Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43336
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄧哲明
dc.contributor.authorYi-Nan Liuen
dc.contributor.author劉奕男zh_TW
dc.date.accessioned2021-06-15T01:50:23Z-
dc.date.available2010-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-03
dc.identifier.citationAhmad N, Chen LC, Gordon MA, Laskin JD and Laskin DL. Regulation of cyclooxygenase-2 by nitric oxide in activated hepatic macrophages during acute endotoxemia. J Leukoc Biol 71: 1005-1011, 2002.
Aikawa M and Libby P. The vulnerable atherosclerotic plaque - Pathogenesis and therapeutic approach. Cardiovasc Pathol 13: 125-138, 2004.
Amberger A, Maczek C, Jurgens G, Michaelis D, Schett G, Trieb K, Eberl T, Jindal S, Xu Q and Wick G. Co-expression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress Chaperones 2: 94-103, 1997.
Assmann G, Cullen P, Jossa F, Lewis B and Mancini M. Coronary heart disease: Reducing the risk - The scientific background to primary and secondary prevention of coronary heart disease a worldwide view. Arterioscler Thromb Vasc Biol 19: 1819-1824, 1999.
Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY and Patterson C. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19: 4535-4545, 1999.
Beere HM. 'The stress of dying': the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117: 2641-2651, 2004.
Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM and Green DR. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2: 469-475, 2000.
Belaiba RS, Bonello S, Zahringer C, Schmidt S, Hess J, Kietzmann T and Gorlach A. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell 18: 4691-4697, 2007.
Berberian PA, Myers W, Tytell M, Challa V and Bond MG. Immunohistochemical localization of heat shock protein-70 in normal-appearing and atherosclerotic specimens of human arteries. Am J Pathol 136: 71-80, 1990.
Bilton RL and Booker GW. The subtle side to hypoxia inducible factor (HIFalpha) regulation. Eur J Biochem 270: 791-798, 2003.
Bjornheden T, Levin M, Evaldsson M and Wiklund O. Evidence of hypoxic areas within the arterial wall in vivo. Arterioscler Thromb Vasc Biol 19: 870-876, 1999.
Blankenberg S, Barbaux S and Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis 170: 191-203, 2003.
Blouin CC, Page EL, Soucy GM and Richard DE. Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1alpha. Blood 103: 1124-1130, 2004.
Bonello S, Zahringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, Kietzmann T and Gorlach A. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 27: 755-761, 2007.
Bukau B and Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351-366, 1998.
Burke B, Wells M and Lewis CE. Macrophage responses to hypoxia: Involvement in hypoxia-induced transcription factors. J Pathol 189: 14A, 1999.
Butterick CJ, Williams DA, Boxer LA, Jersild RA, Jr., Mantich N, Higgins C and Baehner RL. Changes in energy metabolism, structure and function in alveolar macrophages under anaerobic conditions. Br J Haematol 48: 523-532, 1981.
Chang CC, Lin MT, Lin BR, Jeng YM, Chen ST, Chu CY, Chen RJ, Chang KJ, Yang PC and Kuo ML. Effect of connective tissue growth factor on hypoxia-inducible factor 1alpha degradation and tumor angiogenesis. J Natl Cancer Inst 98: 984-995, 2006.
Chang L and Karin M. Mammalian MAP kinase signalling cascades. Nature 410: 37-40, 2001.
Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N, Munshi N, Kharbanda S and Anderson KC. JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem 278: 17593-17596, 2003.
Chavakis E, Dernbach E, Hermann C, Mondorf UF, Zeiher AM and Dimmeler S. Oxidized LDL inhibits vascular endothelial growth factor-induced endothelial cell migration by an inhibitory effect on the Akt/endothelial nitric oxide synthase pathway. Circulation 103: 2102-2107, 2001.
Chen CH and Walterscheid JP. Plaque angiogenesis versus compensatory arteriogenesis in atherosclerosis. Circ Res 99: 787-789, 2006.
Chen TH, Pan SL, Guh JH, Liao CH, Huang DY, Chen CC and Teng CM. Moscatilin induces apoptosis in human colorectal cancer cells: a crucial role of c-Jun NH2-terminal protein kinase activation caused by tubulin depolymerization and DNA damage. Clin Cancer Res 14: 4250-4258, 2008.
Chiou WF, Sung YJ, Liao JF, Shum AYC and Chen CF. Inhibitory effect of dehydroevodiamine and evodiamine on nitric oxide production in cultured murine macrophages. J Nat Prod 60: 708-711, 1997.
Christians ES, Yan LJ and Benjamin IJ. Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury. Crit Care Med 30: S43-S50, 2002.
Chun YS, Yeo EJ and Park JW. Versatile pharmacological actions of YC-1: anti-platelet to anticancer. Cancer Lett 207: 1-7, 2004.
Clarke MC, Figg N, Maguire JJ, Davenport AP, Goddard M, Littlewood TD and Bennett MR. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med 12: 1075-1080, 2006.
Condeelis J and Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124: 263-266, 2006.
Conti M, Morand PC, Levillain P and Lemonnier A. Improved fluorometric determination of malonaldehyde. Clin Chem 37: 1273-1275, 1991.
Cramer T and Johnson RS. A novel role for the hypoxia inducible transcription factor HIF-1alpha: critical regulation of inflammatory cell function. Cell Cycle 2: 192-193, 2003.
Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N and Johnson RS. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112: 645-657, 2003.
Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF and Funk CD. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest 103: 1597-1604, 1999.
DeMeester SL, Buchman TG, Qiu Y, Dunnigan K, Hotchkiss RS, Karl IE and Cobb JP. Pyrrolidine dithiocarbamate activates the heat shock response and thereby induces apoptosis in primed endothelial cells. Shock 10: 1-6, 1998.
Dery MA, Michaud MD and Richard DE. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol 37: 535-540, 2005.
Dos SS, Delattre AI, De Longueville F, Bult H and Raes M. Gene expression profiling of LPS-stimulated murine macrophages and role of the NF-kappaB and PI3K/mTOR signaling pathways. Ann N Y Acad Sci 1096: 70-77, 2007.
Draing C, Sigel S, Deininger S, Traub S, Munke R, Mayer C, Hareng L, Hartung T, von Aulock S and Hermann C. Cytokine induction by Gram-positive bacteria. Immunobiology 213: 285-296, 2008.
Edfeldt K, Swedenborg J, Hansson GK and Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105: 1158-1161, 2002.
Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ and Ratcliffe PJ. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43-54, 2001.
Erl W, Weber PC and Weber C. Monocytic cell adhesion to endothelial cells stimulated by oxidized low density lipoprotein is mediated by distinct endothelial ligands. Atherosclerosis 136: 297-303, 1998.
Esteban MA, Tran MG, Harten SK, Hill P, Castellanos MC, Chandra A, Raval R, O'brien TS and Maxwell PH. Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res 66: 3567-3575, 2006.
Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, Sharma K and Silverstein RL. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 105: 1049-1056, 2000.
Festjens N, Vanden Berghe T, Cornelis S and Vandenabeele P. RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ 14: 400-410, 2007.
Flaherty KM, DeLuca-Flaherty C and McKay DB. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346: 623-628, 1990.
Frede S, Stockmann C, Freitag P and Fandrey J. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem J 396: 517-527, 2006.
Freeman BC, Myers MP, Schumacher R and Morimoto RI. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14: 2281-2292, 1995.
Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C and Gonzalez-Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30: 193-204, 2004.
Freudenberg MA, Tchaptchet S, Keck S, Fejer G, Huber M, Schutze N, Beutler B and Galanos C. Lipopolysaccharide sensing an important factor in the innate immune response to Gram-negative bacterial infections: Benefits and hazards of LPS hypersensitivity. Immunobiology 213: 193-203, 2008.
Frostegard J, Kjellman B, Gidlund M, Andersson B, Jindal S and Kiessling R. Induction of heat shock protein in monocytic cells by oxidized low density lipoprotein. Atherosclerosis 121: 93-103, 1996.
Fukuda R, Hirota K, Fan F, Do Jung Y, Ellis LM and Semenza GL. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 277: 38205-38211, 2002.
Funk CD and Cyrus T. 12/15-lipoxygenase, oxidative modification of LDL and atherogenesis. Trends Cardiovasc Med 11: 116-124, 2001.
Gabai VL, Mabuchi K, Mosser DD and Sherman MY. Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biol 22: 3415-3424, 2002.
Galis ZS, Sukhova GK, Lark MW and Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94: 2493-2503, 1994.
Garthwaite G, Goodwin DA, Neale S, Riddall D and Garthwaite J. Soluble guanylyl cyclase activator YC-1 protects white matter axons from nitric oxide toxicity and metabolic stress, probably through Na(+) channel inhibition. Mol Pharmacol 61: 97-104, 2002.
Gimbrone MA, Jr. Vascular endothelium, hemodynamic forces, and atherogenesis. Am J Pathol 155: 1-5, 1999.
Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aebersold R and Sonenberg N. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13: 1422-1437, 1999a.
Gingras AC, Raught B and Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68: 913-963, 1999b.
Gohda J, Matsumura T and Inoue J. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol 173: 2913-2917, 2004.
Goldbourt U and Neufeld HN. Genetic-Aspects of Arteriosclerosis. Arteriosclerosis 6: 357-377, 1986.
Gorlach A and Bonello S. The cross-talk between NF-kappaB and HIF-1: further evidence for a significant liaison. Biochem J 412: e17-e19, 2008.
Grenier D and Grignon L. Response of human macrophage-like cells to stimulation by Fusobacterium nucleatum ssp. nucleatum lipopolysaccharide. Oral Microbiol Immunol 21: 190-196, 2006.
Guha M and Mackman N. LPS induction of gene expression in human monocytes. Cell Signal 13: 85-94, 2001.
Guo B and Cheng G. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J Biol Chem 282: 11817-11826, 2007.
