Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43363
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林祥泰
dc.contributor.authorChun-Chieh Shuen
dc.contributor.author疏俊傑zh_TW
dc.date.accessioned2021-06-15T01:52:04Z-
dc.date.available2009-07-14
dc.date.copyright2009-07-14
dc.date.issued2009
dc.date.submitted2009-07-02
dc.identifier.citation1. Kokitkar, P.B. and E. Plocharczyk, Modeling drug molecule solubility to identify optimal solvent systems for crystallization. Organic Process Research & Development, 2008. 12(2): p. 249-256.
2. Modarresi, H., et al., Model-based calculation of solid solubility for solvent selection - A review. Industrial & Engineering Chemistry Research, 2008. 47(15): p. 5234-5242.
3. Jouyban, A., Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. Journal of Pharmacy and Pharmaceutical Sciences, 2008. 11(1): p. 32-57.
4. Fredenslund, A., R.L. Jones, and J.M. Prausnitz, Group-contribution estimation of activity-coefficients in nonideal liquid-mixtures. Aiche Journal, 1975. 21(6): p. 1086-1099.
5. Renon, H. and Prausnit.Jm, Local compositions in thermodynamic excess functions for liquid mixtures. Aiche Journal, 1968. 14(1): p. 135-&.
6. Chen, C.C. and P.A. Crafts, Correlation and prediction of drug molecule solubility in mixed solvent systems with the Nonrandom Two-Liquid Segment Activity Coefficient (NRTL-SAC) model. Industrial & Engineering Chemistry Research, 2006. 45(13): p. 4816-4824.
7. Chen, C.C. and Y.H. Song, Solubility modeling with a nonrandom two-liquid segment activity coefficient model. Industrial & Engineering Chemistry Research, 2004. 43(26): p. 8354-8362.
8. Klamt, A., Conductor-like screening model for real solvents - a new approach to the quantitative calculation of solvation phenomena. Journal of Physical Chemistry, 1995. 99(7): p. 2224-2235.
9. Ikeda, H., et al., Prediction of solubility of drugs by conductor-like screening model for real solvents. Chemical & Pharmaceutical Bulletin, 2005. 53(2): p. 253-255.
10. Lin, S.T. and S.I. Sandler, A priori phase equilibrium prediction from a segment contribution solvation model. Industrial & Engineering Chemistry Research, 2002. 41(5): p. 899-913.
11. Lin, S.T., et al., Prediction of vapor pressures and enthalpies of vaporization using a COSMO solvation model. Journal of Physical Chemistry A, 2004. 108(36): p. 7429-7439.
12. Ran, Y.Q. and S.H. Yalkowsky, Prediction of drug solubility by the general solubility equation (GSE). Journal of Chemical Information and Computer Sciences, 2001. 41(2): p. 354-357.
13. Ran, Y.Q., N. Jain, and S.H. Yalkowsky, Prediction of aqueous solubility of organic compounds by the general solubility equation (GSE). Journal of Chemical Information and Computer Sciences, 2001. 41(5): p. 1208-1217.
14. Jouyban, A. and W.E. Acree, In silico prediction of drug solubility in water-ethanol mixtures using Jouyban-Acree model. Journal of Pharmacy and Pharmaceutical Sciences, 2006. 9(2): p. 262-269.
15. Yalkowsky, S., Roseman, T. Yalkowsky, S. (Ed.), Solubilization of drugs by cosolvents. 1981, New York: Marcel Dekker.
16. Rytting, E., et al., A quantitative structure-property relationship for predicting drug solubility in PEG 400/water cosolvent systems. Pharmaceutical Research, 2004. 21(2): p. 237-244.
17. Jouyban, A., et al., Modeling drug solubility in water-cosolvent mixtures using an artificial neural network. Farmaco (Lausanne), 2004. 59(6): p. 505-512.
18. Prausnitz, J.M., R.N. Lichtenthaler, and E.G.d. Azevedo, Molecular thermodynamics of fluid-phase equilibria, 3rd ed. Prentice Hall. 1999, New Jersey.
