請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43359完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Chung-Liang Cheng | en |
| dc.contributor.author | 程仲良 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:51:48Z | - |
| dc.date.available | 2011-07-21 | |
| dc.date.copyright | 2009-07-21 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-02 | |
| dc.identifier.citation | Reference of Chapter1
1. A. P. Alivisatos, Science 271, 933 (1996). 2. C. B. Murray, C. R. Kagan, and M. G. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000). 3. J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson, and L. J. deJongh, Nature 375, 767 (1995). 4. K. K. Likharev and T. Claeson, Sci. Am. 266, 80 (1992). 5. G. Markovich, G. P. Collier, S. E. Henrichs, F. Remacle, D. Levine, and J. R. Heath, Acc. Chem. Res. 32, 415 (1999). 6. M. Narihiro, G. Yusa, Y. Nakamura, t. Noda, and H. Sakaki, Appl. Phys. Lett. 70, 105 (1996). 7. J. Chen, M. A. Reed, A. M. Rawleet, and J. M. Tour, Science 286, 1550 (1999). 8. C. Papadopoulos, A. Rakitin, J. Li, A. S. vedeneev, and J. M. Xu, Phys. Rev. Lett. 85, 3476 (2000). 9. M. T. Björk, B. J. ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Appl. Phys. Lett. 81, 4458 (2002). 10. J. D. Meindl, Q. Chen, and J. A. Davis, Science 293, 2044 (2001). 11. C. M. Leiber, Sci. Am. 285, 58 (2001). 12. V. Balzani, A. Credi, and M. Venturi, Chem. Eur. J. 8, 5524 (2002). 13. K. E. Drexler, “Engines of Creation, The Coming Era of Nanotechnology”, Anchor Press, New York, (1986). 14. K. E. Drexler, Sci. Am. 285, 74 (2001). 15. A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, Science, 256, 1425 (1992). 16. B. Ha, S. H. Seo, J. H. Cho, C. S. Yoon, J. Yoo, G.-C. Yi, C. Y. Park, and C. J. Lee, J. Phys. Chem. B, 109, 11095 (2005). 17. S. Iijima, Nature, 354, 56 (1991). 18. J. H. Choy, E. S. Jang, J. H. Chung, D. J. Jang, and Y. W. Kim, Adv. Mater. 15, 1911 (2003). 19. Y. L. Chueh, M. T. Ko, L. J. Chen, C. S. Wu, and C. D. Chen, Nano Lett. 6, 1637 (2006). 20. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, Nature, 422, 599 (2003). 21. W. Wang, B. Zeng, J. Yang, B. Pouedel, J. Huang, M. J. Naughton, and Z. Ren, Adav. Mater. 18, 3275 (2006). 22. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003). Reference of Chapter2 Reference of Section2.1 1. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964). 2. J. Westwater, D. P. Gosain, S. Tomiya, and S. Usui, J. Vac. Sci. Technol. B 15, 554 (1997). 3. A. M. Morales and C. M. Lieber, Science 279, 208 (1998). 4. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001). 5. Y. Q. Zhu, W. K. Hus, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto, and D. R. M. Walton, J. Mater. Chem. 8, 1859 (1998). 6. Z. Q. Liu, S. S. Xie, L. f. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zhou, and G. Wang, J. Mater. Res. 16, 683 (2001). 7. L. Skuja, J. Non-Cryst. Solids 239, 16 (1998). 8. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, H. Y. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, Adv. Mater. 12, 746 (2000). 9. X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun, and J. J. Du, Chem. Phys. Lett. 328, 5 (2000). 10. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001). 