Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43367
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林祥泰
dc.contributor.authorMeng-Ting Hsiehen
dc.contributor.author謝孟廷zh_TW
dc.date.accessioned2021-06-15T01:52:18Z-
dc.date.available2009-07-14
dc.date.copyright2009-07-14
dc.date.issued2009
dc.date.submitted2009-07-02
dc.identifier.citation1. Pitzer, K.S. and J.J. Kim, Thermodynamics of electrolytes .4. activity and osmotic coefficients for mixed electrolytes. Journal of the American Chemical Society, 1974. 96(18): p. 5701-5707.
2. Haghtalab, A. and J.H. Vera, An empirical mixing rule for estimating mean ionic activity-coefficients in multielectrolyte solutions from binary data only. Canadian Journal of Chemical Engineering, 1992. 70(3): p. 574-579.
3. Cohen-Adad, R., et al., Modelling of multicomponent salt systems - Application to sea water and brines - I. Derivation of the model. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 1997. 21(4): p. 521-534.
4. Song, P.S. and Y. Yan, Thermodynamics and phase diagram of the Salt Lake Brine System at 25 degrees C - I. Li+, K+, Mg2+/Cl-, SiO42-, -H2O system. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2001. 25(3): p. 329-341.
5. Beutier, D. and H. Renon, Representation of NH3-H2S-H2O, NH3-CO2-H2O, and NH3-SO2-H2O vapor-liquid-equilibria. Industrial & Engineering Chemistry Process Design and Development, 1978. 17(3): p. 220-230.
6. Furst, W. and H. Renon, effect of the various parameters in the application of pitzers model to solid-liquid equilibrium - preliminary-study for strong 1-1 electrolytes. Industrial & Engineering Chemistry Process Design and Development, 1982. 21(3): p. 396-400.
7. Chen, C.C. and L.B. Evans, A local composition model for the excess gibbs energy of aqueous-electrolyte systems. Aiche Journal, 1986. 32(3): p. 444-454.
8. Austgen, D.M., et al., Model of vapor liquid equilibria for aqueous acid gas alkanolamine systems using the electrolyte nrtl equation. Industrial & Engineering Chemistry Research, 1989. 28(7): p. 1060-1073.
9. Bollas, G.M., C.C. Chen, and P.I. Barton, Refined electrolyte-NRTL model: Activity coefficient expressions for application to multi-electrolyte systems. Aiche Journal, 2008. 54(6): p. 1608-1624.
10. Madeira, P.P., et al., Prediction of protein partition in polymer/salt aqueous two-phase systems using the modified Wilson model. Biochemical Engineering Journal, 2005. 24(2): p. 147-155.
11. Chen, C.C., et al., A molecular thermodynamic approach to predict the secondary structure of homopolypeptides in aqueous systems. Biopolymers, 1992. 32(10): p. 1375-1392.
12. Nonner, W., L. Catacuzzeno, and B. Eisenberg, Binding and selectivity in L-type calcium channels: A mean spherical approximation. Biophysical Journal, 2000. 79(4): p. 1976-1992.
13. Debye, P. and E. Huckel, The theory of electrolytes I. The lowering of the freezing point and related occurrences. Physikalische Zeitschrift, 1923. 24: p. 185-206.
14. Bjerrum, N., Ionic association. I. Influence of ionic association on the activity of ions at moderate degrees of association. Kgl. Danske Videnskab. Selskab, 1926. 7(9): p. 1-48.
15. Fuoss, R.M., Ionic association .3. the equilibrium between ion pairs and free ions. Journal of the American Chemical Society, 1958. 80(19): p. 5059-5061.
16. Justice, M.C. and J.C. Justice, Ionic interactions in solutions .1. association concepts and mcmillan-mayer theory. Journal of Solution Chemistry, 1976. 5(8): p. 543-561.
17. Krienke, H. and J. Barthel, MSA models of ion association in electrolyte solutions. Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 1998. 204: p. 71-83.
18. Bonsen, A., et al., Ultrasonic relaxation studies in aqueous-solutions of aluminum sulfate and scandium sulfate. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, 1978. 82(7): p. 678-683.
19. Buchner, R., T. Chen, and G. Hefter, Complexity in 'simple' electrolyte solutions: Ion pairing in MgSO4(aq). Journal of Physical Chemistry B, 2004. 108(7): p. 2365-2375.