19. Hojjati, H. and S. Rohani, Measurement and prediction of solubility of paracetamol in water-isopropanol solution. Part 2. Prediction. Organic Process Research & Development, 2006. 10(6): p. 1110-1118.
20. Chickos, J.S. and W.E. Acree, Estimating solid-liquid phase change enthalpies and entropies. Journal of Physical and Chemical Reference Data, 1999. 28(6): p. 1535-1673.
21. Chickos, J.S. and W.E. Acree, Total phase change entropies and enthalpies - An update on their estimation and applications to the estimations of amphiphillic fluorocarbon-hydrocarbon molecules. Thermochimica Acta, 2003. 395(1-2): p. 59-113.
22. Eckert, F. and A. Klamt, Fast solvent screening via quantum chemistry: COSMO-RS approach. Aiche Journal, 2002. 48(2): p. 369-385.
23. Lin, S.T., C.M. Hsieh, and M.T. Lee, Solvation and chemical engineering thermodynamics. Journal of the Chinese Institute of Chemical Engineers, 2007. 38(5-6): p. 467-476.
24. Graczova, E., J. Surovy, and S. Bafrncova, Ternary corrections in the liquid liquid equilibria computation for 3-component systems containing components of mixed-solvent n-methylpyrrolidone ethylene-glycol. Collection of Czechoslovak Chemical Communications, 1992. 57(1): p. 7-15.
25. Hsieh, C.M. and S.T. Lin, Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations. Aiche Journal, 2008. 54(8): p. 2174-2181.
26. Hsieh, C.M. and S.T. Lin, First-principles predictions of vapor-liquid equilibria for pure and mixture fluids from the combined use of cubic equations of state and solvation Calculations. Industrial & Engineering Chemistry Research, 2009. 48(6): p. 3197-3205.
27. Peng, D. and D.B. Robinson, New 2-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 1976. 15(1): p. 59-64.
28. Cerius2, DMol3. 2003, Accelrys Inc.: San Diego.
29. Mullins, E., et al., Sigma-profile database for using COSMO-based thermodynamic methods. Industrial & Engineering Chemistry Research, 2006. 45(12): p. 4389-4415.
30. Mullins, E., et al., Sigma profile database for predicting solid solubility in pure and mixed solvent mixtures for organic pharmacological compounds with COSMO-based thermodynamic methods. Industrial & Engineering Chemistry Research, 2008. 47(5): p. 1707-1725.
31. Bustamante, P., et al., Enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide, and nalidixic acid in dioxane-water. Journal of Pharmaceutical Sciences, 1998. 87(12): p. 1590-1596.
32. McCargar, J.W. and W.E. Acree, Thermochemical investigations of associated solutions .4. calculation of carbazole-dibutyl ether association constants from measured solubility in binary solvent mixtures. Journal of Pharmaceutical Sciences, 1987. 76(7): p. 572-574.
33. Acree, W.E. and J.H. Rytting, Solubility in binary solvent systems .3. predictive expressions based on molecular-surface areas. Journal of Pharmaceutical Sciences, 1983. 72(3): p. 292-296.
34. Acree, W.E. and J.H. Rytting, Solubility in binary solvent systems .1. specific versus nonspecific interactions. Journal of Pharmaceutical Sciences, 1982. 71(2): p. 201-205.
35. Acree, W.E. and G.L. Bertrand, Thermochemical investigations of nearly ideal binary solvents .7. monomer and dimer models for solubility of benzoic-acid in simple binary and ternary solvents. Journal of Pharmaceutical Sciences, 1981. 70(9): p. 1033-1036.
36. Rubino, J.T. and E.K. Obeng, Influence of solute structure on deviations from the log linear solubility equation in propylene-glycol - water mixtures. Journal of Pharmaceutical Sciences, 1991. 80(5): p. 479-483.
37. Adjei, A., J. Newburger, and A. Martin, Extended hildebrand approach - solubility of caffeine in dioxane-water mixtures. Journal of Pharmaceutical Sciences, 1980. 69(6): p. 659-661.
38. Acree, W.E., et al., Mathematical representation of thermodynamic properties - carbazole solubilities in binary alkane + dibutyl ether and alkane + tetrahydropyran solvent mixtures. Physics and Chemistry of Liquids, 1991. 23(1): p. 27-35.
