimental set up……………………………………………………………44 3.2 Primary culture of chondrocyte from bovine articular cartilage……………51 3.3 The Evaluation of Cytotoxicity: Determination of Safety Concentration……52 3.3.1 Lactate Dehydrogenase (LDH) Assay………………………………52 3.3.2 WST-1 assay…………………………………………………………53 3.3.3 Crystal Violet Assay…………………………………………………54 3.4 Gene Expression Evaluation: Reverse- transcription PCR and Real-time PCR………………………………………………………………………………55 3.4.1 Extraction of RNA from Porcine Chondrocytes……………………56 3.4.2 Primer Selection for Target Gene by Gel Electrophoresis…………58 3.4.3 Gene Expression: Evaluation by Real-time PCR……………………58 3.5 Free Radical Detection…………………………………………………………59 3.5.1 Detection of Hydrogen Peroxide and Hydroxyl Radicals by Chemical lumen : Determination of Effective Concentration………………………61 3.4 UV Spectrometer: The Detection of Ferulic Acid Released from Hyaluronic Acid……………………………………………………………………………63 Chapter 4 Results and discussion……………………………………………………64 4.1 The examination of the selected primer: gel electrophoresis………………64 4.2 The effect of hydrogen peroxide on porcine chondrocytes in mRNA level………………………………………………………………67 4.3 Cytotoxicity of Ferulic Acid on Chondrocytes: The Evaluation of Safety Concentration………………………………………………………………72 4.4 Free Radical Detection: Determination of Effective concentration………75 4.5 The effect of ferulic acid on hydrogen peroxide- stimulated porcine chondrocytes in mRNA level: Short term evaluation…………………………76 4.6 The Release of Ferulic Acid from Ferulic Acid Containing Hyaluronic Acid Gel: Detection by UV Spectrometer…………………………………………80 4.7 The effect of ferulic acid containing HA gel on hydrogen peroxide- stimulated chondrocytes: long term evaluation……………………………76 4.7.1 The gene expression of chondrocytes when expose to a continuous oxidative stress environment ……………………………………………76 4.7.2 The effect of ferulic acid containing HA gel on hydrogen peroxide-stimulated chondrocytes: pre-treat in long term model…………79 4.7.3 The effect of ferulic acid containing HA gel on hydrogen peroxide-stimulated chondrocytes: post-treat in long term model………83 Chapter 5 Conclusion………………………………………………………………87 Reference……………………………………………………………………………89 | |
| dc.language.iso | en | |
| dc.subject | 發炎前驅因子 | zh_TW |
| dc.subject | 退化性關節炎 | zh_TW |
| dc.subject | 自由基 | zh_TW |
| dc.subject | 雙氧水 | zh_TW |
| dc.subject | 阿魏酸 | zh_TW |
| dc.subject | 抗氧化劑 | zh_TW |
| dc.subject | 透明質酸 | zh_TW |
| dc.subject | hyaluronic acid | en |
| dc.subject | hydrogen peroxide | en |
| dc.subject | pro-inflammatroy cytokines | en |
| dc.subject | free radical | en |
| dc.subject | antioxidant | en |
| dc.subject | osteoarthritis | en |
| dc.subject | ferulic acid | en |
| dc.title | 中草藥抗氧化物應用於骨關節炎發炎前驅因子及代謝相關酵素之調控研究 | zh_TW |
| dc.title | The Application of Antioxidant from Chinese Herb in Regulation of Proinflammatory Cytokines and Metalloproteinases in Osteoarthritis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭士民,徐善慧,Sadhafiva Subramaniam | |
| dc.subject.keyword | 退化性關節炎,自由基,雙氧水,阿魏酸,抗氧化劑,透明質酸,發炎前驅因子, | zh_TW |
| dc.subject.keyword | osteoarthritis,free radical,hydrogen peroxide,hyaluronic acid,ferulic acid,antioxidant,pro-inflammatroy cytokines, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-06-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
