請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43375
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林晃巖 | |
dc.contributor.author | Yi-Jiun Chen | en |
dc.contributor.author | 陳奕均 | zh_TW |
dc.date.accessioned | 2021-06-15T01:52:49Z | - |
dc.date.available | 2013-09-20 | |
dc.date.copyright | 2011-09-20 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-15 | |
dc.identifier.citation | [1] 蔡朝旭, 陳政寰, 立體顯示器技術(Three-dimensional Display), 行政院國科會光電小組, 中華民國九十三年九月
[2] Hoon Kang, Su-Dong Roh, In-Su Baik, Hyun-Joon Jung,Woo-Nam Jeong, Jong-Keun Shin, and In-Jae Chung, “A Novel Polarizer Glasses-type 3D Displays with a Patterned Retarder” SID 2010 DIGEST, pp.1-4 [3] Yariv, and Yeh, Optical Waves in Crystals-Propagation and Control of Laser Radiation, John Wiley & Sons, Inc., 2003. [4] R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Physics, Vol. 7, pp. 37-55, 1967. [5] Adel A. M. Saleh, and Ralph A. Semplak, “A Quasi-Optical Polarization-Independent Diplexer for Use in the Beam Feed System of Millimeter-Wave Antennas,” IEEE Transactions on Antennas and Propagation, Vol. AP-24, No. 6, pp. 780-785, 1976. [6] Ikuro Sato, Susumu Tamagawa, and Ryuichi Iwata, “Quasi-optical diplexer by rectangular metallic mesh,” Electronics and Communications in Japan, Vol. 67-B, No. 12, pp. 39-48, 1984. [7] Jordi Romeu, and Yahya Rahmat-Samii, “Fractal FSS: A Novel Dual-Band Frequency Selective Surface,” IEEE Transactions on Antennas and Propagation, Vol. 48, No. 7, pp. 1097-1105, 2000. [8] Xiao-Dong Hu, Xi-Lang Zhou, Lin-Sheng Wu, Liang Zhou, and Wen-Yan Yin, 'A Miniaturized Dual-Band Frequency Selective Surface(FSS) With Closed Loop and Its Complementary Pattern,' IEEE Antennas and Wireless Propagation Leters, Vol. 8, pp. 376-378, 2009. [9] P. Callaghan, E. A. Parker, and R. J. Langley, 'Influence of supporting dielectric layers on the transmission properties of frequency selective surfaces,' IEE Proceedings-H, Vol. 138, No. 5, pp. 448-454, 1991. [10] P. W. B. Au, E. A. Parker, and R. J. Langley, “Wideband filters employing multilayer gratings,” IEE Proceedings-H, Vol. 140, No. 4, pp. 292-296, 1993. [11] D. J. Shelton, D. W. Peters, M. B. Sinclair, I. Brener, L. K. Warne, L. I. Basilio, K. R. Coffey, and G. D. Boreman, “Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials,”Optics Express, Vol. 18, No. 2, pp. 1085-1090, 2010. [12] Ban A. Munk, Frequency Selective Surfaces-theory and design, John Wiley & Sons, Inc., 2000. [13] R. Dubrovka, J. Vazquez, C. Parini, and D. Moore, “Equivalent circuit method for analysis and synthesis of frequency selective surfaces,” IEE Proc.-Microw. Antennas Propag., Vol. 153, No. 3, pp. 213-220, 2006. [14] Rostyslav Dubrovka, Javier Vazquez, Clive Parini, and David Moore, “Modal Decomposition Equivalent Circuit Method Application for dual Frequency FSS Analysis,” Loughborough Antennas and Propagation Conference, pp. 257-260, 2007. [15] Rostyslav F. Dubrovka, Javier Vazquez, Clive G. Parini, and David Moore, “Modal decomposition equivalent circuit method application for multilayer FSSs,” Proc. IEEE APS 2007, Honilulu, Hawaii, USA, pp. 3968-3971, 2007. [16] R. Dubrovka, J. Vazquez, C. Parini, and D. Moore, 'Multi-frequency and multi-layer frequency selective surface analysis using modal decomposition equivalent circuit method,' IET Microwaves, Antennas and Propagation, The Institution of Engineering and Techology, Vol. 3, Iss. 3, pp. 492-500, 2009. [17] I. Anderson, 'On the theory of self-resonant grids,' Bell Syst. Tech. J., 55, pp. 1725-1731,1975. [18] R. J. Langley, E. A. Parker,'Equivalentcircuit model for arrays of square loops,' Electronics Letters, Vol. 18, No. 7, 1st, pp. 294-296,1982. [19] Masataka Ohira, Hiroyuki Deguchi, Mikio Tsuji, and Hiroshi Shigesawa, 'Analysis of frequency selective surface with arbitrarily shaped element by equivalent circuit model,' Electronics and Communications in Japan, Part 2, Vol. 88, No. 6, pp. 9-17, 2005. [20] 王煥青, '等效电路法分析频率选择表面的双频特性,' Systems Engineering and Electronics, Vol. 30, No. 11, pp. 2054-2057, 2008. [21] M. J. Archer,'Transmission line Equivalent circuit representation of a planar FSS layer composed of straight-ling segments,' ElectroMagnetic Waves Solutions, www.emw-sol.com, Iss. 4, pp. 1-9,2010. [22] David M. Pozar, Microwave engineering, Addision-Wesley Publishing Company, Inc., 1990. [23] Simon Ramo, John R. Whinnery, and Theodore Van Duzer, FIELDS AND WAVES IN COMMUNICATION ELECTRONICS, John Wiley & Sons, Inc., 1993, 3rd edition. [24] Stefan A. Maier, Plasmonics: Fundamentals and Applications I , Springer Verlag, 2007. [25] E. Palik and G. Ghosh, Handbook of optical constant of solids. Academic press, 1985 [26] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Physics Review B, Vol. 6, No. 12, pp. 4370-4379, 1972. [27] Xing-Xiang Liu, and Andrea Alu, “Subwavelength leaky-wave optical nanoantennas: Directive radiation from linear arrays of plasmonic nanoparticales,” Physics Review B, 82, 144305, pp.1-12, 2010. [28] Weiland, T., “ A discretization method for the solution of Maxwell's equations for six-component fields: Electronics and Communication,” (AEU), Vol. 31, pp. 116-120, 1977., CST microwave studio. http://www.cst.com [29] T. K. Wu, Frequency Selective Surface and Grid Array, John Wiley & Sons, Inc., 1995. [30] N. Marcuvitz, Waveguide handbook, IEE, 1986. [31] James Ginn, David Shelton, Peter Krenz, Brain Lail, and Glenn Boreman, “Polarized infrared emission using frequency selective surfaces,”Optics Express, Vol. 18, No. 5, pp. 4557-4563,2010. [32] Leo Young, Lloyd A. Robinson, and Colin A. Hacking, “Meander-line Polarizer,” IEEE Transactions on Antennas and Propagation, pp. 376-378, 1973. [33] C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meanderline polarizer layer,”IEEE Transactions on Antennas and Propagation, Vol. Ap-32, No. 9, pp. 1007-1011, 1984. [34] Ruey-Shi Chu, Kuan-Min Lee, “Analytical model of a multilayered meander line polarizer plate with normal and oblique plane wave incidence,”IEEE Transactions on Antennas and Propagation, Vol. Ap-35, No. 6, pp. 652-661, 1987. [35] A. K. Bhattacharyya, and T. J. Chwalek, “Analysis of Multilayered Meander Line Polarizer,” Int. J. Microwave Millimeter-Wave Comput.-Aided Eng. Vol. 7, Issue 6, pp. 442-454, 1997 [36] A. K. Bhattacharyya, “Analysis of multilayer infinite periodic array structures with different periodicities and axes orientations,” IEEE Transactions on Antennas and Propagation, Vol. 48, No. 3, pp. 357-369, 2000. [37] Jeffrey S. Tharp, Brian. A. Lail, Ben A. Munk, and Glenn D. Boreman, “Design and Demonstration of an Infrared Meanderline Phase Retarder,” IEEE Transactions on Antennas and Propagation, Vol. 55, No. 11, pp. 2983-2988, 2007. [38] Jeffrey S. Tharp, Jose M. Lopez-Alonso, James C. Ginn, and Charles F. Middleton, “Demonstration of a single-layer meanderline phase retarder at infrared,” Optics Letters, Optical Society of America, Vol. 31, No. 18, pp. 2687-2689, 2006. [39] Jeffrey S. Tharp, Javier Alda, and Glenn D. Boreman, “Off-axis behavior of an infrared meander-line waveplate,” Optics Letters, Optical Society of America, Vol. 32, No. 19, pp. 2852-2854, 2007. [40] Samuel L. Wadsworth, Glenn D. Boreman, “Analysis of throughput for multilayer infrared meanderline waveplates,”Optics Express, Optical Society of America, Vol. 18, No. 13, pp. 13345-13360, 2010. [41] Maxim Sukharev, Jiha Sung, Kenneth G. Spears, and Tamar Seideman, “Optical properties of metal nanoparticles with no center of inversion symmetry: Observation of volume plasmons,” Physics Review B, 76, 184302, pp. 1-5, 2007. [42] Jiha Sung, Maxim Sukharev, Erin M. Hicks, Richard P. Van Duyne, Tamar Seideman, and Kenneth G. Spears, “Nanoparticle Spectroscopy: Birefringence in Two-Dimensional Arrays of L-Shaped Silver Nanoparticles,” J. Phys. Chem. C, 112, pp.3252-3260, 2007. [43] Tao Li, Hui Liu, Shu-Ming Wang, Xiao-Gang Yin, Fu-Ming Wang, Shi-Ning Zhu, and Xiang Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Applied Physics Letters, 93, 021110, pp.1-3, 2008. [44] Yang Jing, Zhang Jia-Sen, Wu Xiao-Fei, and Gong Qi-Huang, “Resonant Modes of L-shaped Gold Nanoparticles,” Chin. Phys. Lett. Vol. 26, No.6, 067802, pp. 1-3, 2009. [45] Hannu Husu, Jouni Makitalo, Janne Laukkanen, Markku Kuittinen, and Martti Kauranen, “Particle Plasmon resonances in L-shaped gold nanoparticles,” Optics Express, Vol. 18, pp. 16601-16606, 2010. [46] H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Physics Review B, 76, 073101, pp.1-4, 2007. [47] Zhaofeng Li, Rongkuo Zhao, Thomas Koschny, Maria Kafesaki, Kamil Boratay Alici, Evrim Colak, Humeyra Caglayan, Ekmel Ozbey, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Applied Physics Letters, 97, 081901, 2010. [48] Mehmet Mutlu, Ahmet E. Akosman, Andriy E. Serebryannikov, and Ekmel Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Optics Letters, Vol. 36, No. 9, pp. 1653-1655, 2011. [49] F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, “Site andlattice resonances in metallic hole arrays,” Optics Express, Vol. 14, pp. 7–18, 2006. [50] Y.-T. Yoon, H.-S. Lee, S.-S. Lee, S. H. Kim, J.-D. Park, and K.-D. Lee, “Colorfilter incorporating a sub-wavelengthpatterned grating in poly silicon,” Optics Express, Vol. 16, pp. 2374–2380, 2008. [51] Lawrence Dah-Ching Tzuang, Yu-Wei Jiang, Yi-Han Ye, Yi-Tsung Chang, Yi-Ting Wu, and Si-Chen Lee, 'Polarization rotation of shape resonance in Archimedean spiral slots,' Applied Physics Letters, 94, 091912, 2009. [52] Dennis K. Wickenden, Ra’id S. Awadallah, Paul A. Vichot, Benjamin M. Brawley, Eli A. Richards, Jane W. M. Spicer, Michael J. Fitch, and Thomas J. Kistenmacher, “Polarization Properties of Frequency-Selective Surfaces Comprised of Spiral Resonators, ” IEEE Transactions on Antennas and Propagation, Vol. 55, No. 9, pp. 376-378, 2007. [53] American Polarizer, Inc. http://www.apioptics.com/index.htm [54] Shen-Yu Hsu, Kuang-Li Lee, En-Hong Lin, Ming-Chang Lee, and Pei-Kuen Wei, “ Giant birefringence induced by plasmonic nanoslit arrays, ” Applied Physics Letters, 95, 013105, 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43375 | - |
dc.description.abstract | 頻率選擇面之二維週期結構決定了其濾波特性,經由適當設計,可以使其具有雙折射晶體之特性,除了受到材料以及厚度之限制相對較小,其設計之自由度也相對較高。頻率選擇面元件係由次波長金屬光柵所構成,可直接整合至發光元件電極之製程中,並能增加發光元件效率。本篇論文旨在設計出一在可見光操作範圍內具有相位延遲片特性之金屬光柵,主要方法係利用電磁模擬方式分析金屬光柵圖形變化對其相位延遲之影響,針對微波頻段上被廣泛使用作為圓偏振片使用之蜿蜒線(meander-line)圖形,將其分為L、C、長方環作討論,然金屬在可見光波段會有色散影響,故操作頻率之改變以及幾何圖形調整並非呈現線性關係,在設計方法修正下,蜿蜒線圖形在波長為496 nm下,其場強比可達1.037,相位差為0.4745π,而L與C圖形在波長等於734 nm以及660 nm下,也可達到場強比為1,相位差分別為0.4989π以及0.434π。除蜿蜒線外,對於具有極化旋轉特性之螺旋環圖形也作一分析討論,在模擬結果中可發現螺旋環圖形之兩特徵入射偏振角度,對於不同入射偏振角度,此一螺旋圖形可產生橢圓偏振、圓偏振以及線性偏振狀態,並可產生最大值可達45度之極化旋轉角度。 | zh_TW |
dc.description.abstract | In general, FSSs comprise of periodically arranged metallic patch elements or aperture elements within a metallic screen. By adjusting the period and the other geometric parameters of the metallic pattern, it can form birefringence and be used as a quarter wave plate (QWP). Compared to the traditional QWP which is made of the birefringence crystal, FSSs are not limited by the material and thickness.
We propose a FSS, which consists of a sub-wavelength metallic grating, to act as a QWP. And the operation frequency is set in the visible region. The pattern we used is the meander-line (MNDL) pattern which can be decomposed into L, C and O elements. In addition to the meander-line, we also use the spiral pattern, which consists of semicircles. The design approach is using the electromagnetic simulation software, CST microwave studio, to analyze the effect of adjusting the structure and the pattern of the metallic array. First, we suppose the metallic grating as a perfect electric conductor (PEC) and design it to satisfy the criterion of QWP. Second, the dispersion relation of metallic material is added for the real situation and we modify the metallic grating by the rules derived under the PEC condition. Third, we use the cascade structure to improve the performance of the grating. The results show that the ratio of the electric field (Ay/Ax) of L and C pattern grating can attend to 1, and the phase difference are 0.4989π and 0.434π at 734nm and 660nm, respectively. When we use MNDL grating, the ratio (Ay/Ax) and phase difference are 1.037 and 0.4745π at 496nm. Different from the grating we mention above, the spiral pattern grating can produce linear, ellipse and circular polarization states by using different incident azimuth angles. The spiral pattern grating is not only used as a QWP but also used as a polarization rotator, and the maximum rotation angle can be 45°. The operation frequency is determined by total length of the spiral. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:52:49Z (GMT). No. of bitstreams: 1 ntu-100-R98941022-1.pdf: 7214240 bytes, checksum: b656b7afe91d8aea1bce8df13e040ff2 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS v 圖目錄 vii 表目錄 xv Chapter 1 緒論 1 1.1 立體顯示器原理 1 1.2 光之偏振狀態 3 1.3 相位延遲片 6 1.4 頻率選擇面 7 1.5 等效電路分析法 8 1.6 金屬色散關係 10 1.7 模擬軟體 13 1.8 本文架構 16 Chapter 2 分析方法與範例 17 2.1 光之偏振狀態 17 2.2 等效電路模型分析設計 20 2.2.1 假設 20 2.2.2 等效電路模型 20 2.2.3 範例說明:正方環狀圖形 23 Chapter 3 次波長金屬圖案光柵設計 28 3.1 帶狀結構 29 3.2 L圖形 33 3.3 C圖形 39 3.4 方形環 47 3.5 蜿蜒線 52 3.6 螺旋環 60 3.7 小結 68 Chapter 4 次波長金屬光柵模擬分析 70 4.1 L與C圖形 70 4.2 蜿蜒線 77 4.3 螺旋環 83 Chapter 5 結論 89 Chapter 6 未來展望 92 參考文獻 93 附錄一 波片(板) 98 附錄二 等效電路模型(L圖形) 99 附錄三 傳輸矩陣用於多層結構分析 101 附錄四 符號與縮寫對照 103 | |
dc.language.iso | zh-TW | |
dc.title | 次波長金屬光柵應用於相位延遲 | zh_TW |
dc.title | Sub-Wavelength Metallic Grating for Phase Retardation | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭瑞清,黃鼎偉 | |
dc.subject.keyword | 次波長,頻率選擇面,金屬光柵,相位延遲片, | zh_TW |
dc.subject.keyword | sub-wavelength,frequency selective surfaces,metallic grating,phase retarder, | en |
dc.relation.page | 103 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-15 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 7.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。