39. McCargar, J.W. and W.E. Acree, Solubility of carbazole in binary chloralkane + dibutyl ether solvent mixtures. Journal of Solution Chemistry, 1989. 18(2): p. 151-158.
40. McCargar, J.W. and W.E. Acree, Thermochemical investigations of associated solutions .3. effect of the inert cosolvent on solute solvent association constants calculated from solubility measurements. Physics and Chemistry of Liquids, 1987. 17(2): p. 123-138.
41. Acree, W.E. and J.W. McCargar, Thermochemical investigations of associated solutions .5. calculation of solute-solvent equilibrium-constants from solubility in mixtures containing 2 complexing solvents. Journal of Pharmaceutical Sciences, 1987. 76(7): p. 575-579.
42. Manzo, R.H. and A.A. Ahumada, Effects of solvent medium on solubility .5. enthalpic and entropic contributions to the free-energy changes of disubstituted benzene-derivatives in ethanol water and ethanol cyclohexane mixtures. Journal of Pharmaceutical Sciences, 1990. 79(12): p. 1109-1115.
43. Acree, W.E., Thermochemical investigations of associated solutions .2. calculation of iodine benzene equilibrium-constants from solute solubility in binary solvent mixtures. International Journal of Pharmaceutics, 1983. 15(2): p. 159-165.
44. Acree, W.E. and G.L. Bertrand, Thermochemical investigations of nearly ideal binary solvents .3. solubility in systems of nonspecific interactions. Journal of Physical Chemistry, 1977. 81(12): p. 1170-1173.
45. Dickhut, R.M., A.W. Andren, and D.E. Armstrong, Naphthalene solubility in selected organic solvent-water mixtures. Journal of Chemical and Engineering Data, 1989. 34(4): p. 438-443.
46. Khossravi, D. and K.A. Connors, Solvent effects on chemical processes .1. solubility of aromatic and heterocyclic-compounds in binary aqueous organic-solvents. Journal of Pharmaceutical Sciences, 1992. 81(4): p. 371-379.
47. Jimenez, J.A. and F. Martinez, Temperature dependence of the solubility of acetaminophen in propylene glycol plus ethanol mixtures. Journal of Solution Chemistry, 2006. 35(3): p. 335-352.
48. Subrahmanyam, C.V.S., et al., Irregular solution behavior of paracetamol in binary solvents. International Journal of Pharmaceutics, 1992. 78(1): p. 17-24.
49. Granberg, R.A. and A.C. Rasmuson, Solubility of paracetamol in binary and ternary mixtures of water plus acetone plus toluene. Journal of Chemical and Engineering Data, 2000. 45(3): p. 478-483.
50. Romero, S., et al., The behavior of paracetamol in mixtures of amphiprotic and amphiprotic-aprotic solvents. Relationship of solubility curves to specific and nonspecific interactions. Chemical & Pharmaceutical Bulletin, 1996. 44(5): p. 1061-1064.
51. Hojjati, H. and S. Rohani, Measurement and prediction of solubility of paracetamol in water-isopropanol solution. Part 1. Measurement and data analysis. Organic Process Research & Development, 2006. 10(6): p. 1101-1109.
52. Jimenez, J.A. and F. Martinez, Thermodynamic study of the solubility of acetaminophen in propylene glycol plus water cosolvent mixtures. Journal of the Brazilian Chemical Society, 2006. 17(1): p. 125-134.
53. Acree, W.E. and J.H. Rytting, Solubilities in binary solvent systems .2. the importance of nonspecific interactions. International Journal of Pharmaceutics, 1982. 10(3): p. 231-238.
54. Wu, P.L. and A. Martin, Extended hildebrand solubility approach - para-hydroxybenzoic acid in mixtures of dioxane and water. Journal of Pharmaceutical Sciences, 1983. 72(6): p. 587-592.
55. Judy, C.L. and W.E. Acree, Solubility in binary solvent systems .5. monomer and dimer models for the solubility of paratolylacetic acid in systems of non-specific interactions. International Journal of Pharmaceutics, 1985. 27(1): p. 39-44.
56. Martin, A., et al., Extended hildebrand solubility approach and the log linear solubility equation. Journal of Pharmaceutical Sciences, 1982. 71(8): p. 849-856.
57. Bustamante, P., et al., Chameleonic effect of sulfanilamide and sulfamethazine in solvent mixtures - solubility curves with 2 maxima. Chemical & Pharmaceutical Bulletin, 1994. 42(5): p. 1129-1133.
58. Bustamante, P. and B. Escalera, Enthalpy and entropy contributions to the solubility of sulphamethoxypyridazine in solvent mixtures showing 2 solubility maxima. Journal of Pharmacy and Pharmacology, 1995. 47(7): p. 550-555.
59. Reillo, A., B. Escalera, and E. Selles, Prediction of sulfanilamide solubility in dioxane-water mixtures. Pharmazie, 1993. 48(12): p. 904-907.
60. Martin, A., P.L. Wu, and T. Velasquez, Extended hildebrand solubility approach - sulfonamides in binary and ternary solvents. Journal of Pharmaceutical Sciences, 1985. 74(3): p. 277-282.
61. Martin, A., et al., Extended hildebrand solubility approach - testosterone and testosterone propionate in binary solvents. Journal of Pharmaceutical Sciences, 1982. 71(12): p. 1334-1340.
62. Martin, A., A.N. Paruta, and A. Adjei, Extended hildebrand solubility approach - methylxanthines in mixed-solvents. Journal of Pharmaceutical Sciences, 1981. 70(10): p. 1115-1120.
63. Martin, A., J. Newburger, and A. Adjei, Extended hildebrand solubility approach - solubility of theophylline in polar binary solvents. Journal of Pharmaceutical Sciences, 1980. 69(5): p. 487-491.
64. Martin, A. and M.J. Miralles, Extended hildebrand solubility approach - solubility of tolbutamide, acetohexamide, and sulfisomidine in binary solvent mixtures. Journal of Pharmaceutical Sciences, 1982. 71(4): p. 439-442.
65. Baena, Y., et al., Temperature-dependence of the solubility of some acetanilide derivatives in several organic and aqueous solvents. Physics and Chemistry of Liquids, 2004. 42(6): p. 603-613.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43363-
dc.description.abstract溶解度對於工廠在藥物研究與開發中,甚至於大量生產製造時扮演著一個重要角色。當結晶過程可以利用更加便宜和更好的溶劑,便可以對於整體製造省下許多金錢。 在此研究中,我們依據COSMO理論基礎來針對混合物溶劑的溶解度提供一個簡易的方法。研究中我們考慮了33種藥物化合物的溶解度[從最小的2個原子(碘),到最大的49個原子(睪甾酮)]在37種不同溶劑的混合溶劑情況下。我們針對總共127個固液平衡系統,包括123個雙成分的溶劑混合物、3個三成份的溶劑混合物和1個四成分的溶劑混合物。溫度範圍從273.15K到323.315K[如果我們將一種混合溶劑在不同溫度算成一個不同的系統的情況下有235個系統]。在這研究中我們利用NRTL-SAC模型在57個系統與COSMOSAC模型和PR+COSMOSAC在235個系統的計算結果進行比較。結果報告的誤差是根據自然對數單位的方均根錯誤(RMSE)來做為計算的方法。我們可以獲得從NRTL-SAC在57個系統的計算結果RMSE是0.58[相當於百分誤差79%];同時,COSMO-SAC和PR+COSMOSAC在235個系統的計算結果分別為1.60和1.42的RMSE值[相當於百分誤差395%與314%]。研究中我們分別針對COSMOSAC和PR+COSMOSAC利用純溶劑下的溶解度實驗值最為一個修正,同時可以是COSMO-SAC+Corr和PR+COSMOSAC+Corr兩種模型的RMSE降低到0.59[相當於百分誤差80%]。zh_TW
dc.description.abstractSolubility plays an important role in drug research and development especially in the factory with massive manufactures. When there is a cheaper and better solvent for crystalline process, there saves lots of money. In this research, we provide an easy method for solubility prediction in mixture solvents based on COSMO theory. In this study, we have considered the solubility of 33 drug compounds [from 2 atoms (iodine), for the smallest, to 49 atoms (testosterone), for the largest] in (the mixture of) 37 different solvents. We have studied a total of 127 solid-liquid equilibrium systems, including 123 binary solvent mixtures, 3 ternary solvent mixtures, and 1 