20. Buchner, R., G.T. Hefter, and J. Barthel, Dielectric-relaxation of aqueous naf and kf solutions. Journal of the Chemical Society-Faraday Transactions, 1994. 90(17): p. 2475-2479.
21. Buchner, R., et al., Hydration and ion pairing in aqueous sodium oxalate solutions. Chemphyschem, 2003. 4(4): p. 373-378.
22. Mancinelli, R., et al., Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. Journal of Physical Chemistry B, 2007. 111(48): p. 13570-13577.
23. Novikov, A.G., et al., The study of hydration effects in aqueous solutions of LiCl and CsCl by inelastic neutron scattering. Journal of Molecular Liquids, 1999. 82(1-2): p. 83-104.
24. Vinogradov, E.V., P.R. Smirnov, and V.N. Trostin, Structure of hydrated complexes formed by metal ions of Groups I-III of the Periodic Table in aqueous electrolyte solutions under ambient conditions. Russian Chemical Bulletin, 2003. 52(6): p. 1253-1271.
25. Kameda, Y., et al., Hydration structure of scn- in concentrated aqueous sodium thiocyanate solutions. Bulletin of the Chemical Society of Japan, 1994. 67(4): p. 956-963.
26. Seward, T.M., et al., An EXAFS study of solvation and ion pairing in aqueous strontium solutions to 300℃. Geochimica et Cosmochimica Acta, 1999. 63(16): p. 2409-2418.
27. Tongraar, A., K.R. Liedl, and B.M. Rode, The hydration shell structure of Li+ investigated by Born-Oppenheimer ab initio QM/MM dynamics. Chemical Physics Letters, 1998. 286(1-2): p. 56-64.
28. White, J.A., et al., The solvation of Na[sup + ] in water: First-principles simulations. The Journal of Chemical Physics, 2000. 113(11): p. 4668-4673.
29. Rasaiah, J.C. and R.M. Lynden-Bell, Computer simulation studies of the structure and dynamics of ions and non-polar solutes in water. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 2001. 359(1785): p. 1545-1574.
30. Loeffler, H.H. and B.M. Rode, The hydration structure of the lithium ion. The Journal of Chemical Physics, 2002. 117(1): p. 110-117.
31. Du, H., J.C. Rasaiah, and J.D. Miller, Structural and dynamic properties of concentrated alkali halide solutions: A molecular dynamics simulation study. Journal of Physical Chemistry B, 2007. 111(1): p. 209-217.
32. Pitzer, K.S., Thermodynamics of electrolytes .1. theoretical basis and general equations. Journal of Physical Chemistry, 1973. 77(2): p. 268-277.
33. Cruz, J.L. and H. Renon, New thermodynamic representation of binary electrolyte-solutions non-ideality in whole range of concentrations. Aiche Journal, 1978. 24(5): p. 817-830.
34. Chen, C.C., et al., Local composition model for excess gibbs energy of electrolyte systems .1. single solvent, single completely dissociated electrolyte systems. Aiche Journal, 1982. 28(4): p. 588-596.
35. Haghtalab, A. and J.H. Vera, A nonrandom factor model for the excess gibbs energy of electrolyte-solutions. Aiche Journal, 1988. 34(5): p. 803-813.
36. Simonin, J.P., L. Blum, and P. Turq, Real ionic solutions in the mean spherical approximation .1. Simple salts in the primitive model. Journal of Physical Chemistry, 1996. 100(18): p. 7704-7709.
37. Lin, C.L., H.C. Tseng, and L.S. Lee, A three-characteristic-parameter correlation model for strong electrolyte solutions. Fluid Phase Equilibria, 1998. 152(2): p. 169-185.
38. Yan, W.D., et al., Prediction of vapor-liquid equilibria in mixed-solvent electrolyte systems using the group contribution concept. Fluid Phase Equilibria, 1999. 162(1-2): p. 97-113.
39. Lin, C.L. and L.S. Lee, A two-ionic-parameter approach for ion activity coefficients of aqueous electrolyte solutions. Fluid Phase Equilibria, 2003. 205(1): p. 69-88.
40. Chang, E.I. and J.F. Pankow, Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water - Part 2: Consideration of phase separation effects by an X-UNIFAC model. Atmospheric Environment, 2006. 40(33): p. 6422-6436.
