請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43314
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳賴雲 | |
dc.contributor.author | Hsuan-Wen Chen | en |
dc.contributor.author | 陳宣汶 | zh_TW |
dc.date.accessioned | 2021-06-15T01:49:00Z | - |
dc.date.available | 2009-07-14 | |
dc.date.copyright | 2009-07-14 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-03 | |
dc.identifier.citation | Reference
1. E. Reissner. The Effect of Transverse Shear Deformation on the Bending of Elastic Plate. Journal of Applied Mechanics 1945; 12:A69-77. 2. R. D. Mindlin. Influence of Rotatory Inertia and Shear on Flexural Motions of isotropic, Elastic plate. Journal of application Mechanics 1951; 18:31-38 3. Speare, P. R. S., and Kemp, K. O.. A Simplified Reissner Theory for plate Bending. Int. J. Solids Struct 1977; 13:1073-1079 4. NÄNNI, J.. Das Eulerische Knickproblem unter Berücksichtiguang der Querkräfte. Z. Angew. Phys 1971; 51:156-186 5. Bellman, R., Kashef, B., and Casti, J.. Differential Quadrature, a Technique for the Rapid Solution of Nonlinear Partial Deifferential Equations. J. Computational Phys. 1972; 10:40-52. 6. Jang, S. K.. Application of Differential Quadrature to Static Analysis of Structural Components. PhD dissertation, The Univ. of Oklahoma, Norman, Okla. 1987. 7. Bert, C. W., and Striz, A. G.. Application of Differential Quadrature to Static Analysis of Structural Components. Int. J. NumericalMethods in Engineering 1989; 28:561-577. 8. Wang, X. and C. W. Bert. A New Approach in Applying Differential Quadrature to Static and Free Vibrational Analyses of Beams and Plates. 1993; 162 No.3:566-572. 9. Chen, C. N.. A Differential Quadrature Element Method. Proc. 1st Intl. Conf. Engineering Computation and Computer Simulation, Changsha, China, 1995; 25-34. 10. Prenter, P. M.. Spline and Variational Methods. John Wiley & Sons, Inc., New York, N.Y. 1975. 11. Bert, C. W., and Youngkwang Sheu. Static Analyses of Beams and Plates by Spline Collocation Method. Journal of Engrg. Mevhanics 1996 ; 375-378. 12. Hasan Sofuoglu, Hasan Gedikli. A refined 5-node plate bending element based on Reissner-Mindlin theory. Commun. Numer. Meth. Engng 2007; 23:385-403. 13. IRWAN KATILI, A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part I: An extended DKT element for thick-plate bending analysis. Int. J. Numer. Meth. Engng; 36:1859-1883. 14. V. L. Salerno and M. A. Goldberg, Effect of shear deformations on the bending of rectangular plates. Trans. ASME 1960; 27:54-58. 15. BO HÄGGBLAD, SPECIFICATIONS OF BOUNDARY CONDITIONS FOR REISSNER/MINDLIN PLATE BENDING FINITE ELENMENTS. Int. J. Numer. Meth. Engng; 30:981-1011(1990). 16. Szilard, Rudolph. Theories and Applications of Plate Analysis. Wiley, 2004. 17. 楊耀昇. 應用 SCM 於 Timoshenko 梁之分析研究. 碩士論文, 吳賴雲、鍾立來教授指導,國立台灣大學土木工程學研究所,2003。 18. 洪如彥. 應用 SCEM 於具彈性基礎之變斷面剪變形梁之分析研究. 碩士論文,吳賴雲、鍾立來教授指導,國立台灣大學土木工程學研究所,2004。 19. 江柏青. 應用 SCM 於彈性柱之分析研究. 碩士論文,吳賴雲、 鍾立來教授指導,國立台灣大學土木工程學研究所,2004。 20. 戴薏燈. SCM於彈性基礎上樑柱之分析研究. 碩士論文,吳賴 雲、鍾立來教授指導,國立台灣大學土木工程學研究所,2005。 21. 陳世恩. 應用 SCM 於考慮剪力效應梁柱之分析研究. 碩士論文,吳賴雲、鍾立來教授指導,國立台灣大學土木工程學研究所,2005。 22. 溫谷琳, 應用 SCM 於圓板之分析. 碩士論文,吳賴雲、鍾立來教授指導,國立台灣大學土木工程學研究所,2003。 23. 楊海銘, 應用 SCM 於薄板之分析. 碩士論文,吳賴雲、鍾立 來教授指導,國立台灣大學土木工程學研究所,2004。 24. 李明興, 應用 SCM 於薄板之挫屈分析. 碩士論文,吳賴雲、 鍾立來教授指導,國立台灣大學土木工程學研究所,2007。 25. 陳昇元, 新結點佈置法之SCM於薄板分析. 碩士論文,吳賴雲、鍾立來教授指導,國立台灣大學土木工程學研究所,2008。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43314 | - |
dc.description.abstract | 應用SCM法在許多的工程問題上,皆被證實有相當好的準確性和效率。在處理薄板板時,SCM也被證實有極佳的表現。然而,在面對板的厚長比大於0.1的板的分析,不再適用於由Kirchhoff和Love所發展的傳統板理論,該理論假設板垂直中間面的斷面在板受力變形之後仍然垂直中間面,因此就忽略了剪應變的效應。因為這個先天上的限制,傳統板理論必須被修正,考慮剪應變效應才可以解決厚板的工程問題。因此學者致力於發展出一套二維的板理論,能夠有比三維板理論更簡單的條件,卻能有效修正傳統板理論的誤差。REISSNER和MINDLIN分別各自發展出他們的厚板理論,其共通點為使用三個變數分別是w(橫向位移)、ψx(x向旋轉角)、ψy(y向旋轉角)建構由三條偏微分方程式組成的厚板控制方程式。本文應用一種重疊式結點佈置法,將三個控制方程式的問題成功使用SCM法進行分析得到數值解。使用商用軟體MATLAB撰寫程式,針對不同邊界條件與不同厚長比的板進行分析,探討其收斂性和準確性。成功的將SCM法應用在厚板的分析上,並且維持SCM法一貫的快速和準確。 | zh_TW |
dc.description.abstract | The interest of engineers in numerical methods has grown exponentially in the last decades. High-capacity personal computers are now mass produced and are available for a very reasonable price. SCM is one of numerical methods which had been applied in several engineering problem ,and be proved that SCM yields sufficiently accurate result and SCM is fast. In thin plate problem, SCM also provides reliable analyses. However, for the plate with thickness-to-span ratio h/L bigger than 0.1, Kirchhoff and Love’s classical plate theory’s accuracy decrease with growing thickness of the plate. There is an inherent limitation of classical plate theory due to the neglect of the effect of transverse shear strain, since it is assumed the normal to the middle plane remain normal to the deflected middle plane. It’s necessary to refined theories by introducing the effect of transverse shear strains in order to obtain reliable result for the behavior of the thick plate. Developing a refined two-dimensional equation which has more reliable result than classical theory and not so complex like three-dimensional equation interesting engineers. REISSNER and MINDLIN all formulate their thick plate equations by using three variables w(transverse deflection),ψx(rotation of the normals to the middle surface along X axis)、ψy(rotation of the normals to the middle surface along X axis.) In this paper, we apply SCM in thick plate with three governing equation analysis by using redefined overlap collocation. By using MATLAB, we have several case with different thickness-to-span ratio, and proved that SCM has economical and reliable result of thick plate analyses. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:49:00Z (GMT). No. of bitstreams: 1 ntu-98-R95521214-1.pdf: 5251596 bytes, checksum: 2759dbfe9ba37d23a6a4b78294db72fb (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 第一章 緒論 5
1-1 研究動機與目的 5 1-2 文獻回顧與研究方法 7 1-3研究內容 9 第二章 SCM 基礎理論介紹 10 2-1 Spline Collocation Method(SCM)理論介紹 10 2-2 Spline Collocation Method(SCM)理論推導 12 2-3 Modified Spline Collocation Method(MSCM)理論推導 20 2-4 SCM的相關規定說明 24 2-5 SCM 求解過程介紹 30 第三章 厚板理論介紹 31 3-1 厚板理論之基本假設 31 3-2 REISSNER厚板理論與控制方程式 33 3-3 MINDLIN厚板理論與控制方程式 35 3-4 厚板邊界條件之探討 38 第四章 應用SCM於厚板理論 40 4-1 前言 40 4-2 厚板理論導入Spline Function 41 4-3 厚板理論結點佈置法 44 4-4 應用SCM法於厚板分析流程 49 第五章 實例分析 53 5-1 前言 53 5-2 實例分析 56 第六章 結論與建議 85 6-1 結論 85 6-2 建議 87 Reference 88 附錄 A 90 附錄 B 94 附錄C 101 | |
dc.language.iso | zh-TW | |
dc.title | 應用SCM法於厚板分析 | zh_TW |
dc.title | Analysis of Thick Plates Using SCM Method | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 苟昌煥,王仲宇,徐德修,鐘立來 | |
dc.subject.keyword | 厚板,Mindlin,Reissner,SCM,MSCM,數值方法,結點佈置, | zh_TW |
dc.subject.keyword | Thick plate,Mindlin,Reissner,SCM,MSCM,numerical method,collocation, | en |
dc.relation.page | 104 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 5.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。