quaternary solvent mixture. The temperature ranges from 273.15K to 323.15K. [There are 235 systems if we consider a mixture at a different temperature to be a different system.] We compare the model used in this research with Nonrandom Two Liquid Segment Activity Coefficient (NRTL-SAC) model in 57 systems, COnductor-like Screening MOdel Segment Activity (COSMOSAC) model, and Peng-Robinson equation of state with COnductor-like Screening MOdel Segment Activity (PR+COSMOSAC) in 235 systems. The results are calculated based on different model and reported with nature logarithm unit of root mean square error (RMSE). We can obtain the RMSE from NRTL-SAC is 0.58 (77% error) with 57 of 235 systems for the restriction of parameters in molecules; meanwhile, the COSMO-SAC and PR+COSMOSAC are reported the RMSE with 1.60 (395%) and 1.42 (314%) in 235 systems. Also as we apply a correction with pure solvent solubility, the COSMO-SAC+Corr and PR+COSMOSAC+Corr would both reduce the RMSE to 0.59 (80%). It excites us that the method we applied improves the prediction of solubility.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:52:04Z (GMT). No. of bitstreams: 1
ntu-98-R96524007-1.pdf: 1936690 bytes, checksum: ecba146cd243d63d5f4b35079f6105a5 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Index of Tables v
Index of Figures vi
Index vii
Chapter 1 Introduction 1
Chapter 2. Theory 4
2.1 Thermodynamics on the Solubility Calculation 4
2.2 Heat of Fusion and Melting Point Estimation 5
2.3 COSMO-SAC Model 5
2.4 Solubility Prediction by Adding Pure Solvent Solubility Correlation with COSMOSAC 10
2.5 Peng-Robinson equation of state with COnductor-like Screening MOdel Segment Activity (PR+COSMOSAC) 11
2.6 Solubility Prediction by Adding Pure Solvent Solubility Correlation with PR+COSMOSAC 13
2.7 Non-Random Two-Liquid Segment Activity Coefficient (NTRL-SAC) Model 13
Chapter 3. Computational Method 16
3.1 Solid-Liquid Equilibrium Calculation 16
3.1.1 Solubility from an activity coefficient model 17
3.1.2 Solubility from a cubic equation of state 17
3.2 Quantum Mechanical Calculation 17
3.3 Charging Free Energy Calculation 18
Chapter 4. Result and Discussion 20
4.1 Solubility Prediction from the COSMO-SAC Model 28
4.1.1 Solubility prediction with pure solvent solubility correction 28
4.1.2 Conformation effect in solubility prediction 29
4.1.3 Comparison with NRTL-SAC 32
4.2 Solubility Prediction from the PR+COSMOSAC Model 33
4.2.1 Solubility prediction by adding pure solvent solubility correlation 33
4.3 Solubility prediction discussion 47
4.3.1 Well predicted systems 47
4.3.2 Poorly predicted solubility 51
4.3.3 Failure prediction of solubility 54
4.3.4 The relation between o-profile and solubility 57
Chapter 5. Conclusion 62
Reference 63
Appendix 73
dc.language.isoen
dc.title利用量子力學溶合計算預測藥物在混合溶劑中的溶解度zh_TW
dc.titlePrediction of Drug Solubility in Mixture Solvents Based on First Principle Solvation Calculationsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳延平,諶玉真
dc.subject.keyword溶解度,預測,溶質模型,COSMOSAC,Peng-Robinson Equation,zh_TW
dc.subject.keywordsolubility,prediction,solvation model,COSMOSAC,Peng-Robinson Equation,en
dc.relation.page152
dc.rights.note有償授權
dc.date.accepted2009-07-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
1.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved