請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43386
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃耀輝(Yaw-Huei Hwang) | |
dc.contributor.author | Yu-Mei Suei | en |
dc.contributor.author | 隋昱梅 | zh_TW |
dc.date.accessioned | 2021-06-15T01:53:31Z | - |
dc.date.available | 2021-06-24 | |
dc.date.copyright | 2011-10-03 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-15 | |
dc.identifier.citation | Ackerman AH, Creed PA, Parks AN, Fricke MW, Schwegel CA, Creed JT, Heitkemper DT, Velal NP. Comparison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice. Environ Sci Technol 2005;39(14):5241-5246.
Aposhian HV. Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 1997;37:397-419. Bae M, Watanabe C, Inaoka T, Sekiyama M, Sudo N, Bokul MH, Ohtsuka R. Arsenic in cooked rice in Bangladesh. Lancet 2002;360(9348):1839-1840. Byrne AR, Slejkovec Z, Stijve T, Fay L, Gossler W, Gailer J. Arsenobetaine and other arsenic species in mushrooms. Appl. Organometal. Chem. 1995;9:305-313. Chen B, Naramandura H, Lu M, Le XC. Metabolism, toxicity, and biomonitoring of Arsenic Species. Progress in Chemistry 2009;21:474-482. Dabeka RW, McKenzie AD, Lacroix GM, Cleroux C, Bowe S, Graham RA, Conacher HB, Verdier P. Survey of arsenic in total diet food composites and estimation of the dietary intake of arsenic by Canadian adults and children. J AOAC Int 1993;76(1):14-25. Hayakawa T, Seo SW, Igaue I. Electron microscopic observation of rice grain. Part I. Morphology of rice starch. Journal of the Japanese Society of Starch Science 1980;27(3):173-179. Hei TK, Liu SX, Waldren C. Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci U S A 1998;95(14):8103-8107. Heitkemper DT, Vela NP, Stewart KR, Westphal CS. Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 2001;16(4):299-306. IARC. Arsenic and Arsenic Compounds. 7th ed., France: International Agency for Research on Cancer, WHO, 1987;100-106 Kabata-Pendias A, Mukherjee AB. Trace elements from soil to human. New York: Springer, 2007 Kikuchi Y, Nomiyama T, Kumagai N, Uemura T, Omae K. Cadmium concentration in current Japanese foods and beverages. Journal of Occupational Health 2002;44:240-247. Kile ML, Houseman EA, Breton CV, Smith T, Quamruzzaman Q, Rahman M, Mahiuddin G, Christiani DC. Dietary arsenic exposure in bangladesh. Environ Health Perspect 2007;115(6):889-893. Kitchin KT. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol 2001;172(3):249-261. Larsen E, Pritzl G, Hansen SH. Arsenic speciation in seafood samples with emphasis on minor constituents; An investigation using high-performance liquid chromatography with detection by inductively coupled plasma mass spectrometry. J Anal At Spectrom 1993;8:1075-1084. Larsen E, Pritzl G, Hansen SH. Speciation of dimethylarsinyl-riboside derivatives (arsenosugars) in marine reference materials by HPLC-ICP-MS. Fresenius’ J Anal Chem 1995;351:1-7. Liu WJ, Zhu YG, Smith FA, Smith SE. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? Journal of Experimental Botany 2004;55(403):1707-1713. Loebenstein JR. The materials flow of arsenic in the United States. United States Department of the Interior 1994. Mandal BK, Suzuki KT. Arsenic round the world: a review. Talanta 2002;58(1):201-235. Mandal BK, Suzuki KT, Anzai K. Impact of arsenic in foodstuffs on the people living in the arsenic-affected areas of West Bengal, India. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 2007;42(12):1741-1752. Manners DJ. Some aspects of the structure of starch. Cereal Foods World 1985;30(7):461. Mar JL, Reyes LH, Rahman GM, Kingston HM. Simultaneous extraction of arsenic and selenium species from rice products by microwave-assisted enzymatic extraction and analysis by ion chromatography-inductively coupled plasma-mass spectrometry. J Agric Food Chem 2009;57(8):3005-3013. Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RC, Sun G, Zhu YG, Feldmann J, Raab A, Zhao FJ, Islam R, Hossain S, Yanai J. Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 2009;43(5):1612-1617. Mihucz VG, Zaray G, Tatar E, Virag I, Zang C, Jao Y. Arsenic removal from rice by washing and cooking with water. Food Chemistry 2007;105(4):1718-1725. Munoz-Olivas R, Sanz E, Camara C, Sengupta MK, Ahamed S. Arsenic speciation in rice, straw, soil, hair and nails samples from the arsenic-affected areas of Middle and Lower Ganga plain. Journal of Environmental Science and Health. Part a, Toxic/Hazardous Substances & Environmental Engineering 2007;42(12):1695-1705. Munoz O, Velez D, Montoro R. Optimization of the solubilization, extraction and determination of inorganic arsenic [As(III) + (As(V)] in seafood products by acid digestion, solvent extraction and hydride generation atomic absorption spectrometry. Analyst 1999;124(4):601-607. Narukawa T, Chiba K. Heat-assisted aqueous extraction of rice flour for arsenic speciation analysis. J Agric Food Chem 2010. Narukawa T, Inagaki K, Kuroiwa T, Chiba K. The extraction and speciation of arsenic in rice flour by HPLC-ICP-MS. Talanta 2008;77(1):427-432. Ohno K, Yanase T, Matsuo Y, Kimura T, Rahman MH, Magara Y, Matsui Y. Arsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh. Sci Total Environ 2007;381(1-3):68-76. Pal A, Chowdhury UK, Mondal D, Das B, Nayak B, Ghosh A, Maity S, Chakraborti D. Arsenic burden from cooked rice in the populations of arsenic affected and nonaffected areas and Kolkata City in West-Bengal, India. Environ Sci Technol 2009;43(9):3349-3355. Phillips DJH. Arsenic in aquatic organisms: A review, emphasizing chemical speciation. Aquatic Toxicology 1990;16(3):151-186. Pizarro I, Gomez M, Palacios MA, Camara C. Evaluation of stability of arsenic species in rice. Anal Bioanal Chem 2003;376(1):102-109. Raab A, Baskaran C, Feldmann J, Meharg AA. Cooking rice in a high water to rice ratio reduces inorganic arsenic content. J Environ Monit 2009;11(1):41-44. Rahman MA, Hasegawa H, Rahman MM, Miah MA. Influence of cooking method on arsenic retention in cooked rice related to dietary exposure. Sci Total Environ 2006;370(1):51-60. Rahman MM, Owens G, Naidu R. Arsenic levels in rice grain and assessment of daily dietary intake of arsenic from rice in arsenic-contaminated regions of Bangladesh--implications to groundwater irrigation. Environ Geochem Health 2009;31 Suppl 1:179-187. Schoof RA, Yost LJ, Eickhoff J, Crecelius EA, Cragin DW, Meacher DM, Menzel DB. A market basket survey of inorganic arsenic in food. Food Chem Toxicol 1999;37(8):839-846. Schoof RA, Yost LJ, Crecelius E, Irgolic K, Goessler W, Guo HR, Greene H. Dietary arsenic intake in Taiwanese districts with elevanted arsenic in drinking water. Human and Ecological Risk Assessment 1998;4:117-135. Sengupta MK, Hossain MA, Mukherjee A, Ahamed S, Das B, Nayak B, Pal A, Chakraborti D. Arsenic burden of cooked rice: Traditional and modern methods. Food Chem Toxicol 2006;44(11):1823-1829. Shen S, Lee J, Sun X, Wang H, Weinfeld M, Le