41. Moggia, E. and B. Bianco, Mean activity coefficient of electrolyte solutions. Journal of Physical Chemistry B, 2007. 111(12): p. 3183-3191.
42. Mortazavi-Manesh, S., V. Taghikhani, and C. Ghotbi, A new model in correlating the activity coefficients of aqueous electrolyte solutions with ion pair formation. Fluid Phase Equilibria, 2007. 261(1-2): p. 313-319.
43. Lee, L.S., S.L. Sun, and C.L. Lin, Predictions of thermodynamic properties of aqueous single-electrolyte solutions with the two-ionic-parameter activity coefficient model. Fluid Phase Equilibria, 2008. 264(1-2): p. 45-54.
44. Jin, G. and M.D. Donohue, AN EQUATION OF STATE FOR ELECTROLYTE-SOLUTIONS .1. Aqueous systems containing strong electrolytes. Industrial & Engineering Chemistry Research, 1988. 27(6): p. 1073-1084.
45. Jin, G. and M.D. Donohue, AN EQUATION OF STATE FOR ELECTROLYTE-SOLUTIONS .2. Single volatile weak electrolytes in water. Industrial & Engineering Chemistry Research, 1988. 27(9): p. 1737-1743.
46. Furst, W. and H. Renon, Representation of excess properties of electrolyte-solutions using a new equation of state. Aiche Journal, 1993. 39(2): p. 335-343.
47. Fu, Y.H. and S.I. Sandler, A simplified saft equation of state for associating compounds and mixtures. Industrial & Engineering Chemistry Research, 1995. 34(5): p. 1897-1909.
48. Wu, J.H., J.F. Lu, and Y.G. Li, Application of the new perturbation method to predict densities of single electrolyte aqueous-solutions. Fluid Phase Equilibria, 1995. 107(1): p. 45-59.
49. Wu, J.Z. and J.M. Prausnitz, Phase equilibria for systems containing hydrocarbons, water, and salt: An extended Peng-Robinson equation of state. Industrial & Engineering Chemistry Research, 1998. 37(5): p. 1634-1643.
50. Myers, J.A., S.I. Sandler, and R.H. Wood, An equation of state for electrolyte solutions covering wide ranges of temperature, pressure, and composition. Industrial & Engineering Chemistry Research, 2002. 41(13): p. 3282-3297.
51. Lin, Y., K. Thomsen, and J.C. de Hemptinne, Multicomponent equations of state for electrolytes. Aiche Journal, 2007. 53(4): p. 989-1005.
52. Liu, Y., et al., Modeling of aqueous electrolyte solutions based on primitive and first-order mean spherical approximation. Industrial & Engineering Chemistry Research, 2008. 47(5): p. 1695-1701.
53. Peng, D.Y. and D.B. Robinson, A new two-constant equation of state. Industrial and Engineering Chemistry Fundamentals, 1976. 15(1): p. 59-64.
54. Soave, G., Equilibrium constants from a modified redlich-kwong equation of state. Chemical Engineering Science, 1972. 27(6): p. 1197-&.
55. Chapman, W.G., et al., SAFT - equation-of-state solution model for associating fluids. Fluid Phase Equilibria, 1989. 52: p. 31-38.
56. Renon, H. and Prausnit.Jm, Local compositions in thermodynamic excess functions for liquid mixtures. Aiche Journal, 1968. 14(1): p. 135-&.
57. Abrams, D.S. and J.M. Prausnitz, Statistical thermodynamics of liquid-mixtures - new expression for excess gibbs energy of partly or completely miscible systems. Aiche Journal, 1975. 21(1): p. 116-128.
58. Fredenslund, A., et al., Computerized design of multicomponent distillation-columns using unifac group contribution method for calculation of activity-coefficients. Industrial & Engineering Chemistry Process Design and Development, 1977. 16(4): p. 450-462.
59. Kiepe, J., O. Noll, and J. Gmehling, Modified LIQUAC and modified LIFAC - A further development of electrolyte models for the reliable prediction of phase equilibria with strong electrolytes. Industrial & Engineering Chemistry Research, 2006. 45(7): p. 2361-2373.
60. Lebowitz, J.L. and J.K. Percus, Mean spherical model for lattice gases with extended hard cores and continuum fluids. Physical Review, 1966. 144(1): p. 251-&.
61. McQuarrie, D.A., Statistical mechanics. 2000, Sausalito, Calif.: University Science Books.
62. Pitzer, K.S. and G. Mayorga, Thermodynamics of electrolytes .2. activity and osmotic coefficients for strong electrolytes with one or both ions univalent. Journal of Physical Chemistry, 1973. 77(19): p. 2300-2308.
63. Pitzer, K.S. and L.F. Silvester, Thermodynamics of electrolytes .6. weak electrolytes including H3PO4. Journal of Solution Chemistry, 1976. 5(4): p. 269-278.
64. Pitzer, K.S., R.N. Roy, and L.F. Silvester, Thermodynamics of electrolytes .7. sulfuric-acid. Journal of the American Chemical Society, 1977. 99(15): p. 4930-4936.
65. Pitzer, K.S., J.R. Peterson, and L.F. Silvester, Thermodynamics of electrolytes .9. rare-earth chlorides, nitrates, and perchlorates. Journal of Solution Chemistry, 1978. 7(1): p. 45-56.
66. Chen, C.C., P.M. Mathias, and H. Orbey, Use of hydration and dissociation chemistries with the electrolyte-NRTL model. Aiche Journal, 1999. 45(7): p. 1576-1586.
67. Chen, C.C., C.P. Bokis, and P. Mathias, Segment-based excess Gibbs energy model for aqueous organic electrolytes. Aiche Journal, 2001. 47(11): p. 2593-2602.
68. Ghotbi, C. and J.H. Vera. Extension to mixtures of two robust hard-sphere equations of state satisfying the ordered close-packed limit. 2001: Canadian Soc Chemical Engineering.
69. Hsieh, C.M. and S.T. Lin, Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations. Aiche Journal, 2008. 54(8): p. 2174-2181.
70. Hsieh, C.M. and S.T. Lin, First-Principles Predictions of Vapor-Liquid Equilibria for Pure and Mixture Fluids from the Combined Use of Cubic Equations of State and Solvation Calculations. Industrial & Engineering Chemistry Research, 2009. 48(6): p. 3197-3205.
71. Lee, M.T. and S.T. Lin, Prediction of mixture vapor-liquid equilibrium from the combined use of Peng-Robinson equation of state and COSMO-SAC activity coefficient model through the Wong-Sandler mixing rule. Fluid Phase Equilibria, 2007. 254(1-2): p. 28-34.
72. Nobre, B.P., et al., Calculation of Solubilities for Systems Containing Multiple Non-Volatile Solutes and Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2009. 48(3): p. 1551-1555.
73. Nichita, D.V., A new method for critical points calculation from cubic EOS. Aiche Journal, 2006. 52(3): p. 1220-1227.
74. Born, M., Volumes and hydration warmth of ions. Zeitschrift Fur Physik, 1920. 1: p. 45-48.
75. Harvey, A.H., T.W. Copeman, and J.M. Prausnitz, Explicit approximations to the mean spherical approximation for electrolyte systems with unequal ion sizes. Journal of Physical Chemistry, 1988. 92(22): p. 6432-6436.
76. Zhao, H.G., M.C. dos Ramos, and C. McCabe, Development of an equation of state for electrolyte solutions by combining the statistical associating fluid theory and the mean spherical approximation for the nonprimitive model. Journal of Chemical Physics, 2007. 126(24): p. 14.
77. Kim, Y.S. and C.S. Lee, An electrolyte equation of state based on a hydrogen-bonding nonrandom lattice fluid model for concentrated electrolyte solutions. Industrial & Engineering Chemistry Research, 2008. 47(15): p. 5102-5111.
78. Pitzer, K.S., Electrolytes - from dilute-solutions to fused-salts. Journal of the American Chemical Society, 1980. 102(9): p. 2902-2906.
79. Novotny, P. and O. Sohnel, Densities of binary aqueous-solutions of 306 inorganic substances. Journal of Chemical and Engineering Data, 1988. 33(1): p. 49-55.
80. Bradley, D.J. and K.S. Pitzer, Thermodynamics of electrolytes .12. dielectric properties of water and debye-huckel parameters to 350-degrees-C and 1-kbar. Journal of Physical Chemistry, 1979. 83(12): p. 1599-1603.
81. Chen, C.C. and Y.H. Song, Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems. Aiche Journal, 2004. 50(8): p. 1928-1941.
82. Lin, S.T. and S.I. Sandler, A priori phase equilibrium prediction from a segment contribution solvation model. Industrial & Engineering Chemistry Research, 2002. 41(5): p. 899-913.