11. S. S. Brenner and G. W. Dears, Acta Met. 4, 268 (1956). 12. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, Solid State Comm. 109, 677 (1999). 13. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 1791 (1995). 14. X. Lu, T. Hanrath, K. P. Johnston, and B. A. Korgel, Nano Lett. 3, 93 (2003). 15. R. Q. Zhang, Y. Lifshitz, and S. T. lee, Adv. Mater. 15, 635 (2003). 16. W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, R. Kalish, and S. T. Lee, J. Am. Chem. Soc. 123, 11095 (2001). 17. S. T. Lee, N. Wang, and C. S. Lee, Mater. Sci. Eng. A 286, 16 (2000). 18. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Chem. Phys. Lett. 299, 237 (1999). Reference of Section2.2 1. J. P. O Sullivan and G. C. Wood, Proc. R. Soc. London, Ser A 317, 511 (1970). 2. V. P. Parkhutik and V. I. Shershulsky, J. Phys. D: Appl. Phys. 25, 1258 (1992). 3. J. Siejka and C. Ortega, J. Electrochem. Soc. 124, 883 (1977). 4. Y. Xu, G. E. Thompson, and G. C. Wood, Trans. Inst. Met. Finish. 63, 98 (1985). 5. K. Shimizu, K. Kobayashi, G. E. Thompson, and G. C. Wood, Philos. Mag. A. 66, 643 (1992). Reference of Chapter3 1. Harris and Bertolucci, Symmetry and Spectroscopy (Dover Publications, 1989). 2. R. H. Fowler and l. D. Nordheium, Proc. R. Soc. London, Ser. A 119,173 (1928). Reference of Chapter4 1. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001). 2. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003). 3. Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000). 4. C. C. Chen and C. C. Yeh, Adv. Mater. 12, 738 (2000). 5. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, X. Z. Gai, Q. L. Hang, G. C. Xiong, and S. Q. Feng, Chem. Phys. Lett. 303, 311 (1999). 6. M. Yazawa, M. Koguchi, A. Muto, M. Ozawa and K. Hiruma, Appl. Phys. Lett. 61, 2051 (1992). 7. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, Adv. Mater. 12, 746 (2000). 8. X. F. Duan and C. M. Leiber, Adv. Mater. 12, 298 (2000); A. M. Morales and C. M. Leiber, Science 279, 208 (1998). 9. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 1791 (1995). 10. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Science 287, 1471 (2000). 11. M. H. Huang, A. Choudrey, and P. Yang, Chem. Commun. 12, 1063 (2000); J. Zhu and S. Fan, J. Mater. Res. 14, 1175 (1999). 12. Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000). 13. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158 (2002). 14. X. Duan, Y. Huang, R. Agarwai, and C. M. Lieber, Nature 421, 241 (2003). 15. Y. W. Heo, L. C. Tien, D. P. Norton, B. S. Kang, F. Ren, B. P. Gila, and S. J. Pearton, Appl. Phys. Lett 85, 2002 (2004). 16. P. M. Verghese and D. R. Clarke, J. Appl. Phys. 87, 4430 (2000). 17. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. 13, 113 (2001). 18. Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Funct. Mater. 13, 9 (2003). 19. H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, Opt. Express 14, 2372 (2006). 20. J. M. Lin, C. L. Cheng, H. Y. Lin, and Y. F. Chen, Opt. Lett. 31, 3173 (2006). 21. K. Yoshio, A. Onodera, H. Satoh, N. Sakagami, and H. Yamashita, Ferroelectrics 264, 133 (2001). 22. H. Karzel, U. Potzel, W. Potzel, J. Moser, C. Schaefer, M. Steiner, M. Peter, A. Kratzer, and G. M. Kalvius, Materials Science Forum 79, 419 (1991). 23. P. X. Gao, and Z. L. Wang, J. Phys. Chem. B 106, 12653 (2002). 24. P. A. Hu, Y. Q. Liu, L. Fu, X. B. Wang, and D. B. Zhu, Appl. Phys. A 80, 35 (2005). 25. J. M. Calleja and M. Cardona, Phys. Rev B 16, 3753 (1977). 26. Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, Appl. Phys. Lett. 83, 1689 (2003). 27. N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004). 28. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998). Reference of Chapter5 1. Z. Liu and S. K. Hark, Nanotechnology 17, 1355 (2006). 2. Y. Jiang, X. M. Meng, W. C. Yiu, J. Liu, J. X. Ding, C. S. Lee, and S. T. Lee, J. Phys. Chem. B 108, 2784 (2004). 3. L. Jin, W. C. H. Choy, Y. P. Leung, T. I. Yuk, H. C. Ong, and J. B. Wang, J. Appl. Phys. 102, 044302 (2007). 4. Y. P. Leung, W. C. H. Choy, I. Markov, G. K. H. Pang, H. C. Ong, and T. I. Yuk, Appl. Phys. Lett. 88, 183110 (2006). 5. S. V. Pol, V. G. Pol, J. M. Calderon-Moreno, S. Cheylan, and A. Gedanken, Langmuir 24, 10462 (2008). 6. X. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, Appl. Phys. Lett. 83, 5533 (2003). 7. C. Ye, X. Fang, Y. Wang, P. Yan, J. Zhao, and L. Zhang, Appl. Phys. A 79, 113 (2004). 8. D.Y. Xia, L. Dai, W. J. Xu, L. P. You, B. R. Zhang, G. Z. Ran, and G. G. Qin, Chin. Phys. Lett. 23, 1317 (2006). 9. C. Jiang, W. Zhang, G. Zou, W. Yu, and Y. Qian, Nanotechnology 16, 551 (2005). 10. S. Ramanathan, S. Patibandla, S. Bandyopadhyay, J. Anderson, and J. D. Edwards, Nanotechnology 19, 195601 (2008). 11. U. Philipose, P. Sun, T. Xu, H. E. Ruda, L. Yang, and K. L. Kavanagh, J. Appl. Phys. 101, 014326 (2007). 12. Y. Q. Wang, U. Philipose, T. Xu, H. E. Ruda, and K. L Kavanagh, Semicond. Sci. Technol. 22, 175 (2007). 13. H. Y. Dang, J. Wang, and S. S. Fan, Nanotechnology 14, 738 (2003). 14. S. Biswas, T. Ghoshal, S. Kar, S. Chakrabarti, and S. Chaudhuri, Cryst. Growth Des. 8, 2171 (2008). 15. T. J. Mountaiaris, J. D. Peck, S. Stoltz, W. Y. Yu, A. Petrou, and P. G. Mattocks, Appl. Phys. Lett. 68, 2270 (1996). 16. B. Schreder, A. Materny, W. Kiefer, G. Bacher, A. Forchel, and G.. J. Landwehr, Raman Spectrosc 31, 959 (2000). 17. D. Sarigiannis, J. D. Peck, G. Kioseoglou, A. Petrou, and T. J. Mountziaris, Appl. Phys. Lett. 80, 4024 (2002). 18. Y. C. Zhu and Y. Bando, Chem. Phys. Lett. 377, 367 (2003). 19. X. T. Zhang, Z. Liu, K. M. Ip, Y. P. Leung, Q. Li, and S. K. Hark, J. Appl. Phys. 95, 5752 (2004). Reference of Chapter6 1. K. S. Yeong and J. T. L. Thong, J. Appl. Phys. 100, 114325 (2006). 2. Q. Wan, P. Feng, and T. H. Wang, Appl. Phys. Lett. 89, 123102 (2006). 3. X. Q. Wang, Y. B. Xu, H. L. Ge, and M. Wang, Diamond Relat. Mater. 15, 1565 (2006). 4. L. Chen, Solid State Commun. 143, 553 (2007). 5. M. S. Wang, J.Y. Wang, and L. M. Peng, Appl. Phys. Lett. 88, 243108 (2006). 6. Q. Wang, Z. L.Wang, J. J. Li, Y. Huang, Y. L. Li, C. Z. Gu, and Z. Cui, Appl. Phys. Lett. 89, 63105 (2006). 7. J. Xiao, Y. Wu, X. Bai, W. Zhang, and L. Yu, J. Phys. D: Appl. Phys. 41, 135409 (2008). 8. R. H. Fowler and L. W. Nordheim, Proc. R. Soc. A 119, 173 (1928). 9. W. W. Wang, G. M. Zhang, L. G. Yu, X. Bai, Z. X. Zhang, and X. Y. Zhao, Physica E 36, 86 (2007). 10. D. Schmeisser and K. Jacobi, Surf. Sci. 88, 138 (1979). 11. H. Moormann, D. Kohl, and G. Heiland, Surf. Sci. 80, 261 (1979). 12. D. Kohl, H. Moorman, and G. Heiland, Surf. Sci. 73, 160 (1978). 13. S. V. Didziulis, K. D. Butcher, S. L. Cohen, and E. I. Solomon, J. Am. Chem. Soc. 111, 7110 (1989). 14. G. Cubiotti, G. Mondio, and K. Wandelt, Auger Spectroscopy and Electronic Structure, Berlin: Springer, pp. 224–236, 1989. 15. A. Gutmann, G. Zwicker, D. Schmeisser, and K. Jacobi, Surf. Sci. 137, 211 (1984). 16. K. Jacobi, G. Zwicker, and A. Gutman, Surf. Sci. 141, 109 (1984). 17. J. Marien, Phys. Status Solidi a 38, 513 (1976). 18. T. Minami, T. Miyata, and T. Yamamoto, Surf. Coat. Technol. 108/109, 583 (1998). Reference of Chapter7 1. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, and P. Yang, Nature 422, 599 (2003). 2. P. Kohli, M. Wirtz, and C. R. Martin, Electroanalysis 15, 9 (2004). 3. S. B. Lee, D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Soderlund, and C. R. Martin, Science 296, 2198 (2002). 4. Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, Science 267, 222 (1995). 5. H. Shin, D.-K. Jeong, J. Lee, M. M. Sung, and J. Kim, Adv. Mater. 16, 1197 (2004). 6. Y. Li, J. Wang, Z. Deng, Y. Wu, X. Sun, D. Yu, and P. Yang, J. Am. Chem. Soc 123, 9904 (2001). 7. R. Fan, Y. Wu, D. Li, M. Yue, A. Majumdar, and P. Yang, J. Am. Chem. Soc. 125, 5254 (2003). 8. Y. Zhao, Y.-G. Guo, Y.-L. Zhang, and K. Jiao, Phys. Chem. Chem. Phys. 6, 1766 (2004). 9. M. Lai, J. A. G. Martinez, M. Grätzel, and D. J. Riley, J. Mater. Chem. 16, 2843 (2006). 10. M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, and U. Gösele, Science 14, 1997 (2002). 11. M. Lahav, T. Sehayek, A. Vaskevich, and I. Rubinstein, Angew. Chem. 116, 5734 (2004); Angew. Chem. Int. Ed. 42, 5576 (2003). 12. S. Yu, U. Welp, L. Z. Hua, A. Rydh, W. K. Kwok, and H. H. Wang, Chem. Mater. 17, 3445 (2005). 13. J. Bao, C. Tie, Z. Xu, Q. Zhou, D. Shen, and Q. Ma, Adv. Mater. 13, 1631 (2001). 14. C. R. Martin, Science, 266, 1961 (1994). 15. H. Masuda and K. Fukuda, Science 268, 1466 (1995). 16. S. Zhao, H. Roberge, A. Yelon, and T. Veres, J. Am. Chem. Soc. 128, 12352 (2006). 17. E. C. Walter, B. J. Murray, F. Favier, G. kaltenpoth, M. Grunze, and R. M. Penner, J. Phys. Chem. B 106, 11407 (2002). 18. R. J. Bowling, R. T. Packard, and R. L. McCreery, J. Am. Chem. Soc. 111, 1217 (1989). 19. D. M. Davis E. J. Podlaha, Electrochem. Solid-State Lett. 9, C62 (2006). Reference of Chapter8 1. S. Iijima, Nature 354, 56 (1991). 2. H. Dai, E. W. Wong, Y. Z. Lu, S. Fan, and C. M. Lieber, Nature 375, 769 (1995). 3. A. P. Alivisatos, Science 271, 933 (1996). 4. A. M. Morales and C. M. Lieber, Science 279, 208 (1998). 5. S. Fan, M. G. Chapline, N. M. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Science 283, 512 (1999). 6. A. Chen, S. J. Chua, P. X. Chen, Y. Chen, and L. K. Jian, Nanotechnology 17, 3903 (2006). 7. H. Y. Lin , C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, Opt. Express 14, 2372 (2006). 8. Y. L. Chen, C. C. Chen, J. C. Jeng, and Y. F. Chen, Appl. Phys. Lett. 85, 1259 (2004). 9. C. R. Martin, Science 266, 1961 (1994). 10. I. E. Huber, J. Mater. Res. 15, 1816 (2000). 11. Y. Zhou, C. Shen, and H. Li, Solid State Ionics 146, 81 (2002). 12. P. Forrer, F. Schlotting, H. Siegenthaler, and M. Textor, J. appl. Electrochem. 30, 533 (2000). 13. X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao, and Y. Q. Mao, J. Mater. Chem. 11, 1732 (2001). 14. Z. B. Zhang, X. Z. Sun, M. S. Dresselhaus, J. Y. Ying, and J. P. Heremans, Appl. Phys. Lett. 73, 1589 (1998). 15. Y. G. Guo, L. J. Wan, J. R. Gong, and C. L. Bai, Phys. Chem. Chem. Phys. 4, 3422 (2002) . 16. S. Valizadeh, J. M. George, P. Leisner, and L. Hultman, Electrochim. Acta 47, 865 (2001). 17. Y. G. Guo, C. J. Li, L. J. Wan, D. M. Chen, C. R. Wang, C. L. Bai, and Y. G. Wang, Adv. Funct. Mater. 13, 626 (2003). 18. D. Routkevitch, T. Bigioni, M. Moskovits, and J. M. Xu, J. Phys. Chem. 100, 14037 (1996). 19. R. Parthasarathy and C. R. Martin, Nature 369, 298 (1994). 20. T. Kyotani, L. Tsai, and A. Tomita, Chem. Mater. 8, 2109 (1996). 21. K. Hummer, Phys. Stat. Sol. (b) 56, 249 (1973). 22. A. Mang, K. Reimann, and St. Ruhenacke, Solid State Commun. 94, 251 (1995). 23. S. W. Kim, Sz. Fujita, and Sg. Fujitha, Appl. Phys. Lett. 86, 153119 (2005). 24. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001). 25. J. J. Wu, S. C. Liu, C. T. Wu, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 81, 1312 (2002). 26. L. Schmidt-Mende and J. L. MacManus-Driscoll, Mater. Today 10, 40 (2007). 27. Y. Li, G. W. Meng, and L. D. Zhang, Appl. Phys. Lett. 76, 2011 (2000). 28. Y. Li, G. S. Cheng, and L. D. Zhang, J. Mater. Res. 15, 2305 (2000). 29. C. L. Cheng, J. S. Lin, and Y. F. Chen, Mater. Lett. 62, 1666 (2008). 30. H. Masuda and K. Fukuda, Science 268, 1466 (1995). 31. S. Zhao, H. Roberge, and A. Yelon, T. Veres, J. Am. Chem. Soc. 128, 12352 (2006). 32. E. C. Walter, B. J. Murray, F. Favier, G. kaltenpoth, M. Grunze, and R. M. Penner, J. Phys. Chem. B 106, 11407 (2002). 33. R. J. Bowling, R. T. Packard, and R. L. McCreery, J. Am. Chem. Soc. 111, 1217 (1989). 34. D. M. Davis and E. J. Podlaha, Electrochem. Solid-State Lett. 9, C62 (2006). 35. J. G. Wang, M. L. Tian, N. Kumar, and T. E. Mallouk, Nano Lett. 5, 1247 (2005). 36. N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004). 37. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, Appl. Phys. Lett. 78, 407 (2001). 38. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996). 39. L. Li, S. Pan, X. Dou, Y. Zhu, X. Huang, Y. Yang, G. Li, and L. Zhang, J. Phys. Chem. C 111, 7288 (2007). 40. A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, Nano Lett. 7, 2183 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43359 | - |
| dc.description.abstract | 本論文研究主要目的在於了解一維二六族半導體奈米材料的成長機制進而控制其製造與形成。特別地,本論文還檢測了二六族半導體材料的一維結構和不同形貌在奈米尺度下所導致之新奇特性。
我們還試著了解巨觀的實驗裝置改變如何影響奈米材料在微觀上的變化,更近一步了解與控制一維奈米材料的成長,可以使我們能更容易控制奈米材料的結構與形貌,並更容易操作使其成為有用的奈米元件。 本論文涵蓋了下列材料的合成與特性分析: (1)氧化鋅奈米樹枝與奈米塔 (2)硒化鋅奈米線 (3)氧化鋅奈米瓶與奈米針尖複合物 (4)金屬鋅和錫的奈米管與金屬銅和銀的奈米管/奈米線之接合 (5)氧化鋅奈米管。 | zh_TW |
| dc.description.abstract | Motivated by a desire to understand the basic concepts of one-dimensional nanostructure growth, the research described in this thesis aims at understanding the basic mechanisms controlling the synthesis and formation of a specific group of II-VI semiconducting nanostructures. In particular, this thesis examines one-dimensional nanostructures and different morphologies of semiconductors that lead to the novel properties of the materials at the nanoscale.
In order to understand how to manipulate the properties of the grown nanostructures, this thesis focuses on having an understanding of the growth mechanism that dictates the morphology and structure. In addition, we also try to understand the impact changes on the nanoscopic scale of the nanomaterials due to the macroscopic setup in the experiment. Having a better understanding and exerting more precise control over the growth of nanomaterials will allow a higher level of selectivity, more control over dimensionality and the type of morphology, easier manipulation, and the simpler incorporation of these structures into a nanotechnological device. In general, this thesis covers the synthesis and characterization of the following nanomaterials: (1) ZnO nanodendrites and nanotowers, (2) ZnSe nanowires, (3) ZnO nanobottles decorated with ZnO nanotips, (4) metal (Zn, Sn) nanotubes and metal (Cu, Ag) nanotube/nanowire junctions, and (5) ZnO nanotubes. Efforts have been made to pinpoint the underlying science and to exploit their possible engineering applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:51:48Z (GMT). No. of bitstreams: 1 ntu-98-D93222024-1.pdf: 7616767 bytes, checksum: de480e28102fdff79b24b7698d3bcb67 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Contents
1 Introduction……………………………………….………....01 1.1 Nanotechnology………………………………………..……..…….01 1.2 Nanostructures.……………………………………………..……....03 1.3 Scope and Aim of the Thesis…………………………...….…...…..04 Reference of Chapter 1 ……………………………………………..06 2 Background Knowledge of Experimental Techniques….....08 2.1 Growth Mechanism of Nanostructures…………..…………….....08 2.1.1 Vapor-Liquid-Solid Growth Mechanism….…………………...…08 2.1.2 Vapor-Solid Growth Mechanism…..……………………………..09 2.1.3 Solution-Liquid-Solid Growth Mechanism…………….…….......11 2.1.4 Oxide-Assisted Growth Mechanism..……………………………12 Reference of Section 2.1 .....………………………………………....14 2.2 Formation Mechanism of Anodic Aluminum Oxide…….…….....16 Reference of Section 2.2 …………………………………………….18 2.3 Basic Concepts of Electrodeposition………………..……...……...19 3 Techniques of Measurement…………………………….…..22 3.1 Transmission Electron Microscope Observation………….….…..22 3.2 Scanning Electron Microscope Observation………………….......22 3.3 Energy Dispersive Spectrometer Analysis…………………….......23 3.4 Cathodoluminescence Measurement…….……………………......23 3.5 X-rays Diffractometry ………………………………………..........24 3.6 Raman Scattering Measurement………..……………………........25 3.7 Field Emission Measurement…….…………..………………........26 Reference of Chapter 3 …………………………………………..…28 4 Patterned Growth of ZnO Nanostructures Based on the Templation of Plant Cell Walls……………………………..29 4.1 Introduction………………………………………………………...29 4.2 Experimental Details……….……………………………………....30 4.3 Results and Discussion……………………………………………..32 4.4 Summary…………………………………………………………....44 Reference of Chapter 4 ……………………………………………....45 5 Low Temperature Synthesis of ZnSe Nanowires by Self-Catalytic Liquid-Solid Growth………….……….……48 5.1 Introduction…………………………………………………...……48 5.2 Experiment Details………...……………………………………….49 5.3 Results and Discussion…………………………………………......50 5.4 Summary………………………………………………………...….56 Reference of chapter 5 ……………………………………………….58 6 Enhancement of Field Emission in Nanotip-Decorated ZnO Nanobottles………………………………………………….60 6.1 Introduction………………………………………………...………60 6.2 Experimental Details…………………………………………….....61 6.3 Results and Discussion……………………………………………..62 6.4 Summary…………………………………………………………....68 Reference of chapter 6 ……………………………………………..…69 7 Fabrication and Growth Mechanism of Metal (Zn, Sn) Nanotube Arrays and Metal (Cu, Ag) Nanotube/Nanowire Junction Arrays……..............................................................71 7.1 Introduction………………………………………………………...71 7.2 Experimental Details……………………………………………….72 7.3 Results and Discussion……………………………………..………73 7.4 Summary……………………………………………………………80 Reference of Chapter 7 …………………………………………........81 8 A Simple Approach for the Growth of Highly Ordered ZnO Nanotube Arrays…………………………….……………...83 8.1 Introduction………………………………………………………...83 8.2 Experimental Details……………………………………………….85 8.3 Results and Discussion…………………………………………..…86 8.4 Summary…………………………………………………………....94 Reference of Chapter 8 ……………………………………………....96 9 Conclusion…………………………………………………..100 | |
| dc.language.iso | en | |
| dc.subject | 電鍍 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 硒化鋅 | zh_TW |
| dc.subject | 奈米結構 | zh_TW |
| dc.subject | 陽極氧化鋁 | zh_TW |
| dc.subject | ZnSe | en |
| dc.subject | electrodeposition | en |
| dc.subject | ZnO | en |
| dc.subject | anodic aluminum oxide | en |
| dc.subject | nanostructures | en |
| dc.title | 一維二六族半導體奈米結構之製造與特性分析 | zh_TW |
| dc.title | Fabrication and Characterization of One-Dimensional II-VI Semiconducting Nanostructures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 黃鶯聲,張顏暉,林泰源,沈志霖 | |
| dc.subject.keyword | 氧化鋅,硒化鋅,奈米結構,陽極氧化鋁,電鍍, | zh_TW |
| dc.subject.keyword | ZnO,ZnSe,nanostructures,anodic aluminum oxide,electrodeposition, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-03 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 7.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