XC. Elevation of cellular BPDE uptake by human cells: a possible factor contributing to co-carcinogenicity by arsenite. Environ Health Perspect 2006;114(12):1832-1837. Shen S, Lee J, Weinfeld M, Le XC. Attenuation of DNA damage-induced p53 expression by arsenic: a possible mechanism for arsenic co-carcinogenesis. Mol Carcinog 2008;47(7):508-518. Shibata Y, Morita M. Characterization of organic arsenic compounds in bivalves. Appl Organomet Chem 1992;6:343-349. Signes A, Mitra K, Burlo F, Carbonell-Barrachina AA. Contribution of water and cooked rice to an estimation of the dietary intake of inorganic arsenic in a rural village of West Bengal, India. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008;25(1):41-50. Smith NM, Lee R, Heitkemper DT, DeNicola Cafferky K, Haque A, Henderson AK. Inorganic arsenic in cooked rice and vegetables from Bangladeshi households. Sci Total Environ 2006;370(2-3):294-301. Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 2000;74(6):289-299. Tchounwou PB, Centeno JA, Patlolla AK. Arsenic toxicity, mutagenesis, and carcinogenesis--a health risk assessment and management approach. Mol Cell Biochem 2004;255(1-2):47-55. Vahter M, Couch R, Nermell B, Nilsson R. Lack of methylation of inorganic arsenic in the chimpanzee. Toxicol Appl Pharmacol 1995;133(2):262-268. WHO. Evaluation of Certain Food-Additives and Contaminants. Who Technical Report Series 1983;(696):1-47. Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 2005;39(15):5531-5540. Williams PN, Raab A, Feldmann J, Meharg AA. Market basket survey shows elevated levels of As in South Central U.S. processed rice compared to California: consequences for human dietary exposure. Environ Sci Technol 2007;41(7):2178-2183. Wu C, Ye Z, Shu W, Zhu Y, Wong M. Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes. J Exp Bot 2011;62(8):2889-2898. Xu XY, McGrath SP, Meharg AA, Zhao FJ. Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 2008;42(15):5574-5579. Zavala YJ, Gerads R, Gorleyok H, Duxbury JM. Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health. Environ Sci Technol 2008;42(10):3861-3866. Zheng MZ, Cai C, Hu Y, Sun GX, Williams PN, Cui HJ, Li G, Zhao FJ, Zhu YG. Spatial distribution of arsenic and temporal variation of its concentration in rice. New Phytol 2011;189(1):200-209. Zhu YG, Sun GX, Lei M, Teng M, Liu YX, Chen NC, Wang LH, Carey AM, Deacon C, Raab A, Meharg AA, Williams PN. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environ Sci Technol 2008;42(13):5008-5013. 中國衛生部:糧食衛生標準。中國:中國衛生部,2005 北台灣良質米:米的種類。Available at: http://tygoodrice.blogspot.com/2009/10/blog-post_785.html. 引用2011/7/8 台灣大學公共衛生學院健康風險及政策評估中心:台灣一般民眾暴露參數彙編。台北:國民健康局,2008 江秀梅、殷蘊雯、賴珊湖、侯鈺琪、張月惠、王耀宏譯:基礎毒理學初版。台北:高立圖書有限公司,2003 行政院農委會:98年糧食供需年報。台北:行政院農委會,2009 行政院衛生署:食米重金屬限量標準。Available at: http://food.doh.gov.tw/foodnew/MenuThird.aspx?LanguageType=1&SecondMenuID=5&ThirdMenuID=212. 引用2011/2/22 宜蘭縣環保局:宜蘭縣土壤及地下水汙染整治業務綱。Available at: http://works.ilepb.gov.tw/01003/index.html. 引用2011/7/1 林浩潭、翁素慎、李國欽:食品中重金屬含量及管制標準。台中縣:行政院農業委員會農業藥物毒物試驗所編印,2002 邱雅琦、施如佳、張美華、高雅敏、周秀冠、鄭守訓、周薰修:食米中重金屬(鎘、汞、鉛)含量之調查。藥物食品檢驗局調查研究年報 2007;25:238-245. 邱雅琦、高雅敏、周秀冠、鄭守訓、徐錦豐、施養志:食米中重金屬(鎘、汞、鉛)含量之調查。藥物食品檢驗局調查研究年報 2008;26:198-206. 陳健民:環境毒物學。台北:新文京開發出版有限公司,2003 農委會林務局:台灣的稻米。Available at: http://econgis.forest.gov.tw/rice/index.htm. 引用2011/6/30 劉水源:生存危機-環境污染與生態失衡。台北:台灣商務印書館股份有限公司, 1993 劉鎮宗:砷與生態環境的關係。科學月刊 1995;0302. 盧訓、宋勳、吳淑靜:栽培環境及品種對稻米碾米品質與物化性質影響之研究。臺中區農業改良場研究彙報 1988;18:41-50. 戴國興、朱鈞:穀類作物種子之充實。科學農業 1981;29:15-19. 顏國欽:食品安全學。台北:藝軒圖書出版社,1997;118-9 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43386 | - |
dc.description.abstract | 亞洲地區的飲食習慣是以稻米為主食,就目前所知,稻米中主要含有三價砷(As(III))、五價砷(As(V))、單甲基砷酸(MMA)和二甲基砷酸(DMA)這四種物種。一般而言,無機砷對人體的毒性較有機砷為高,因此經由稻米砷物種的量測可幫助在評估暴露及健康影響時,更為貼近實際情形。本研究針對台灣地區的稻米進行重金屬濃度分析,並開發砷物種萃取的方法,以進一步探討在稻米中的含量及其對人體的影響,並探討稻米煮熟後的砷濃度變化。並利用實驗所得之數據進行蒙地卡羅模擬,計算國人每日的鎘及無機砷攝取量。本研究依據台灣各地區鄉鎮的蓬萊米產量資料,從各縣市選出1-3個蓬萊米產量最高的鄉鎮,再依產量佔全國分佈比例,訂定採樣個數。總共收集118個稻米樣本,經由冷凍乾燥及磨粉後進行微波消化,最後利用感應耦合電漿質譜儀(ICP-MS)檢測其中的砷及鎘含量。在砷物種方法開發方面,嘗試利用不同種溶劑及萃取方法找出最適合本研究稻米樣本之研究方法。萃取回收率以超音波震盪加上微波輔助的效果最好,多數樣本及稻米標準品的萃取回收率可達到80 %以上。本研究稻米中金屬濃度分析檢測結果為:總砷含量為0.17±0.04 mg/kg(0.09-0.37 mg/kg)、三價砷含量為0.11±0.03 mg/kg(0.05-0.26 mg/kg)、五價砷含量為0.02±0.01 mg/kg(0.004-0.06 mg/kg)、DMA含量為0.02±0.01 mg/kg(0.01-0.06 mg/kg)、MMA含量為0.001±0.004 mg/kg(未檢出-0.03 mg/kg)。各地區稻米中砷含量並無明顯差異,但砷物種分析結果發現,台灣稻米含有三價砷的比例最高,DMA次之,MMA含量最少。在鎘含量分析方面,平均鎘含量為0.06±0.05 mg/kg(0.01- 0.40 mg/kg),宜蘭和南投地區平均稻米中鎘含量明顯較其他地區為高,分別為0.19±0.10 mg/kg及0.15±0.07 mg/kg。煮熟後的稻米中總砷及鎘含量皆明顯降低(10-36 %)。而熟飯中砷物種分析方面,觀察到三價砷的比例經由烹煮的過程後會降低,DMA的比例則會上升。將所測得之生米與熟飯中砷含量進行國人米製品攝食之鎘與無機砷暴露量評估,利用蒙地卡羅模擬,結果顯示99 %的國人皆並未超出WHO所建議的鎘或無機砷每日最大容許攝入量(MTDI)。實驗結果顯示台灣地區食用米中總砷及鎘含量在安全範圍內,而經由洗米煮飯的過程可降低一部分的總砷及鎘含量。經由人體攝食量暴露評估模擬,大部分國人經由食用米暴露於鎘與無機砷之攝取量尚在可接受範圍內。 | zh_TW |
dc.description.abstract | Rice is the staple food in Asia. The major arsenic species in rice grain include arsenite (As(III)), arsenate (As(V)), monomethyarsonic acid (MMA), and dimethylarsinic acid (DMA). In general, inorganic arsenic species are more toxic than those of organic arsenic species. Therefore, it is necessary to analyze the arsenic species in rice in Taiwan to optimize the exposure assessment for the ingestion of rice. The objective of this study is to analyze arsenic and cadmium in white rice samples and cooked rice in Taiwan, and to determine the optimal extraction procedure for arsenic species in rice. With the obtained data, we used Monte Carlo simulation to calculate cadmium and inorganic arsenic daily intake value. First of all, based on the production of japonica crop, we chose one to three villages/towns with top crop production of japonica in every county in Taiwan and decided the sample number for each village/town, according to the ratio of rice crop production of the individual village/town to the whole Taiwan. In total, 118 white rice samples were collected, and then dried by freeze dryer and ground by a rice miller. Pretreated rice samples were acid digested by microwave. Total arsenic and cadmium concentrations in digested samples were determined by ICP-MS. For arsenic speciation, we first evaluated the efficacy of different solvent mixtures and techniques for the optimal extraction of arsenic species in rice samples. The most appropriate method was ultrasonic process followed by microwave extraction with recovery rate of above 80 % for most white rice samples. The average concentration for total arsenic was 0.17±0.04 μg/g (0.09-0.37 μg/g), for arsenite 0.11±0.03 μg/g (0.05-0.26 μg/g), for arsenate 0.02±0.01 μg/g (0.004-0.06 μg/g), for DMA 0.02±0.01 μg/g (0.01-0.06 μg/g), and for MMA 0.001±0.004 μg/g (ND-0.03 μg/g). There was no difference in the total arsenic concentration for rice samples of different counties in Taiwan. For arsenic speciation analysis, arsenite was the major species determined in rice sample and MMA was the least one. For the analysis of cadmium concentrations in rice samples, the average concentration of cadmium was 0.06±0.05 μg/g (0.007-0.40 μg/g). There were higher cadmium concentrations in Yilan and Nantou, with averages of 0.19±0.10 μg/g and 0.15±0.07 μg/g, respectively. The total arsenic concentration was significantly reduced in cooked rice, with higher percentage of reduction observed for raw rice samples with higher arsenic concentration. With respect to arsenic species in cooked rice samples, the proportion of arsenite rose while that of DMA decreased. We used Monte Carlo simulation to estimate cadmium and inorganic arsenic daily intake value. The results showed that 99% of people did not have cadmium or inorganic arsenic intake from rice exceeding the WHO suggested maximum tolerable daily intake value (MTDI). In conclusion, the concentrations of total arsenic and cadmium in rice samples in Taiwan are acceptable, which would be further reduced through washing and cooking process. Results of the Monte Carlo simulation indicated that, currently, the daily cadmium and inorganic arsenic intake from rice in Taiwan, is still within the acceptable range. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:53:31Z (GMT). No. of bitstreams: 1 ntu-100-R98841008-1.pdf: 1567861 bytes, checksum: 925a9f932c585a9a2b0780df638a49d4 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 摘要................I
Abstract............III 目錄................i 圖目錄..............iv 表目錄..............v 第一章 前言....................1 1.1 研究背景...................1 1.2 研究目的...................1 1.3 研究架構...................2 第二章 文獻探討................4 2.1 砷.........................4 2.1.1 環境中砷的概述...........4 2.1.2 砷毒性及人體內的代謝機制..........5 2.1.3 食物中的砷...............7 2.2 鎘.........................8 2.3 食米中重金屬濃度法規標準...8 2.4 稻米特性...................9 2.5 稻米中砷物種研究..........10 2.6 熟飯砷濃度相關研究........12 2.7 標準煮米程序..............12 2.8 砷物種萃取方法............13 2.9 儀器分析及原理............14 2.9.1 ICP-MS..................14 2.9.2 HPLC-ICP-MS.............16 第三章 研究方法...............18 3.1採樣策略...................18 3.2樣本處理...................21 3.3 煮米......................21 3.4儀器設備...................22 3.5試藥與試劑.................23 3.6多元素分析.................24 3.6.1消化.....................24 3.6.2檢量線配製...............24 3.7砷物種分析.................25 3.7.1萃取.....................25 3.7.2檢量線配置...............27 3.8 移動相溶液配置............27 3.9 分析儀器條件..............27 3.10 偵測極限.................28 第四章 實驗結果...............30 4.1 總量砷及鎘金屬濃度分析(縣市別)......30 4.2總砷濃度及鎘濃度分析(品種)...........33 4.3砷物種萃取方法探討.........35 4.4 稻米中砷物種濃度分析......37 4.5 熟飯砷及砷物種濃度分析....41 第五章 討論...................45 5.1 稻米總砷及鎘含量分析......45 5.2 稻米砷物種萃取方法比較....46 5.3 稻米中砷物種含量探討......47 5.4 熟飯含砷量差異探討........50 5.4.1 總砷....................50 5.4.2 砷物種..................51 5.5 人體攝食暴露量探討........52 5.5.1 米中鎘暴露量探討........53 5.5.2 米中無機砷暴露量探討....55 5.5.3 熟飯中鎘及無機砷暴露量探討........57 5.6 研究限制..................58 第六章 結論與建議.............59 參考文獻......................60 | |
dc.language.iso | zh-TW | |
dc.title | 台灣地區稻米中砷物種與鎘濃度分析探討 | zh_TW |
dc.title | Study on Arsenic Species and Cadmium Levels in Rice in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江旭禎(Shiuh-Jen Jiang),張尊國(Tsun-kuo Chang),吳焜裕(Kuen-Yuh Wu) | |
dc.subject.keyword | 稻米,三價砷,五價砷,單甲基砷酸,二甲基砷酸,鎘, | zh_TW |
dc.subject.keyword | rice,arsenite,arsenate,monomethyarsonic acid,dimethylarsinic acid,cadmium, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-15 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
顯示於系所單位: | 職業醫學與工業衛生研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。