83. Staverman, A.J., The entropy of high polymer solutions - generalization of formulae. Recueil Des Travaux Chimiques Des Pays-Bas-Journal of the Royal Netherlands Chemical Society, 1950. 69(2): p. 163-174.
84. Guggenheim, E.A., Mixtures. 1952, Oxford, U.K.: Clarendon Press.
85. Marcus, Y., Ionic-radii in aqueous-solutions. Chemical Reviews, 1988. 88(8): p. 1475-1498.
86. Satheesan Babu, C. and C. Lim, A new interpretation of the effective Born radius from simulation and experiment. Chemical Physics Letters, 1999. 310(1-2): p. 225-228.
87. Dmol3 and Cerius2. 1999, Molecular Simulations Inc.: San Diego.
88. Lin, S.T. and C.M. Hsieh, Efficient and accurate solvation energy calculation from polarizable continuum models. Journal of Chemical Physics, 2006. 125(12): p. 10.
89. Held, C., L.F. Cameretti, and G. Sadowski, Modeling aqueous electrolyte solutions - Part 1. Fully dissociated electrolytes. Fluid Phase Equilibria, 2008. 270(1-2): p. 87-96.
90. Robinson, R.A. and R.H. Stokes, eds. Electrolyte Solutions, 2nd ed. 1970, Butter-worth: Oxford, U.K.
91. Lobo, V.M.M. and J.L. Quaresma, Handbook of Electrolyte Solutions, Parts A and B. 1989, Amsterdam: Elsevier.
92. Robinson, R.A. and H.S. Harned, Some aspects of the thermodynamics of strong electrolytes from electromotive force and vapor pressure measurements. Chemical Reviews, 1941. 28(3): p. 419-476.
93. Diamond, R.M., The activity coefficients of strong electrolytes - the halide salts. Journal of the American Chemical Society, 1958. 80(18): p. 4808-4812.
94. Papaiconomou, N., et al., Description of vapor-liquid equilibria for CO2 in electrolyte solutions using the mean spherical approximation. Journal of Physical Chemistry B, 2003. 107(24): p. 5948-5957.
95. Simonin, J.P., et al., Description of dilution enthalpies and heat capacities for aqueous solutions within the MSA-NRTL model with ion solvation. Fluid Phase Equilibria, 2008. 264(1-2): p. 211-219.
96. Zaytsev, I.D. and G.G. Aseyev, eds. Properties of aqueous solutions of electrolytes. 1992: Boca Raton.
97. Patil, K.R., et al., Thermodynamic properties of aqueous electrolyte solutions. 2. Vapor Pressure of Aqueous Solutions of NaBr, NaI, KCl, KBr, KI, RbCl, CsCl, CsBr, CsI, MgCl2, CaCl2, CaBr2, CaI2, SrCl2, SrBr2, SrI2, BaCl2, and BaBr2. Journal of Chemical and Engineering Data, 1991. 36(2): p. 225-230.
98. Covingto.Ak, T.H. Lilley, and R.A. Robinson, Excess free energies of aqueous mixtures of some alkali metal halide salt pairs. Journal of Physical Chemistry, 1968. 72(8): p. 2759-&.
99. Robinson, R.A., The osmotic properties of aqueous caesium chloride+potassium chloride and caesium chloride+lithium chloride mixtures at 25-degrees-C. Transactions of the Faraday Society, 1953. 49(10): p. 1147-1149.
100. Robinson, R.A., The osmotic properties of aqueous sodium chloride cesium chloride mixtures at 25-degrees. Journal of the American Chemical Society, 1952. 74(23): p. 6035-6036.
101. Malahias, L. and O. Popovych, Activity-coefficients and transfer free-energies of kcl in methanol-water solvents at 25-degrees-C. Journal of Chemical and Engineering Data, 1982. 27(2): p. 105-109.
102. Esteso, M.A., et al., Activity-coefficients for nacl in ethanol-water mixtures at 25-degrees-C. Journal of Solution Chemistry, 1989. 18(3): p. 277-288.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43367-
dc.description.abstract在本研究當中,吾等藉由結合Pitzer-Debye-Huckel模型和COSMO-SAC模型發展出一具有預測性的活性係數模型。此模型成功地預測了許多電解質水溶液之離子活性係數、滲透係數以及蒸氣壓。
在交互作用力的描述上,首先將電解質溶液中之物質分為四大類:單原子離子、離子團、可形成氫鍵類和非氫鍵類。再分別以Pitzer-Debye-Huckel模型和COSMO-SAC模型針對長距離和短距離之作用力做描述。
本模型之特色在於不需任何的交互作用參數。此外,除了離子半徑之外,亦不需要任何針對不同物質的特性參數。所有的交互作用力以十三個通用參數來描述,如此一來,對其預測能力有很大的提升。
利用此模型,吾等以三大類的電解質系統來檢測其預測能力,分別為單一鹽類之水溶液(100個系統於25℃,32個系統於不同溫度狀態)、多種鹽類之水溶液 (8個系統)以及單一鹽類之醇-水混和溶液(2個系統)。結果呈現出此模型對於完全解離之電解質溶液有最佳的預測能力而針對第一類之100個常溫下的系統,其預測之結果(%ARD=9.76)和一以PC-SAFT為基礎之文獻(%ARD=9.12)有相近的準確性。
zh_TW
dc.description.abstractIn this work, we show that the mean activity coefficient, osmotic coefficient and vapor pressure of aqueous electrolyte solutions can be successfully predicted through combining the Pitzer-Debye-Huckel model for long range interactions and the COSMO-SAC model for short range interactions. The interactions between different types of species, including ions, ionic groups, hydrogen bonding, and non hydrogen bonding, are considered explicitly (with 13 universal parameters). This approach does not require any ion-solvent pair interaction parameters and does not contain any ion specific parameter other than the ion radius.
We have examined this method for three types of systems, including a single salt in water (100 electrolyte systems at 298.15K and 32 electrolyte systems at different temperature), mixture salts in water (8 electrolyte systems), and a single salt in solvent mixture containing water and alcohols (2 electrolyte systems). The predicted result from this method (deviation for 100 electrolyte systems at 298.15K, %ARD = 9.76) presents a similar accuracy as a recent work based on SAFT (%ARD = 9.12) and is suitable for completely dissociated electrolyte solutions.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:52:18Z (GMT). No. of bitstreams: 1
ntu-R96524092-1.pdf: 698093 bytes, checksum: 7d8e85ba3e5896cf374077f0dae319dc (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
Abstract III
摘要 IV
目錄 V
Index of Tables VI
Index of Figures VII
1. Introduction 1
1.1 The importance of electrolyte solutions 1
1.2 The prediction models for electrolyte solutions 3
1.3 Activity coefficient model 5
1.4 Electrolyte equation of state 9
1.5 Motivation and object 11
2. Theory 13
2.1 Pitzer-Debye-Huckel theory 13
2.2 COSMOSAC model 16
3. Computation details 17
3.1 Radius for ionic species 19
3.2 Quantum mechanical part 21
3.3 The COSMO-SAC model 23
3.4 Major properties calculation 27
3.5 Optimization of model parameter 29
4. Results and discussions 31
4.1 Single salt, single solvent 31
4.2 Mixed salts, single solvent 56
4.3 Single salt, mixed solvents 60
5. Conclusions 64
Reference 65
dc.language.isoen
dc.subjectCOSMO-SACzh_TW
dc.subject電解質zh_TW
dc.subject離子活性係數zh_TW
dc.subject滲透係數zh_TW
dc.subjectPitzer-Debye-H&uumlzh_TW
dc.subjectckelzh_TW
dc.subjectPitzer-Debye-H&uumlen
dc.subjectCOSMO-SACen
dc.subjectckelen
dc.subjectelectrolyteen
dc.subjectmean activity coefficienten
dc.subjectosmotic coefficienten
dc.title以Pitzer電解質溶液模型結合COSMO-SAC模型預測電解質溶液之熱力學性質zh_TW
dc.titlePrediction of Thermodynamics Properties of Fully Dissociated Aqueous Electrolyte Solutions from a New Activity Coefficient Modelen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳延平,諶玉真
dc.subject.keyword電解質,離子活性係數,滲透係數,Pitzer-Debye-H&uuml,ckel,COSMO-SAC,zh_TW
dc.subject.keywordelectrolyte,mean activity coefficient,osmotic coefficient,Pitzer-Debye-H&uuml,ckel,COSMO-SAC,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2009-07-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-R96524092-1.pdf
  未授權公開取用
681.73 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved