請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43385完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭幸榮(Shing-Rong Kuo) | |
| dc.contributor.author | Pei-Chen Chi | en |
| dc.contributor.author | 紀貝貞 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:53:27Z | - |
| dc.date.available | 2012-07-24 | |
| dc.date.copyright | 2009-07-24 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-06-30 | |
| dc.identifier.citation | 余旻儒、王志斌、李明仁 (2008) 四湖海岸木麻黃林下光度對水黃皮、海檬果及欖仁苗木生長之效應。中華林學會97年度學術論文發表會論文集。(3): 686-696。
林信輝 (1987) 三種防風林植物在海岸環境下之生理生態反應。中興大學植物學研究所。博士論文。 林信輝、歐辰雄(2002)台灣海岸地區應用植物。經濟部水利署。台北市。 范貴珠、陳儀真(2003) 土壤鹽度對苦檻藍扦插苗生長、水分狀態及葉綠素濃度的影響。臺大實驗林研究報告。17(3):159-169。 徐政競 (1982) 三種檉柳耐鹽性之比較研究。台灣大學森林學研究所。碩士論文。 郭幸榮 (1984) 木麻黃種子發芽及苗木生長之研究。台大實驗林研究報告。154號。 郭幸榮、林如森、許世宏、梁亞忠(2000)供水方式和土壤鹽分對欖李生長及形態之影響。中華林學季刊。33(2):217-230。 郭幸榮、郭秀姚 (1998) 鹽分對四種台灣原生闊葉樹種之危害。中華林學季刊。31(4):361-367。 郭秀桃 (1998) 鹽分對四種台灣原生闊葉樹種之為害。台灣大學森林環境暨資源學系。碩士論文。 郭寶章 (1993) 桃園海岸之防風林消長、鹽霧為害與稻作生產相關文獻之析釋。中華林學會。臺北市。 陳玉峰 (1985) 墾丁國家公園研究論叢之-墾丁國家公園海岸植被。內政部營建署墾丁國家公園管理處。臺北市。 陳明義、陳清義、林信輝 (1985) 木麻黃耐鹽特性。中興大學理工學報。22:41-50。 陳財輝、呂錦明 (1987 ) 海岸沙丘植物生理特性及生長關係之研究(I)-海岸木麻黃防風林之生長及林分生物量。海岸林研究報告。第1號。 陳尊賢、許正一 (2002) 台灣的土壤。遠足文化。臺北縣新店市。 陳振榮 (1980) 台灣木麻黃種類之鑑定,新種之引進及其耐鹽性之比較硏究。台灣大學森林學研究所。碩士論文。 陳燕章 (1981) 三種木麻黃耐鹽性之比較硏究。台灣大學森林學研究所。碩士論文。 陳嶸 (1975) 中國樹木分類學。文京出版社。臺北市。 張上鎮、王升陽、葉汀峰、吳季玲 (1997) 超音波法快速粹取及定量葉綠素。台灣林業科學。12(3):329∼334。 曾世昌 (1990 ) 鹽沫對木麻黃之生理為害。台灣大學森林學研究所。碩士論文。 劉佳瑜 (1998) 台灣低海拔綠化樹種耐淹鹽水能力之硏究。台灣大學森林環境暨資源學系。碩士論文。 劉業經、呂福原、歐辰雄 (1994) 台灣樹木誌。國立中興大學農學院出版委員會。 盧廷瑋 (2002) 囊叢枝菌根菌對繖楊、草海桐及臺灣海桐苗木生長及生理特性的效應。嘉義大學林業研究所。碩士論文。 鐘補勤、黃希周、劉慎孝 (1950) 台灣糖業公司西海岸農場 防風林調查報告。台灣糖業公司。臺北市。 Alarcon, J. J., M. A. Morales, T. Ferrandez and M. J. Sanchez-Blanco (2006) Effects of water and salt stresses on growth, water relations and gas exchange in Rosmarinus officinalis. Journal of Horticultural Science and Biotechnology 81 (5):845–853. Bacon, M. A. (1999) The biochemical control of leaf expansion during drought. Plant Growth Regulation 29:101-112. Barnes, J. D., L. Balaguer, E. Manrique, S. Elvira and A. W. Davison (1992) A reappraisal of the use of DMSO for the extraction and detetermination of chlorophyll a and b in lichens and higher plants. Environment and experimental botany 32(2):85-100. Carpita, N., D. Sabularse, D. Montezinos and D. Delmer (1979) Determinations of the pore size of cell walls of living plant cells. Science 205:1144-1147. Chartzoulakis, K.S. (2005) Salinity and olive Growth salt tolerance, photosynthesis and yield. Agricultural Water Management 78:108–121. Chazen, O. and P. M. Neumann (1994) Hydraulic signals from the roots and rapid cell wall hardening in growing maize leaves, are primary responses to PEG induced water deficits. Plant Physiology 104:1385-1392. Chazen, O., W. Hartung and P. M. Neumann (1995) The different effects of PEG-6000 and NaCl on leaf development are associated with differential inhibition of root water transport. Plant, Cell and Environment 18:727-735. Chen, S., J. Li, T. Wang, S. Wang, A. Polle and A. Hu¨ ttermann (2002) Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar. Journal of Plant Growth Regulation 21:224–233. Chen, X.-Q. and Yu B.-J. (2007) Ionic effects of Na+ and Cl- on photosynthesis in glycine max seedlings under isoosmotic salt stress. Journal of Plant Physiology and Molecular Biology 33(4):294-300. Colom, M. R. and C. Vzzana (2003) Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environmental and Experimental Botany 49:135-144. Cornic, G. (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture- not by affecting ATP synthesis. Trends in Plant Science 5:187-188. Dadswell, H.E. (1972) The anatomy of Eucalypt woods. Forest Products Laboratory, Division of Applied Chemistry Technological Paper No. 66. Commonwealth Scientific and Industrial Research Organization, Australia. Davies, W. J., F. Tardieu and C. L. Trejo (1994) How do chemical signals work in plant that grow in drying soil? Plant Physiology 104: 309-314. Delfine, S., A. Alvino, M. Zacchini and F. Loreto (1998) Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Australian Journal of Plant Physiology 34:843-852. DeEll, J. R. and P. M. A. Toivonen (Edited) (2003) Pracital applications of chlorophyll fluorescence in plant biology. Kluwer Academic Publisher. Edwards, G.E. and N. R. Baker (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynthesis Research 37:89–92. Epsten, E. (1972) Mineral Nutrition of Plants: Principles and Perspectives. Wiley, New York. pp. 39. Ernesto, G. C., T. P. Tuong, A. M. Ismail and K. Inubushi (2007) Response to salinity in rice: Comparative effects of osmotic and ionic stresses. Plant Product Science 10(2):159-170. Fan, S. and T. J. Blake (1997) Comparison of polyethylene glycol 3350 induced osmotic stress and soil drying for drought simulation in three woody species. Trees 11:342 –348. Fryer, M. J., J. R. Andrews, K. Oxborough, D. A. Blowers and N. R. Baker (1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiology 116:571–580. Hagemeyer, J. (1997) Salt. In: Plant Ecophysiology. Ed. By Prasa, M.N.V., John Wily & Sons, Inc. New York, pp542. Haldimann P., A. Galle and U. Feller (2008) Impact of an exceptionally hot dry summer on photosynthetic traits in oak (Quercus pubescens) leaves. Tree Physiology 28:785-795. Handa, A.K., R. A. Bressan, S. Handa and P.M. Hasegawa (1982) Characteristics of cultured tomato cells after prolonged exposure to medium containing polyethylene glycol. Plant Physiology 69:514–521. Hinckley, T. M., H. Richter and P.J. Schulte (1991) Water Relations. In: Physiology of Trees. ed. by Raghavendra, A. S. John Wiley and Sons, Inc. New York, pp 509. Jacomini, E., A. Bertani and S. Mapelli (1988) Accumulation of polyethylene glycol 6000 and its effects on water content and carbohydrate level in water-stressed tomato plants. Canadian Journal of Botany 66:970–973. Janes, B. E. (1974) The effect of molecular size, concentration in nutrient solution, and exposure time on the amount and distribution of polyethylene glycol in pepper plants. Plant Physiology 54:226 –230. Johnson, J. D., and M.L.Cline(1991)Seedlings quality of southern pines. In: Duryea, M.L., and P. M.Dougherty (eds) Forest regeneration manual. Kluwer Academic Publishers. pp143-159. Kao, W.-Y., T.-T. Tsai and C.-N. Shih (2003) Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica 41:415-419. Kitao, M., T. T. Lei, T. Koikea, H. Tobitaa and Y. Maruyama (2003) Higher electron transport rate observed at low intercellular CO2 concentration in long-term drought-acclimated leaves of Japanese mountain birch (Betula ermanii). Physiologia Plantarum 118:406–413. Kocheva, K. V., M. C. Busheva, G. I. Georgiev, P. H. Lambrev and V. N. Goltsev (2005) Influence of short-term osmotic stress on the photosynthetic activity of barley seedlings. Biologia Plantarum 49 (1): 145-148. Kozlowski, T. T. (1997) Responses of woody plants to flooding and salinity. Tree Physiology Monograph No. 1. pp1-28. Krause, G. H., O. Y. Koroleva, J. W. Dalling and K. Winter (2001) Acclimation of tropical tree seedlings to excessive light in simulated tree-fall gaps. Plant, Cell and Enveronment 24:1345-1352. Lambers, H., F. S. Chapin III, and T. L. Pons. (1998) Plant physiological ecology. Springer-Verlag, New York. pp 540. Lang, A. R. G. (1967) Osmotic coefficients and water potentials of sodium chloride solutions from 0 to 40 oC. Australia Journal of Chemistry 20:2017-2023. Larcher, W. (2003) Physiological plant ecology : ecophysiology and stress physiology of functional groups. 4nd edition. Springer, Berlin, New York. Lawlor, D. W. (1970) Absorption of Polyethylene Glycols by Plants and Their Effects on Plant Growth. New Phytologist, Vol. 69, No. 2., pp. 501-513. Lawlor, D. W. and G. Cornic (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment 25:275-294 LI-COR (1999) Using the LI-6400, Portable Photosynthesis System. LI-COR,USA. Maas, E. V. (1993) Salinity and citricultrue. Tree Physiology 12:195-216. Martinez, J. -P., J.-M. Kinet, M. Bajji and S. Lutts (2005) NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. Journal of Experimental Botany 56:2421–2431. Maxwell, K. and G. N. Johnson (2000) Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany 51:659-668. Mexal, J., J. T. Fisher, J. Osteryoung, C. P. P. Reid (1975) Oxygen availability in polyethylene glycol solutions and its implications in plant-water relations. Plant Physiology 55:20–24. Michel, B. E. (1970) Carbowax 6000 compared with mannitol as a suppressant of cucumber hypocotyl elongation. Plant Physiology 45:507–509. Michel, B. E. and M. R. Kaufmann (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiology 51:914-916. Molnar, I., L. Gaspar, E. Sarvari, S. Dulai, B. Hoffman, M. Molnar-Land and G. Galiba (2004) Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Functional Plant Biology 31:1149-1159. Munns, R. (2002) Comparative physiology of salt and water stress. Plant, Cell and Environment 25:239–250. Muranaka, S., K. Shimizu and M. Kato (2002) Ionic and osmotic effects of salinity on single-leaf photosynthesis in two wheat cultivars with different drought tolerance. Photosynthetica 40:201-207. Newton, R.J., S. Sen, J. D. Puryear (1989) Solute contribution to osmotic potential loblolly pine (Pinus taeda L.) callus. Journal of Plant Physiology 34:746–750. Omami, E. N. and P. S. Hammes (2006) Interactive effects of salinity and water stress on growth, leaf water relations, and gas exchange in amaranth (Amaranthus spp.). New Zealand Journal of Crop and Horticultural Science 34:33–44. Panshin, A. J. and C. de Zeeuw (1980) Textbook of wood technology. 4th ed. McGraw-Hill Book Toronto, Ontario, pp 451–460 Parida, A. K., A. B. Das and B. Mittra (2003) Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica 41:191-200. Parida, A. K., A. B. Das and B. Mittra (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees 18:167–174. Parra, M., A. Albacete, C. Mart´ınez-And´ujar and F. P´erez-Alfocea (2007) Increasing plant vigor and tomato fruit yield under salinity by inducing plant adaptation at the earliest seedling stage. Environmental and Experimental Botany 60:77–85. Percival, G. C. (2005) The use of chlorophyll fluorescence to identify chemical and environmental stress in leaf tissue of three oak (Quercus) species. Journal of Arboriculture 31:215-227. Qiu ,N., Q. Lu and C. Lu (2003) Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytologist 159:479-486. Ralph, P. J. and R. Gademann (2005) Rapid light curves: A powerful tool to assess photosynthetic activity. Aquatic Botany 82:222–237. Raven, J. A. (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytologist 101:25–77. Ranjbarfordoei, A., R. Samson, and P. van Damme (2006) Chlorophyll fluorescence performance of sweet almond [Prunu dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl. Photosynthetica 44 (4):513-522. Rieger, M. and M. J. Dummel (1992) Comparison of drought resistance among Prunus species from divergent aitats. Tree Physiology 11:369-380. Rozema, J. (1996) Biology of halophytes. In: Halophytes and Biosaline Agriculture, R. Choukr- Allah, eds. pp.17-30. Marcel Dekker, New York. Ruiz, D., V. Martinez and A. Cerda (1997) Citrus response to salinity: growth and nutrient uptake. Tree Physiology 17:141-150. Sacala, E., A. Demczuk and E. Grzys (2008) Effect of salt and water stresses on growth, nitrogen and phosphorus metabolism in Cucumis sativus L. seedlings. Acta Societatis Botanicorum Poloniae.77 (1):23-28 Slama, I. , T. Ghnaya, K. Hessini , D. Messedi , A. Savour´e , C. Abdelly (2007) Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environmental and Experimental Botany 61:10–17. Sanchez-Gomez, D., F. Valladarers and M. A. Zavala (2006) Functional traits and plasticity in response to light in seedlings of four Ierian forest tree species. Tree Physiology 26:1425-1433. Sanchez-Rodriguez , J., P. Perez and R. Martinez-Carrasco (1999) Photosynthesis, carbohydrate levels and chlorophyll fluorescence-estimated intercellular CO2 in water-stressed Casuarina equisetifolia Forst. Plant, Cell and Environment. 22:867–873. Santos, C. V. (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae 103:93–99. Stepien, P. and G. Klobus (2006) Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plantarum 50:610-616. Štroch, M., V. Špunda and I. Kurasová (2004) Non-radiative dissipation of absorbed excitation energy within photosynthetic apparatus of higher plants. Photosynthetica 42(3):323-337. Taiz, L. and E. Zeiger (2002) Plant Physiology. 3th ed. Sinauer Associates Inc.,U.S.A.. Termaat, A. and R. Munns (1986) Use of concentrated macronutrient solution to separate osmotic form NaCl specific effect on plant growth. Australian Journal of Plant Physiology 13:509-522. Tezara ,W., V. J. Mitchell, S. D. Driscoll, D. W. Lawlor (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914-917. van der Weele, C. M., W. G. Spollen, R. E. Sharp and T. I. Baskin (2000) Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. Journal of Experimantal Botany 1:1555–1562. Verslues, P. E., M. Agarwal, S. K. Agarwal, J. Zhu and J.-K Zhu. (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal 45:523–539. Waise, Y. (1991) Adaptation to Salinity. In: Physiology of Trees. Raghavendra, A.S.,ed.. P. John Wiley Sons Inc. pp.359-383 Wellburn, A. R. (1994) The spectral determination of chlorophylls a and b, as well ad total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144:307-313. Yamane ,K., M. Kawasaki, M. Taniguchi and H. Miyake (2003) Differential effect of NaCl and polyethylene glycol on the ultrastructure of chloroplasts in rice seedlings. Journal of Plant Physiology 160:573–575. Yang, Y., D.-A. Jiang, H.-X. Xu, C.-Q. Yan and S.-R Hao (2006) Cyclic electron flow around photosystem 1 is required for adaptation to salt stress in wild soybean species Glycine cyrtoloba ACC547. Biologia Plantaurm 50(4):586-590. Yaniv, Z. and E. Werker (1983) Absorption and secretion of polyethylene glycol by Solanaceous plants. Journal of Experimental Botany 34:1577–1584. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43385 | - |
| dc.description.abstract | 本試驗為探討台灣海岸林常見樹種在鹽份逆境下之適應能力,以水黃皮(Pongamia pinnata)、木賊葉木麻黃(Casuarina equisetifolia) 、繖楊(Thespesia populnea)盆缽苗木為材料,施灌不同濃度NaCl溶液(S1:0.7 %、S2:1.4 %、S3:2.8 %)及等同滲透勢之PEG6000溶液(P1:-0.555 MPa、P2:-1.109 MPa、P3:-2.248 MPa)於生長介質,以充分灌水為對照組(C),6週後量測光合作用能力、葉綠素螢光參數及生長表現。
3樹種木質枝條水勢(Ψxyl)趨勢皆為C > S1≒P1> S2≒P2> S3≒P3;大致上隨澆灌水勢愈低,全株總葉面積減少,淨光合作用速率也有類似趨勢。PEG處理之苗木則隨濃度加重,光合作用能力明顯下降,且低於相同滲透勢NaCl處理者。3種苗木氣孔導度隨處理程度加重而下降,且PEG處理苗木比相同滲透勢NaCl處理更低;除P3之外,其餘處理Fv/Fm值與C無顯著差異。PEG及NaCl處理後光合作用速率的降低主要導因於氣孔因素。惟除了P3外,其餘處理之苗木光合系統PSII並未受到顯著傷害,顯示這3種樹種光合系統PSII有其耐鹽性。值得注意的是PEG或NaCl處理後都出現類似缺水的反應,但在介質水勢相同的狀況下,PEG處理的傷害明顯比NaCl嚴重。 | zh_TW |
| dc.description.abstract | Seedlings of Pongamia pinnata, Casuarina equisetifolia and Thespesia populnea grown in plastic pots were subjected to (1) NaCl (S1:0.7 %, S2:1.4 %, S3:2.8 %),(2) PEG6000, iso-osmotic to NaCl solution(P1:-0.555 MPa, P2:-1.109 MPa, P3:-2.248 MPa) and (3) well-watered treatment “C”, respectively. After 6 weeks, the photosynthetic rate (Pn), stomatal conductance (gs), cholorophyll fluorescence, content of pigments and growth were measured.
The trend of xylem water potential(Ψxyl) in treatments is C > S1≒P1> S2≒P2> S3≒P3 in the three species. Leaf area decreased with decreasing water potential, and the photosynthetic rate also showed this trend. In PEG treatment, Pn decreased with decreasing solution osmotic potential and was lower than iso-osmotic NaCl treatments. The gs of the three species decreased by decreasing water potential, and the decreasing gs in PEG treatments was more severe than iso-osmotic NaCl. Fv/Fm did not differ significantly among treatments except P3 treatment. After PEG and NaCl treatments, the decrease in Pn largely resulted from the decrease in gs. Except P3, photosystem II (PSII) did not differ significantly among other treatments. The damages caused by PEG and NaCl were due to osmotic stress similiar to water stress. It should be noted that seedlings irrigated with iso-osmotic PEG were damaged than those treated with NaCl. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:53:27Z (GMT). No. of bitstreams: 1 ntu-98-R95625033-1.pdf: 1931652 bytes, checksum: c4d4666f9c8690c34586ee87f2782e88 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………… I
中文摘要……………………………………………………………………………Ⅱ 英文摘要……………………………………………………………………………III 目錄……………………………………………………………………………...…IV 圖目錄………………………………………………………………………..……. V 表目錄………………………………………………………………….…………. VI 附錄目錄……………………………………………………………….…………. VI 壹、前言…………………………………………………………………………… 1 貳、前人研究……………………………………………………………………… 3 參、材料與方法…………………………………………………………………… 9 肆、研究結果……………………………………………………………………… 21 伍、討論…………………………………………………………………………… 45 陸、結論…………………………………………………………………………… 61 柒、參考文獻………………………………………………………………………63 捌、附錄……………………………………………………………………………72 玖、附圖……………………………………………………………………………73 拾、附表……………………………………………………………………………74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光合作用 | zh_TW |
| dc.subject | NaCl | zh_TW |
| dc.subject | PEG | zh_TW |
| dc.subject | 木賊葉木麻黃 | zh_TW |
| dc.subject | 葉綠素螢光 | zh_TW |
| dc.subject | 繖楊 | zh_TW |
| dc.subject | 水黃皮 | zh_TW |
| dc.subject | Casuarina equisetifolia | en |
| dc.subject | NaCl | en |
| dc.subject | Net photosynthetic rate | en |
| dc.subject | Pongamia pinnata | en |
| dc.subject | Chlorophyll fluorescence | en |
| dc.subject | Thespesia populnea | en |
| dc.subject | PEG | en |
| dc.title | 水黃皮、木賊葉木麻黃和繖楊苗木於NaCl及等同滲透勢PEG6000下之光合作用及生長表現 | zh_TW |
| dc.title | Effects of NaCl and Iso-osmotic PEG6000 on Seedling Photosynthesis and Growth of Pongamia pinnata, Casuarina equisetifolia, and Thespesia populnea | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 關秉宗(Biing-T. Guan),鹿兒陽(Erh-Yang Lu),李明仁(Ming-Jen Li),林世宗(Shu-Tzong Lin) | |
| dc.subject.keyword | 水黃皮,繖楊,木賊葉木麻黃,PEG,NaCl,光合作用,葉綠素螢光, | zh_TW |
| dc.subject.keyword | Pongamia pinnata,Casuarina equisetifolia,Thespesia populnea,PEG,NaCl,Net photosynthetic rate,Chlorophyll fluorescence, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-01 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