Harmey JH, Dimitriadis E, Kay E, Redmond HP and Bouchier-Hayes D. Regulation of macrophage production of vascular endothelial growth factor (VEGF) by hypoxia and transforming growth factor beta-1. Ann Surg Oncol 5: 271-278, 1998.
Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2: 38-47, 2002.
Hay N and Sonenberg N. Upstream and downstream of mTOR. Genes Dev 18: 1926-1945, 2004.
Hellwig-Burgel T, Stiehl DP, Wagner AE, Metzen E and Jelkmann W. Hypoxia-inducible factor-1 (HIF-1): A novel transcription factor in immune reactions. J Interferon Cytokine Res 25: 297-310, 2005.
Hightower LE. Heat-Shock, Stress Proteins, Chaperones, and Proteotoxicity. Cell 66: 191-197, 1991.
Ho CK and Chen CC. Moscatilin from the orchid Dendrobrium loddigesii is a potential anticancer agent. Cancer Invest 21: 729-736, 2003.
Hohfeld J and Jentsch S. GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16: 6209-6216, 1997.
Hollander AP, Corke KP, Freemont AJ and Lewis CE. Expression of hypoxia-inducible factor 1alpha by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum 44: 1540-1544, 2001.
Holmberg CI, Hietakangas V, Mikhailov A, Rantanen JO, Kallio M, Meinander A, Hellman J, Morrice N, MacKintosh C, Morimoto RI, Eriksson JE and Sistonen L. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 20: 3800-3810, 2001.
Holmberg CI, Tran SE, Eriksson JE and Sistonen L. Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 27: 619-627, 2002.
Hu H, Pierce GN and Zhong GM. The atherogenic effects of chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae. J Clin Invest 103: 747-753, 1999.
Huang LE, Gu J, Schau M and Bunn HF. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 95: 7987-7992, 1998.
Huang YT, Pan SL, Guh JH, Chang YL, Lee FY, Kuo SC and Teng CM. YC-1 suppresses constitutive nuclear factor-kappaB activation and induces apoptosis in human prostate cancer cells. Mol Cancer Ther 4: 1628-1635, 2005.
Ikezoe T, Nishioka C, Bandobashi K, Yang Y, Kuwayama Y, Adachi Y, Takeuchi T, Koeffler HP and Taguchi H. Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells. Leuk Res 31: 673-682, 2007.
Indovina P, Ferrante A, Rainaldi G and Santini MT. Hypoxia and ionizing radiation: changes in adhesive properties and cell adhesion molecule expression in MG-63 three-dimensional tumor spheroids. Cell Commun Adhes 13: 185-198, 2006.
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS and Kaelin WG, Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464-468, 2001.
Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ and Kim KW. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111: 709-720, 2002.
Johnson AD, Berberian PA, Tytell M and Bond MG. Differential distribution of 70-kD heat shock protein in atherosclerosis. Its potential role in arterial SMC survival. Arterioscler Thromb Vasc Biol 15: 27-36, 1995.
Jung YJ, Isaacs JS, Lee S, Trepel J and Neckers L. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 17: 2115-2117, 2003.
Karhausen J, Haase VH and Colgan SP. Inflammatory hypoxia: role of hypoxia-inducible factor. Cell Cycle 4: 256-258, 2005.
Keiper BD, Gan WN and Rhoads RE. Protein synthesis initiation factor 4G. Int J Biochem Cell Biol 31: 37-41, 1999.
Khaleghpour K, Pyronnet S, Gingras AC and Sonenberg N. Translational homeostasis: Eukaryotic translation initiation factor 4E control of 4E-binding protein 1 and p70 S6 kinase activities. Mol Cell Biol 19: 4302-4310, 1999.
Kim HP, Wang X, Zhang J, Suh GY, Benjamin IJ, Ryter SW and Choi AM. Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38 beta MAPK and heat shock factor-1. J Immunol 175: 2622-2629, 2005a.
Kim SA, Yoon JH, Lee SH and Ahn SG. Polo-like kinase 1 phosphorylates heat shock transcription factor 1 and mediates its nuclear translocation during heat stress. J Biol Chem 280: 12653-12657, 2005b.
Ko FN, Wu CC, Kuo SC, Lee FY and Teng CM. YC-1, a novel activator of platelet guanylate cyclase. Blood 84: 4226-4233, 1994.
Ko HC, Wang YH, Liou KT, Chen CM, Chen CH, Wang WY, Chang S, Hou YC, Chen KT, Chen CF and Shen YC. Anti-inflammatory effects and mechanisms of the ethanol extract of Evodia rutaecarpa and its bioactive components on neutrophils and microglial cells. Eur J Pharmacol 555: 211-217, 2007.
Kume N and Kita T. Apoptosis of vascular cells by oxidized LDL: involvement of caspases and LOX-1 and its implication in atherosclerotic plaque rupture. Circ Res 94: 269-270, 2004.
Kuo CC, Gown AM, Benditt EP and Grayston JT. Detection of Chlamydia pneumoniae in aortic lesions of atherosclerosis by immunocytochemical stain. Arterioscler Thromb 13: 1501-1504, 1993.
Lee DM, Friend DS, Gurish MF, Benoist C, Mathis D and Brenner MB. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297: 1689-1692, 2002.
Leeperwoodford SK and Mills JW. Phagocytosis and Atp Levels in Alveolar Macrophages During Acute-Hypoxia. Am J Respir Cell Mol Biol 6: 326-334, 1992.
Leeuwenberg JF, Jeunhomme TM and Buurman WA. Role of ELAM-1 in adhesion of monocytes to activated human endothelial cells. Scand J Immunol 35: 335-341, 1992a.
Leeuwenberg JF, Smeets EF, Neefjes JJ, Shaffer MA, Cinek T, Jeunhomme TM, Ahern TJ and Buurman WA. E-selectin and intercellular adhesion molecule-1 are released by activated human endothelial cells in vitro. Immunology 77: 543-549, 1992b.
Leon CG, Tory R, Jia J, Sivak O and Wasan KM. Discovery and development of toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharm Res 25: 1751-1761, 2008.
Levin M, Leppanen O, Evaldsson M, Wiklund O, Bondjers G and Bjornheden T. Mapping of ATP, glucose, glycogen, and lactate concentrations within the arterial wall. Arterioscler Thromb Vasc Biol 23: 1801-1807, 2003.
Lewis JS, Lee JA, Underwood JC, Harris AL and Lewis CE. Macrophage responses to hypoxia: relevance to disease mechanisms. J Leukoc Biol 66: 889-900, 1999.
Li C, Ni CZ, Havert ML, Cabezas E, He J, Kaiser D, Reed JC, Satterthwait AC, Cheng G and Ely KR. Downstream regulator TANK binds to the CD40 recognition site on TRAF3. Structure 10: 403-411, 2002.
Loidl A, Claus R, Ingolic E, Deigner HP and Hermetter A. Role of ceramide in activation of stress-associated MAP kinases by minimally modified LDL in vascular smooth muscle cells. Biochim Biophys Acta-Molecular Basis of Disease 1690: 150-158, 2004.
Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, van der HA, Itie A, Wakeham A, Khoo W, Sasaki T, Cao Z, Penninger JM, Paige CJ, Lacey DL, Dunstan CR, Boyle WJ, Goeddel DV and Mak TW. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13: 1015-1024, 1999.
Louis NA, Hamilton KE, Kong T and Colgan SP. HIF-dependent induction of apical CD55 coordinates epithelial clearance of neutrophils. FASEB J 19: 950-959, 2005.
Low-Friedrich I and Schoeppe W. Effects of calcium channel blockers on stress protein synthesis in cardiac myocytes. J Cardiovasc Pharmacol 17: 800-806, 1991.
Lu YC, Yeh WC and Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine 42: 145-151, 2008.
Lusis AJ. Atherosclerosis. Nature 407: 233-241, 2000.
Lye E, Mirtsos C, Suzuki N, Suzuki S and Yeh WC. The role of interleukin 1 receptor-associated kinase-4 (IRAK-4) kinase activity in IRAK-4-mediated signaling. J Biol Chem 279: 40653-40658, 2004.
MacMicking J, Xie QW and Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 15: 323-350, 1997.
Marathe S, Choi Y, Leventhal AR and Tabas I. Sphingomyelinase converts lipoproteins from apolipoprotein E knockout mice into potent inducers of macrophage foam cell formation. Arterioscler Thromb Vasc Biol 20: 2607-2613, 2000.
Marathe S, Kuriakose G, Williams KJ and Tabas I. Sphingomyelinase, an enzyme implicated in atherogenesis, is present in atherosclerotic lesions and binds to specific components of the subendothelial extracellular matrix. Arterioscler Thromb Vasc Biol 19: 2648-2658, 1999.
Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM and Dillmann WH. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95: 1446-1456, 1995.
Martindale JL and Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192: 1-15, 2002.
Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER and Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271-275, 1999.
Mayer MP and Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62: 670-684, 2005.
Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 1: 135-145, 2001.
Melillo G, Musso T, Sica A, Taylor LS, Cox GW and Varesio L. A Hypoxia-Responsive Element Mediates A Novel Pathway of Activation of the Inducible Nitric-Oxide Synthase Promoter. J Exp Med 182: 1683-1693, 1995.
Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M and Tschopp J. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5: 503-507, 2004.
Mi Z, Rapisarda A, Taylor L, Brooks A, Creighton-Gutteridge M, Melillo G and Varesio L. Synergystic induction of HIF-1alpha transcriptional activity by hypoxia and lipopolysaccharide in macrophages. Cell Cycle 7: 232-241, 2008.
Miller YI, Viriyakosol S, Worrall DS, Boullier A, Butler S and Witztum JL. Toll-like receptor 4-dependent and -independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages. Arterioscler Thromb Vasc Biol 25: 1213-1219, 2005.
Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12: 3788-3796, 1998.
Moulton KS. Angiogenesis in atherosclerosis: gathering evidence beyond speculation. Curr Opin Lipidol 17: 548-555, 2006.
Moynagh PN. TLR signalling and activation of IRFs: revisiting old friends from the NF-kappaB pathway. Trends Immunol 26: 469-476, 2005.
Murdoch C, Muthana M and Lewis CE. Hypoxia regulates macrophage functions in inflammation. J Immunol 175: 6257-6263, 2005.
Nathan C. Immunology: Oxygen and the inflammatory cell. Nature 422: 675-676, 2003.
Nishi K, Oda T, Takabuchi S, Oda S, Fukuda K, Adachi T, Semenza GL, Shingu K and Hirota K. LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner. Antioxid Redox Signal 10: 983-995, 2008.
Oda T, Hirota K, Nishi K, Takabuchi S, Oda S, Yamada H, Arai T, Fukuda K, Kita T, Adachi T, Semenza GL and Nohara R. Activation of hypoxia-inducible factor 1 during macrophage differentiation. Am J Physiol Cell Physiol 291: C104-C113, 2006.
Ogasawara M and Suzuki H. Inhibition by evodiamine of hepatocyte growth factor-induced invasion and migration of tumor cells. Biol Pharm Bull 27: 578-582, 2004.
Pan SL, Guh JH, Chang YL, Kuo SC, Lee FY and Teng CM. YC-1 prevents sodium nitroprusside-mediated apoptosis in vascular smooth muscle cells. Cardiovasc Res 61: 152-158, 2004.
Pan SL, Guh JH, Peng CY, Chang YL, Cheng FC, Chang JH, Kuo SC, Lee FY and Teng CM. A potential role of YC-1 on the inhibition of cytokine release in peripheral blood mononuclear leukocytes and endotoxemic mouse models. Thromb Haemost 93: 940-948, 2005.
Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE and Ognibene FP. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113: 227-242, 1990.
Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8: 49-62, 2007.
Pirkkala L, Nykanen P and Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15: 1118-1131, 2001.
Plumier JC, Ross BM, Currie RW, Angelidis CE, Kazlaris H, Kollias G and Pagoulatos GN. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J Clin Invest 95: 1854-1860, 1995.
Pockley AG. Heat shock proteins, inflammation, and cardiovascular disease. Circulation 105: 1012-1017, 2002.
Powers MV and Workman P. Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett 581: 3758-3769, 2007.
Qiu Y and Tarbell JM. Numerical simulation of oxygen mass transfer in a compliant curved tube model of a coronary artery. Ann Biomed Eng 28: 26-38, 2000.
Rallu M, Loones M, Lallemand Y, Morimoto R, Morange M and Mezger V. Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc Natl Acad Sci U S A 94: 2392-2397, 1997.
Reddy RC, Chen GH, Tateda K, Tsai WC, Phare SM, Mancuso P, Peters-Golden M and Standiford TJ. Selective inhibition of COX-2 improves early survival in murine endotoxemia but not in bacterial peritonitis. Am J Physiol Lung Cell Mol Physiol 281: L537-L543, 2001.
Richard DE, Berra E, Gothie E, Roux D and Pouyssegur J. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1 alpha (HIF-1 alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 274: 32631-32637, 1999.
Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG and Karin M. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453: 807-811, 2008.
Rogers GW, Jr., Komar AA and Merrick WC. eIF4A: the godfather of the DEAD box helicases. Prog Nucleic Acid Res Mol Biol 72: 307-331, 2002.
Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O and Akira S. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6: 1087-1095, 2005.
Satyal SH, Chen D, Fox SG, Kramer JM and Morimoto RI. Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev 12: 1962-1974, 1998.
Schonbeck U, Mach F, Sukhova GK, Herman M, Graber P, Kehry MR and Libby P. CD40 ligation induces tissue factor expression in human vascular smooth muscle cells. Am J Pathol 156: 7-14, 2000.
Schromm AB, Lien E, Henneke P, Chow JC, Yoshimura A, Heine H, Latz E, Monks BG, Schwartz DA, Miyake K and Golenbock DT. Molecular genetic analysis of an endotoxin nonresponder mutant cell line: a point mutation in a conserved region of MD-2 abolishes endotoxin-induced signaling. J Exp Med 194: 79-88, 2001.
Scortegagna M, Cataisson C, Martin RJ, Hicklin DJ, Schreiber RD, Yuspa SH and Arbeit JM. HIF-1alpha regulates epithelial inflammation by cell autonomous NFkappaB activation and paracrine stromal remodeling. Blood 111: 3343-3354, 2008.
Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM and Abraham RT. A direct linkage between the phosphoinositide 3-Kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60: 3504-3513, 2000.
Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7: 345-350, 2001.
Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721-732, 2003.
Shatrov VA, Sumbayev VV, Zhou J and Brune B. Oxidized low-density lipoprotein (oxLDL) triggers hypoxia-inducible factor-1alpha (HIF-1alpha) accumulation via redox-dependent mechanisms. Blood 101: 4847-4849, 2003.
Shi W, Haberland ME, Jien ML, Shih DM and Lusis AJ. Endothelial responses to oxidized lipoproteins determine genetic susceptibility to atherosclerosis in mice. Circulation 102: 75-81, 2000.
Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J and Miyata M. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci U S A 92: 8264-8268, 1995.
Sumbayev VV, Budde A, Zhou J and Brune B. HIF-1 alpha protein as a target for S-nitrosation. FEBS Lett 535: 106-112, 2003.
Sun HL, Liu YN, Huang YT, Pan SL, Huang DY, Guh JH, Lee FY, Kuo SC and Teng CM. YC-1 inhibits HIF-1 expression in prostate cancer cells: contribution of Akt/NF-kappaB signaling to HIF-1alpha accumulation during hypoxia. Oncogene 26: 3941-3951, 2007.
Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Kodama T and . A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386: 292-296, 1997.
Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C, Takada H, Wakeham A, Itie A, Li S, Penninger JM, Wesche H, Ohashi PS, Mak TW and Yeh WC. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416: 750-756, 2002.
Takada Y, Kobayashi Y and Aggarwal BB. Evodiamine abolishes constitutive and inducible NF-kappaB activation by inhibiting IkappaBalpha kinase activation, thereby suppressing NF-kappaB-regulated antiapoptotic and metastatic gene expression, up-regulating apoptosis, and inhibiting invasion. J Biol Chem 280: 17203-17212, 2005.
Tan EY, Campo L, Han C, Turley H, Pezzella F, Gatter KC, Harris AL and Fox SB. Cytoplasmic location of factor-inhibiting hypoxia-inducible factor is associated with an enhanced hypoxic response and a shorter survival in invasive breast cancer. Breast Cancer Res 9: R89, 2007.
Tanabe M, Nakai A, Kawazoe Y and Nagata K. Different thresholds in the responses of two heat shock transcription factors, HSF1 and HSF3. J Biol Chem 272: 15389-15395, 1997.
Tang N, Mack F, Haase VH, Simon MC and Johnson RS. pVHL function is essential for endothelial extracellular matrix deposition. Mol Cell Biol 26: 2519-2530, 2006.
Thomas G. An encore for ribosome biogenesis in the control of cell proliferation. Nat Cell Biol 2: E71-E72, 2000.
Toko H, Minamino T and Komuro I. Role of heat shock transcriptional factor 1 and heat shock proteins in cardiac hypertrophy. Trends Cardiovasc Med 18: 88-93, 2008.
Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA and Davis RJ. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288: 870-874, 2000.
Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL and Van Obberghen E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 277: 27975-27981, 2002.
Trimmer BA, Aprille JR, Dudzinski DM, Lagace CJ, Lewis SM, Michel T, Qazi S and Zayas RM. Nitric oxide and the control of firefly flashing. Science 292: 2486-2488, 2001.
Tsukamoto Y, Kuwabara K, Hirota S, Ikeda J, S
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43336-
dc.description.abstract根據衛生署的統計資料顯示,腦血管與心血管疾病一直盤據國人十大死因的前幾名,整體而言約略佔死亡總人數的20%,而這些疾病都和血管細胞 (內皮細胞/平滑肌細胞) 與發炎細胞 (單核球細胞/巨噬細胞) 有關。所以,若是能夠控制發炎反應或是血管血管平滑平滑肌細胞的死亡,在疾病的治療上便會有很大的幫助。因此,本論文以血管平滑肌細胞與巨噬細胞為研究對象,來探討藥物對於細胞的保護以及其抗發炎活性。
論文第一部分主要是要來探討YC-1是否可以有效增加細胞保護蛋白Hsp70的表現以及保護血管平滑肌細胞 (VSMCs)來對抗ox-LDL所造成的細胞毒殺作用。實驗結果發現,給予YC-1後的18-24小時達到最大的Hsp70誘導作用,並且可以觀察到濃度以及時間相關性。進一步的結果顯示,YC-1可以增加熱休克蛋白轉錄因子(HSF-1) 於細胞核內的表現量以及下游基因Hsp70 mRNA的表現。同時,我們也觀察到YC-1對Hsp70的誘導作用並非透過活化已知的cGMP、ROS或是PKC這些路徑而來。最後,我們也發現YC-1對於VSMCs的保護作用也會因為細胞內的殖入siHsp70後而喪失。綜合以上觀察,我們認為在血管性疾病上,YC-1應該可以當成一個Hsp70誘導劑來保護細胞免於受到進一步的傷害。
論文第二部分為evodiamine,是由中草藥吳茱萸Evodia rutaecarpa萃取出來的活性生物鹼,我們發現這一成分可以抑制缺氧 (hypoxia) 引發巨噬細胞產生的發炎反應。根據結果顯示,evodiamine在hypoxia狀態下不但可以抑制COX-2或是iNOS蛋白的表現,也可以降低PGE2的釋放。進一步我們得知evodiamine確實可以抑制hypoxia造成的轉錄因子HIF-1a 的堆積來降低COX-2 mRNA的表現。最後也發現到,evodiamine並不會影響到HIF-1a mRNA或是加速HIF-1a的分解速度,反而是透過影響到HIF-1a的轉譯過程 (translation) 來降低HIF-1a的累積。調控轉譯過程的蛋白,除了4E-BP磷酸化受到抑制外,hypoxia造成的Akt或是p70S6K的磷酸化也都被抑制下來。這些結果顯示出evodiamine對於hypoxia產生的發炎反應主要是透過抑制轉譯過程中蛋白的磷酸化而達到抑制HIF-1a的作用。所以我們認為evodiamine或許在疾病治療上可以用來抑制缺氧所產生的發炎反應。
論文第三部分為moscatilin,是由蘭科植物石斛Dendrobium nobile的莖所得到的萃取成分。我們直接利用LPS來刺激巨噬細胞誘發發炎反應的二大轉錄因子HIF-1a與NF-kB的活化,並且觀察moscatilin對LPS的作用。我們發現moscatilin可以抑制LPS造成的巨噬細胞型態的改變以及發炎蛋白COX-2與iNOS的生成。進一步分析moscatilin對這二個轉錄因子的影響時,可以看到moscatilin主要是透過抑制HIF-1a mRNA,而與蛋白質轉譯過程或是proteasome調控的蛋白分解過程並無直接的關聯性。而moscatilin對於IkBa磷酸化也具有顯著的抑制作用,並且也抑制了p65與p50細胞核的轉移以及阻斷NF-kB與DNA的結合而達到降低NF-kB活性。整體而言,moscatilin抑制COX-2與iNOS的表現主要是透過同時抑制了HIF-1a的生成與NF-kB的活化而來。
在本論文中,我們評估了YC-1、evodiamine與moscatilin 對於動脈粥狀硬化過程中抑制細胞凋亡以及抗發炎的效果。YC-1主要可藉由增加HSF-1轉移到細胞核內以及增加Hsp70的表現量來預防氧化態低密度脂蛋白造成血管平滑肌細胞死亡的現象。此外,evodiamine與moscatilin則是分別透過抑制 HIF-1a與NF-kB來達到降低缺氧環境以及lipopolysaccharide所誘發的發炎反應。其中,evodiamine主要是透過抑制HIF-1a蛋白轉譯過程,而moscatilin則是抑制HIF-1a轉錄以及NF-kB的活性來達到降低發炎蛋白生成的效用。根據我們觀察到的現象, YC-1、evodiamine與moscatilin對於動脈斑的生成具有一定的預防效果。因此,在未來可以試著評估這些藥物在動物模式中的藥效以及用於人類疾病治療的可行性。
zh_TW
dc.description.abstractCardiovascular disease is one of major issues in human health. Atheroclerosis is a chronic and complex disease, and leads to a lot of cardiovascular disease. In the progress of atheroclerosis, we can find endothelial dysfunction, monocytes infiltration and cell apoptosis, which result in thrombosis and stroke. If we can have a good solution to repressing inflammation or decreasing cell death, it seems to be useful in the treatment of atheroclerosis. In this thesis, we study if YC-1 can protect vascular smooth muscle cells from death and explore if two natural products, evodiamine and moscatilin, can repress inflammation in macrophages.
Hsp70 functioning as molecular chaperon in physiological conditions is induced under stress environment, which affords a defensive mechanism for cells to escape cellular damage. Several lines of evidence have shown that YC-1 provided protection against balloon injury-induced vascular injury and neurological disorders. Therefore, the first study was conducted to evaluate whether YC-1 could effectively induce Hsp70 expression and protect vascular smooth muscle cells (VSMCs) against oxidized low-density lipoprotein-induced cytotoxicity. We showed that YC-1 enhanced Hsp70 expression in VSMCs through a concentration- and time-dependent manner with maximum expression at 18 and 24 hours without involving the cGMP, ROS, PKC signals in the pathway. We demonstrated that the nuclear level of HSF-1 increased at 2 hour after YC-1 treatment, and Hsp70 expression was directed by the upregulation of Hsp70 mRNA which peaked at 6 hours and followed by a decline. Finally, we found that YC-1 protects VSMCs from oxidized low-density lipoprotein-inducing apoptosis, and the effect would be reversed in siHSP70-transfected cells. According to our observations, YC-1 would be an effectively pharmacological Hsp70 inducer that can be used as a cytoprotective agent in vascular diseases.
Microenvironmental conditions found in injured tissues are characterized low level of oxygen and by infiltration of monocytes/ macrophages. In a previous study, extracts of Evodia rutaecarpa exhibited anti-inflammation activity through inhibition of reactive oxygen species production and inducible nitric oxide synthase expression in activated inflammatory cells. Therefore, the object of the second study was to investigate whether evodiamine, extracted from the traditional Chinese herb, Evodia rutaecarpa, could repress hypoxia-induced inflammatory response. We showed that evodiamine repressed not only COX-2 and iNOS expression but also PGE2 release under hypoxic conditions. Furthermore, our studies indicated that COX-2 mRNA and upstream HIF-1a were inhibited by evodiamine. In addition, we found that evodiamine inhibited hypoxia-evoked phosphorylation of Akt, p70S6K, and 4E-BP without affecting the level of HIF-1a mRNA and the degradation rate of HIF-1a. These results suggest that the mechanism of repression of hypoxia-induced COX-2 expression by evodiamine is through the inhibition of HIF-1a at the translational level, and is primarily mediated via dephosphorylation of Akt, p70S6K, and 4E-BP. These results indicated that evodiamine could be an effective therapeutic agent against inflammatory diseases involving hypoxia.
Inflammation plays a key role in all stages of atherosclerosis, and infection was reported to contribute to atherosclerosis. In traditional medicine, Dendrobium nobile was used to cure bacteria-induced fever, but there is no clear action mechanism to elucidate it. Therefore, in the third study, we investigated the signaling pathways involved in the inhibition of HIF-1a and NF-kB by moscatilin, one extract fraction of Dendrobium nobile, under LPS challenge. The results showed that moscatilin had a significant inhibition on pro-inflammatory enzymes (COX-2 and iNOS) expression and macrophage activation under LPS stimulation. We also showed that moscatilin had a dominant repression on HIF-1a expression via down-regulating HIF-1a mRNA without inhibiting cell viability, translation machinery or proteasome-mediated degradation of HIF-1a. Moreover, the results showed that moscatilin suppressed nuclear translocation of NF-kB subunits, p65 and p50, and NF-kB activity by inhibiting phosphorylation of IkBa. Taken together, we suggested that moscatilin inhibited both COX-2 and iNOS expressions through down-regulating HIF-1a and NF-kB in RAW264.7.
In this study, YC-1, evodiamine, moscatilin were used to evaluate the effect of anti-apoptosis and anti-inflammation in atherosclerosis. YC-1 increased HSF-1 nuclear translocation and Hsp70 expression to prevent vascular smooth muscle cells from ox-LDL-induced apoptosis. Additionally, evodiamine and moscatilin repressed hypoxia- or LPS-stimulated inflammatory responses through down-regulating HIF-1a and NF-kB, respectively. Among them, evodiamine inhibited HIF-1a translation, and moscatilin inhibited HIF-1a transcription and NF-kB nuclear transclocation to repressed pro-inflammatory protein expression. According to above, YC-1, evodiamine, and moscatilin play a positive role in preventing atherogenesis. Therefore, it is useful to evaluate the potency in animal atherosclerotic model and the possibility for human being.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:50:23Z (GMT). No. of bitstreams: 1
ntu-98-D92443004-1.pdf: 3247825 bytes, checksum: c645c97f01dbf85b7d59a3c3d6004b86 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents縮寫表………………………………………………………………………… 1
中文摘要……………………………………………………………………… 3
英文摘要……………………………………………………………………… 6
第一章 緒論
第一節 研究動機與目的………………………………………… 11
第二節 文獻回顧………………………………………………… 12
第二章 材料與方法………………………………………………………... 41
第三章 YC-1 增加熱休克蛋白70之表現以及抑制氧化態低密度脂蛋白造成的血管平滑肌細胞之凋亡
中文摘要…………………………………………………………… 53
英文摘要…………………………………………………………… 54
第一節 緒言……………………………………………………… 55
第二節 結果……………………………………………………… 56
第三節 討論……………………………………………………… 60
第四節 問題……………………………………………………… 69
第四章 Evodiamine抑制巨噬細胞於缺氧狀態下的發炎蛋白表現以及HIF-1α之累積
中文摘要……………………………………………………………. 73
英文摘要……………………………………………………………. 74
第一節 緒言………………………………………………………. 75
第二節 結果………………………………………………………. 78
第三節 討論………………………………………………………. 82
第五章 Moscatilin透過抑制NF-κB以及HIF-1α在巨噬細胞的表現達到降低LPS誘發的發炎現象
中文摘要……………………………………………………………. 93
英文摘要……………………………………………………………. 94
第一節 緒言………………………………………………………. 95
第二節 結果………………………………………………………. 98
第三節 討論………………………………………………………. 102
第四節 問題……………………………………………………… 113
第六章 總結與展望………………………………………………………… 118
參考文獻……………………………………………………………………… 121
期刊論文著作………………………………………………………………… 138
dc.language.isozh-TW
dc.titleYC-1, Evodiamine與Moscatilin在動脈粥狀硬化過程中對於血管平滑肌細胞與巨噬細胞的作用zh_TW
dc.titleEffects of YC-1, Evodiamine, Moscatilin on Atherogenesis in Vascular Smooth Muscle Cells and Macrophagesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee顏茂雄,楊春茂,黃德富,林建煌
dc.subject.keyword動脈粥狀硬化,熱休克蛋白70,缺氧誘導因子-1,NF-kB,zh_TW
dc.subject.keywordatherosclerosis,Hsp70,HIF-1,NF-kB,en
dc.relation.page140
dc.rights.note有償授權
dc.date.accepted2009-07-03
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
3.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved