請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43286
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林唯芳 | |
dc.contributor.author | Guan-Yao Tu | en |
dc.contributor.author | 凃官瑤 | zh_TW |
dc.date.accessioned | 2021-06-15T01:47:16Z | - |
dc.date.available | 2012-08-18 | |
dc.date.copyright | 2011-08-18 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-15 | |
dc.identifier.citation | [1] Q. Wang, J. E. Moser, M. Gratzel*, “Electrochemical Impedance Spectroscopic
Analysis of Dye-Sensitized Solar”, Journal of physical chemistry B, 109, 4945-14953, 2005. [2] K. Nazeeruddin, A. Kay, 1. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Gratzel*, “Conversion of Light to Electricity by cis-XzBis( 2,2’-bipyridyl-cis-XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(11)Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, Journal of American Chemistry Society, 115, 6382-6390,1993. [3] M. Gratzel,”Dye-sensitized solid-state heterojunction solar cells”, MRS Bulletin, 30, 1, 2005. [4] H. Y. Chen, J. Hou*, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu*, G. Li, ”Polymer solar cells with enhanced Voc and efficiency,” Nature photonics,3,649-653,2009. . [5] Y. C. Huang, Y. C. Liao, S. S. Li, M. C. Wu, C. W. Chen, W. F. Su *, “Study of the effect of annealing process on the performance of P3HT/PCBM photovoltaic devices using scanning-probe microscopy, Solar Energy Materials & Solar Cells, 93, 888, 2009 [6] C. J. Brabec, J. R. Durrant, ”Solution-Processed Organic Solar Cells”, MRS Bulletin,13,670-675,2008. [7] T. L. Benanti, D. Venkataraman, “Organic solar cells: An overview focusing on active layer morphology”, Photosynthesis Research, 87, 73-81, 2006. [8] D. E. Markov, C. Tanase, P. W. M. Blom, J. Wildeman, “Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylene vinylene) derivatives”, Physical Review B,72, 045217, 2005 [9] R. J. Kline, M. D. McGehee*, E. N. Kadnikova, J. Liu, J. M. Frechet, “Controlling the Field-Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight”, Advanced Materials, 15, 18, 1519-1522, 2003. [10] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang*, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature Materials,4, 884-888, 2005. [11] S. M. Sze, “VLSI Technology”, 2nd ed.; McGraw-Hill Publishing Co.: New York, 1988. [12] C. J. Brabec,* A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells”, Advanced Functional Materials,11, 5, 374-380,2001. [13] A. Cravino*, “Origin of the open circuit voltage of donor-acceptor solar cells: Do polaronic energy levels play a role?”, Applied Physics Letters, 91, 243502, 2007. [14] H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, A. K. Y. Jen*, “Polymer Solar Cells That UseSelf-Assembled-Monolayer-Modified ZnO/Metals as Cathodes”, Advanced Materials,20, 2376–2382,2008. [15] N. Li, B. E. Lassiter, R. R. Lunt, G. Wei, S. R. Forrest, ”Voc enhanced due to reduced dark current in small molecule photovoltaic cells”, Applied Physics Letters,94, 023307,2009. [16] C. Zhang, S. W. Tong, C. Zhu, C. Jiang, E. T. Kang, D. S. H. Chan , “Enhancement in open circuit voltage induced by deep interface hole traps in polymer-fullerene bulk heterojunction solar cells”, Applied Physics Letters,94, 103305, 2009. [17] N. Blouin, A. Michaud, M. Leclerc*,”A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells”, Advanced Materials,19,2295-2300,2007. [18] R. C. Coffin, J. Peet, J. Rogers, G. C. Bazan*, ”Streamlined microwave-assited preparation of narrow Eg polymer for high-performance BHJ solar cells”, Nature Chemistry, 1,657-661, 2009. [19] S. H. Jin*, B. V. K. Naidu, H. S. Jeon, S. M. Park, J. S. Park, S. C. Kim, J. W. Lee, Y. S. Gal, ” Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT:PCBM system”, Solar Energy Materials and Solar Cells,91, 1187-1193, 2007. [20] J. K. J. van Duren, X. Yang, J. Loos, A. B. Sieval, J. C. Hummelen, R. A. J. Janssen, ”Relating the Morphology of Poly p-phenylene vinylene Methanofullerene Blends to Solar-Cell Performance”, Advanced Functional Materials,14,5,425-434,2004. [21] J. J. M. Halls, K. Pichler, A.B. Holmes,”Exciton diffusion and dissociation in a poly(pphenylenevinylene)/C60 heterojunction photovoltaic cell”, Applied Physics Letters, 68, 22, 3120-3122, 1996. [22] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger*,” Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology.”, Advanced Functional Materials, 15, 1617, 2005. [23] L. J. A. Koster*, “Origin of the light intensity dependence of the short-circuit current”, Applied Physics Letters, 87, 203502, 2005 [24] V. D. Mihailetchi, J. Wildeman, and P. W. M. Blom, ”Space-Charge Limited Photocurrent”, Physical Review Letters,94, 126602,2005. [25] T. W. Zeng, Y. Y. Lin, H. H. Lo, C. W. Chen, C. H. Chen, S. C. Liou, H. Y. Huang, W. F. Su, ”A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices”, Nanotechnology,17, 5387-5392, 2006. [26] V. Shrotriya, G. Li, Y. Yao, C. W. Chu, Y. Yang*, “Transition Metal Oxide as the Buffer Layer for Polymer Photovoltaic Cells,” Applied Physics Letters, 88, 073508-1-073508-3,2006. [27] P. Schilinsky, C. Waldauf,” Simulation of light intensity dependent current characteristics of polymer solar cells”, Journal of Applied Physics, 95, 5, 2816- 2819, 2004. [28] F. Nuesch, L. Zuppiroli,” Derivatized electrodes in the construction of organic light emitting diodes”, Advanced Materials, 9, 222, 1997. [29] I. H. Campbell, N. N. Barashkov, J. P. Ferraris, et al,” Controlling charge injection in organic electronic devices using self-assembled monolayers”, Applied Physics Letters, 71, 3528, 2004. [30] K. Liu*, J. Nogue’s, C. Leighton, H. Masuda and K. Nishio, I. V. Roshchin, I. K. Schuller, “Fabrication and thermal stability of arrays of Fe nanodots”, Applied Physics Letters,81, 23, 4434-4436,2002. [31] J. Kruger, U. Bach, M. Gratzel*,”Modification of TiO2 Heterojunctions with Benzoic Acid Derivatives in Hybrid Molecular Solid-State Devices”, Advanced Materials, 12, 447, 2000. [32] J. R. Durrant, S. A. Haque, E. Palomares, ”Towards optimization of electron transfer processes in dye sensitized solar cells”, Coord. Chem. Rev, 248, 1247, 2004. [33] Y. Liu, S. R. Scully, M. D. McGehee*, J. Liu,C. K. Luscombe, J. M. J. Fre’chet, S. E. Shaheen, D. S. Ginley, “Dependence of Band Offset and Open-Circuit Voltage on the Interfacial Interaction between TiO2 and Carboxylated Polythiophenes“, Journal of physical chemistry B,110, 3257, 2006. [34] C. Goh, S. R. Scully, M. D. McGehee, “Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells”, Journal of the Applied Physics, 101, 114503, 2007. [35] Y. Liu, S. R Scully, M. D. McGehee*, J. Liu, C. K. Luscombe, J. M. J. Frechet, S. E. Shaheen, D. S. Ginley, ”Dependence of Band Offset and Open-Circuit Voltage on the Interfacial Interaction between TiO2 and Carboxylated Polythiophenes”, Journal of Physics Chemistry B,110, 3257-3261,2006. [36]. H. Ishii, K. Sugiyama, E. Ito, K. Seki*, “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces”, Advanced Materials, 11, 605-625, 1999. [37].D. Cahen*, A. Kahn*, “Electronic energeitcs at surfaces and interfaces:concepts and experiments”, Advanced Materials, 15, 271-277, 2003. [38] A. Kay, M. Gratzel, ”Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins”, Journal of Physics Chemistry, 97, 6272-6277, 1993. [39] Z. Zhang, S. M. Zakeeruddin, B. C. O’Regan, R. Humphry-Baker, M. Gratzel*,”Influence of 4-Guanidinobutyric Acid as Coadsorbent in Reducing Recombination in Dye-Sensitized Solar Cells”, Journal of physics chemistry,109, 21818-21824,2005. [40] Z. Zhang, N. Evans, S.k M. Zakeeruddin, H. B. Robin, M. Gratzel*, ”Effects of ω-Guanidinoalkyl Acids as Coadsorbents in Dye-Sensitized Solar Cells”, Journal of Physical Chemistry C,111, 398-403,2007. [41] J. Lim, Y. S. Kwon, T. Park*, “Effect of coadsorbent properties on the photovoltaic performance of dye-sensitized solar cells”, Chemical Communications, 47, 4147–4149,2011. [42] N. Kopidakis*, N. R. Neale, A. J. Frank*,”Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: Evidence for surface passivation”,Journal of physics chemistryB,110, 12485-12489,2006. [43] M. Wang, C. Gratzel*, S. J. Moon, H. B. Robin, R. I. Nathalie, S. M. Zakeeruddinm, M. Gra‥tzel, “ Surface Design in Solid-State Dye Sensitized Solar Cells Effects of Zwitterionic Co adsorbents on Photovoltaic Performance”, Advanced Functional Materials,19,2163–2172,2009. [44] P. Wang, S. M. Zakeeruddin*, P. Comte, R. Charvet, H. B. Robin, M. Gratzel ,”Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic”, Journal of Physical Chemistry B,107, 14336-14341,2003. [45] Z. Yang, Z. Chi*, B. Xu, H. Li, X. Zhang, X. Li, S. Liu, Y. Zhang, J. Xu*,“High-Tg carbazole derivatives as a new class of aggregation-induced emission enhancement materials”,Journal of Materials Chemistry, 20, 7366,2010. [46] T. Marinado, M. Hahlin, X. Jiang, M. Quintana, E. M. J. Johansson, E. Gabrielsson, S. Plogmaker, D. P. Hagberg, G. Boschloo, S. M. Zakeeruddin, M. Gratzel, H. Siegbahn, L. Sun, A. Hagfeldt, H. Rensmo* ,”Surface Molecular Quantification and Photoelectrochemical Characterization of Mixed Organic Dye and Coadsorbent Layers on TiO2 for Dye-Sensitized Solar Cells”, Journal of Materials Chemistry,114, 11903–11910,2010. [47] A. Morandeira*, M. V. Martı’nez-Dı’az, A. Forneli, E. Palomares, T. Torres*, J. R. Durrant, ”Ru(II)-phthalocyanine sensitized solar cells the influence of co adsorbents upon interfacial electron transfer kinetics”, Journal of Materials Chemistry , 19, 5016–5026,2009. [48] M. K. Nazeeruddin, A. Kay, 1. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, M. Gratzel*,“Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II)charge-transfersensitizers ,X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes”, Journal of the American Society,93,115, 6382-6390,1993. [49] R. Zhu, C. Y. Jiang, B. Liu* ,S. Ramakrishna, ”Highly Efficient Nanoporous TiO2-Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal-Free Organic Dye”, Advanced Materials, 21, 994–1000 ,2009. [50] S. Yu*, S. Ahmadi, C. Sun, P. Palmgren, F. Hennies, M. Zuleta, M. Go‥thelid*,”4-tert-Butyl Pyridine Bond Site and Band Bending on TiO2(110)”,Journal of Physical Chemistry C, 114, 2315–2320,2010. [51] H. Kusama*, H. Orita, H. Sugihara, “DFT investigation of the TiO2 band shift by nitrogen-containing heterocycle adsorption and implications on dye-sensitized solar cell performance”, Solar Energy Materials & Solar Cells, 92, 84–87,2008. [52] S. Suzuki, H. Onishi, T. Sasaki, K. Fukui, Y. Iwasawa,”Identification of individual 4-methylpyridine molecules physisorbed and chemisorbed on TiO2(110)-(1x1) surface by STM”, Catalysis Letters, 54, 4, 177-180, 1998. [53] B. Ma BeiBei, R. Gao,L. Wang*,Y. Zhu,Y. Shi, Y. Geng, H. P. Dong,“Recent progress in interface modification for dye-sensitized solar cells”,Science China Chemistry,53,8,1669-1678,2010. [54] M. G‥othelid, Shun Yu, S. Ahmadi, C. Sun, M. Zuleta,”Structure-Dependent 4-Tert-Butyl Pyridine-Induced Band Bending at TiO2 Surfaces”, International Journal of Photoenergy, 31, 17, 2010. [55] X. Yin , W. Tan, J. Zhang, Y. Lin, X. Xiao, X. Zhou, X. Li, B. R. Sankapal, ”Synthesis of pyridine derivatives and their influence as additives, Journal of Applied Electrochemistry, 39, 147–154, 2009. [56] H. Kusama*, Y. Konishi, H. Sugihara, H. Arakawa*, ”Influence of alkylpyridine additives in electrolyte solution on the performance of dye-sensitized solar cell”, Solar Energy Materials & Solar Cells, 80, 167–179, 2003. [57] K. J. Jiang, K. Manseki, Y. H. Yu, N. Masaki,K. Suzuki, Y. l. Song*, S. Yanagida*, ”Photovoltaics Based on Hybridization of Effective Dye-Sensitized Titanium Oxide and Hole-Conductive Polymer P3HT”,Advanced Functional Materials,19, 2481–2485,2009. [58] Y. Y. Lin, T. H. Chu, C. W. Chen, W. F. Su,“ Improved performance of polymer/TiO2 nanorod bulk heterojunction photovoltaic devices by interface modification”, Applied Physics Letters ,92, 053312, 2008. [59] Y. Y. Lin, T. H. Chu, S. S. Li, C. H. Chuang, C. H. Chang, W. F. Su, C. P. Chang, M. W. Chu ,W. F. Su ,C. W. Chen, et al,” Interfacial Nanostructuring on the Performance of Polymer-TiO2 nanorod Bulk Heterojunction Solar Cells”, Journal of the American Society, 131, 3644–3649,2009. [60] Y.C. Huang, W. C. Yen, Y. C. Liao, Y. C. Yu, C. C. Hsu, M. L. Ho, P. T. Chou, W. F. Su*,”Band gap alignment conducting interface modifier enhances the performance of thermal stable polymer TiO2 nanorod solar cell”, Applied Physics Letters , 96,123501, 2010. [61] P. Ravirajan, A. M. Peiro’, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, J. Nelson*, ” Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnOs nanorod and an Amphiphilic Molecular Interface Layer”, Journal of Physical Chemistry B, 110, 7635-7639, 2006. [62] M. T. Lloyd*, R. P. Prasankumar, B. M. B. Sinclair, A. C. Mayer, D. C. Olson, J. W. P. Hsu, ”Impact of interfacial polymer morphology on photoexcitation dynamics and device performance in P3HT-ZnO heterojunctions”, Journal of Materials Chemistry, 19, 4609–4614, 2009. [63] T. C. Monson, M. T. Lloyd, D. C. Olson, Y. J. Lee, J. W. P. Hsu*,“Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells” Advanced Materials, 20, 4755–4759,2008. [64] I. Park, Y. Lim , S. Noh , D. Lee , M. Meister, J. J. Amsden, F. Laquai , C. Lee* , D. Y. Yoon *, “Enhanced performances of hybrid polymer solar cells with p-methoxybenzoic acid modified zinc oxide nanoparticles as an electron acceptor” Organic Electronics ,12 , 424-428,2011. [65] A. J. Said, G. Poize, C. Martini, D. Ferry, W. Marine, S. Giorgio, F. Fages, J. Hocq, J. Boucle’, J. Nelson, J. R. Durrant, J. Ackermann*, “Hybrid Bulk Heterojunction Solar Cells Based on P3HT and Porphyrin-Modified ZnO nanorod”, Journal of Physical Chemistry C,114, 11273–11278,2010. [66] I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, J. Kolny- Olesiak*,“Surface Treatment of CdSe Nanoparticles for Application in Hybrid Solar Cells: The Effect of Multiple Ligand Exchange with Pyridine”, Journal of Physical Chemistry C, 114, 12784–12791,2010. [67] Q. Zhang, T. P. Russell*, T. Emrick*,” Synthesis and Characterization of CdSe nanorods Functionalized with Regioregular Poly(3-hexylthiophene)”,Chemistry of Materials, 19, 3712-3716, 2007. [68] S. Dayal*, N. Kopidakis, D. C. Olson, D. S. Ginley, G. Rumbles, ”Photovoltaic Devices with a Low Band Gap Polymer and CdSe Nanostructures Exceeding 3% Efficiency”, Nano Letter,10, 239-242, 2010. [69] X. Jiang , F. Chen , W. Qiu, Q. Yan, Y. Nan , H. Xu, L. Yang, H. Chen, ”Effects of molecular interface modification in CdS/polymer hybrid bulk heterojunction solar cells.”, Solar Energy Materials & Solar Cells ,94 , 2223–2229,2010. [70] Z. Wang, S. Qu*, X. Zeng, J. Liu, F. Tan, L. Jin , Z. Wangl, ”Influence of interface modification on the performance of polymer/Bi2S3 nanorods bulk heterojunction solar cells”, Applied Surface Science, 257, 423–428, 2010. [71] P. D. Cozzoli, A. Kornowski, H. Weller*, ”Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 nanorods” Journal of the American Chemical Society, 125, 14539-14548, 2003. [72] J. Lorrmann, B. H. Badada, O. Ingan, V. Dyakonov, C. Deibel, ”Charge Carrier Extraction by Linearly Increasing Voltage :Analytic framework and ambipolar transients”, cond-mat.mtrl-sci, 2,4394,2010. [73] IM6/6eX manual from ZAHNER. [74] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Jr., T. V.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; N. Rega; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02, Gaussian, Inc.: Wallingford CT, 2004. [75] A. D. Becke, ” Density-Functional Thermochemistry. III. The Role of Exact Exchange.”Journal of Cemical Physics, 98, 5648-5652, 1993. [76] C. T. Lee, W. T. Yang,” Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. “Physical Review B, 37, 785-789,1998. [77] B. Y. Herbert, “Steric Effects in Displacement Reactions. 111. The Base Strengths of Pyridine,’ 2,6-Lutidine and the Monoalkylpyridines”, Journal of the American Society,, l77,1723-1726,1954. [78] M. B. M. Monte, R. R. Coelho, A. Middea, “Investigation of molecular weight and aggregation of asphaltenes in organic solvents using surface tension measurements”, 2003. [79] http://www.chemspider.com/Chemical-Structure.18724.html [80] L. D. A. Chumpitaz, L. F. Coutinho, A. J. A. Meirelles*,”Surface Tension of Fatty Acids and Triglycerides”, Journal of the American Oil Chemists' Society, 76, 3, 1999. [81] B. T. Xiong, B. X. Zhou, Z. Y. Zhu, T. Gao, L. H. Li, J. Cai, W. M. Cai,” Adsorption of 4-tert-Butylpyridine on TiO2 Surface in Dye-Sensitized Solar Cells”, Chinese Journal of Chemistry, 26, 70-76,2008. [82] S. N. Karthick , K. Prabakar , A. Subramania , J. T. Hong , J. J. Jang, H. J. Kim*,”Formation of anatase TiO2 nanoparticles by simple polymer gel technique and their properties”,PowderTechnology,205, 36–41,2011 [83] R. Sanjin, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, and F. Levy, ”Electronic structure of anatase TiO2 oxide” Journal of Applied Physics, 75, 6, 2945-2951,1994. [84] W. Gijpel, J. A. Andreson, D. Frankel, M. Jamhnig, K. Phillips, J. A. Schafer, G. Ocker, ”SURFACE DEFECTS OF TiO2(110): A COMBINED XPS, XAES AND ELS STUDY”, Surface Science ,139 ,333-346,1984. [85] S. M. Probes*, J. L. Gole, X. Chen, C. Burda, W. E. Carlos,” Defect-Related Optical Behavior in Surface Modified TiO2 Nanostructures” , Advanced Functional Materials,15, 1, 161-167,2005. [86] C. G. Allen, D. J. Baker, J. M. Albin, H. E. Oertli, D. T. Gillaspie, D. C. Olson, T. E. Furtak, R. T. Collins*,”Surface Modification of ZnO using Triethoxysilane-based Molecules”, Langmuir , 24, 13393-13398, 2008. [87] C. W. Hsu, L. Wang*, W. F. Su,” Effect of Chemical Structure of Interface Modifier of TiO2 on Photovoltaic Properties”, Journal of Colloid and Interface Science, 329, 182–187, 2009. [88] Y. C. Huang, J. H. Hsu, Y. C. Liao, W. C. Yen, S. S. Li, S. T. Lin, C. W. Chen, W. F. Su*,”Employing an amphiphilic interfacial modifier to enhance the performance of a poly(3-hexyl thiophene)/TiO2 hybrid solar cell”, Journal of Materials Chemistry, 21, 12.4450-4456, 2011. [89] D. P. Hagberg, J. H. Yum, H. J. Lee, F. D. Angelis, T. Marinado, K. M. Karlsson, H. B. Robin, L. Sun, A. Hagfeldt*, M. Gratzel, M. K. Nazeeruddin, ”Molecular Engineering of Organic Sensitizers for Dye-Sensitized Solar Cell Applications”, Journal of the American Society,130, 9,6259–6266 ,2008. [90] Y. Vaynzof, D. Kabra, L. Zhao, P. K. H. Ho, A. T. S. Wee, R. H. Friend, ”Improved photoinduced charge carriers separation in organic-inorganic hybrid photovoltaic devices”, Applied Physics Letters,97,033309,2010 [91] C. Zhang, S. W. Tong, C. Zhu, C. Jiang, E. T. Kang, D. S. H. Chan, “Enhancement in open circuit voltage induced by deep interface hole traps in polymer-fullerene bulk heterojunction solar cells“, Applied Physics Letters , 94, 103305, 2009. [92] D. P. Hagberg, J. H. Yum, H. J. Lee, F. D. Angelis, T. Marinado, K. M. Karlsson, H. B. Robin, L. Sun, A. Hagfeldt*, M. Gratzel, M. K. Nazeeruddin, ”Molecular Engineering of Organic Sensitizers for Dye-Sensitized Solar Cell Applications”, Journal of the American Society,130, 9,6259–6266 ,2008. [93] J. Ferber*, R. Stangl, J. Luther, ”An electrical model of the dye-sensitized solar cell”, Solar Energy Materials & Solar Cells, 153, 1, 29-54 , 1998. [94]. S. Westenhoff*, I. A. Howard, J. M. Hodgkiss, K. R. Kirov, H. A. Bronstein, C. K. Williams, N. C. Greenham, R. H. Friend*,”Charge Recombination in Organic Photovoltaic Devices with High Open-Circuit Voltages”, Journal of the American Society, 130, 13653–13658, 2008. [95] T. Kuwabara, M. Nakamoto, Y. Kawahara, T. Yamaguchi, K. Takahashi, “Characterization of ZnS-layer-inserted bulk-heterojunction organic solar cells by acimpedance spectroscopy”, Journal of the Applied Physics, 105 , 124513, 2009. [96] S. Wu, Q. Tai, F. Yan*, “Hybrid Photovoltaic Devices Based on Poly (3-hexylthiophene) and Ordered Electrospun ZnO Nanofibers”, Journal of Physical Chemistry C , 114, 6197–6200,2010. [97] M. S. Ivan*, S. Gimenez, F. S. Cisco, R. Gomez, Q. Shen, T. Toyoda*, J. Bisquert*, ”Recombination in Quntom dot solar cell”, Accounts of Chemical Research”, 42,11,1848-1857 , 2009. [98] S. R. Cowan, A. Roy, A. J. Heeger*,”Recombination in polymer-fullerene bulk heterojunction solar cells”, Physical review B, 82, 245207, 2010. [99] V. D. Mihailetchi, H. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom*, ”Charge transport and photocurrent generation in poly (3-hexylthiophene) Methanofullerene bulk-heterojunction solar cells, Advanced Functional Materials,16, 699–708,2006. [100] R. A. Street*, M. Schoendorf, “Interface state recombination in organic solar cells”, Physical review B, 81, 25307, 2010. [101] I. A. Howard*, R. Mauer, M. Meister, F. Laquai*, “Effect of Morphology on Ultrafast Free Carrier Generation in Polythiophene: Fullerene Organic Solar Cells”, Journal of the American Society, 132, 14866–14876, 2010. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43286 | - |
dc.description.abstract | 有機無機混摻材料是一種新興的光電材料可應用於廉價及可撓曲的太陽能電池的製作。本研究以二氧化鈦(TiO2)奈米桿取代在塊材異質接面P3HT/PCBM太陽能電池系統中的PCBM當作電子受體的材料。因為對環境低污染和廉價的TiO2奈米桿製作的太陽能電池比P3HT/PCBM系統能夠提供更好的熱穩定性。在塊材異質接面的結構中,適當的相分離不僅可以提供偌大的電子受體與予體間的界面進行有效的電荷分離,並且產生連續的電荷傳導路徑。
在我們TiO2奈米桿的系統中,TiO2奈米桿是在油酸的環境中經由溶膠凝膠法(sol-gel)所合成,隨後絕緣性的油酸部分被吡啶取代。雖然芳香烴類的吡啶會略為增加電子的傳輸,但是卻降低P3HT和TiO2奈米桿的相容性。因此我們藉由表面工程技術,使用不同的有機分子改質TiO2奈米桿表面,以增進P3HT/TiO2奈米桿混摻太陽能電池效率。在TiO2奈米桿上的吡啶先被較疏水性的吡啶衍生物如2,6-lutidine或4-tertbutyl-pyridine所取代。元件的開路電壓從0.71V分別增加至0.76V和0.78V,因為2,6-lutidine和4-tertbutyl-pyridine的偶極特性以及較親和的界面,減少電荷的再複合。我們進而設計兩個導電性無金屬的有機染料W4和WF,共軛和推拉電子系統的主鏈結構,使兩種染料分子的能階介於P3HT和TiO2奈米桿之間,並形成有利於電荷傳輸的階梯式能階。染料會在TiO2奈米桿被吡啶衍生物改質之後再接支於表面上,同時藉由一些元件量測分析,例如不同光強度照射、藉由線性增加電壓抽取電荷、空間電荷限制電流等方法,我們發現在P3HT/TiO2-dye的太陽能電池系統中,電荷載子傳輸的大幅提升以及電荷再複合損失機制的減低 TiO2奈米桿經由4-tertbutyl-pyridine以及W4染料改質之後,在表面包含了最少的絕緣油酸以及最多的W4染料分子,與只經吡啶改質的TiO2奈米例子相較,電池的性能大大的改善,其開路電壓由0.71V增至0.85V、短路電流由1.17 mA/cm2增至2.48 mA/cm2、填充因子由48.23% 增至64.40%,光電轉換效率由0.40%增至1.36%。 | zh_TW |
dc.description.abstract | Organic–inorganic hybrids have emerged as a novel class of optoelectronic materials for low cost and flexible photovoltaic applications. We have replaced PCBM acceptor by TiO2nanorods in the bulk heterojunction P3HT/PCBM solar cell system. The environmental friendly and low cost TiO2 can provide more thermal stable solar cell than that of P3HT/PCBM. In the bulk heterojunction structure, adequate phase separation provides not only large interfaces between donor and acceptor for efficient charge separation but also generates continuous conducting path for effective charge transport.
In our TiO2 nanorod system, the TiO2 nanorod were synthesized through sol-gel process in oleic acid, and then a part of insulating oleic acid was replaced by pyridine. Although the aromatic pyridine has improved the electron transport slightly as compared with insulating oleic acid, the compatibility between P3HT and TiO2nanorod was reduced. Therefore, we have done interface engineering using different organic molecules on the surface of TiO2 nanorod to improve the solar cell efficiency of P3HT/TiO2 nanorod hybrid. Pyridine was replaced by more hydrophobic pyridine derivatives such as 2,6-lutidine and 4-tertbutyl-pyridine. The Voc of the device was increased from 0.71V to 0.76 V and 0.78 V, respectively as compared with pyridine due to the reduced charge recombination at improved interfaces by using more compatible pyridine derivatives interface modifiers. We have designed two conducting metal-free dye, W4 and WF with conjugating and donor-acceptor structure. They exhibit bandgap between P3HT and TiO2 nanorod which can form a cascade energy level to facilitate charge transport. They were placed on the TiO2 after the pyridine derivatives treatment. Several device measurement analyses like power dependent method, electrochemistry impedance spectroscopy (EIS), charge extraction by linearly increasing voltage (CELIV) and space charge limited current (SCLC) method were used to study the device physics of P3HT/TiO2 nanorod solar cell fabricated from dye modified TiO2 nanorod. The device efficiency is greatly improved using 4-tertbutylpyridine and W4 treated TiO2 nanorod on its surface because the TiO2 containing the least amount of insulating oleic acid and the most amount W4 dye. The device exhibits the performance of power conversion efficiency 1.36%, Voc=0.85 V, Jsc=2.48 mA/cm2, FF=64.40% as compares with device made from pyridine-treated TiO2 nanorod having PCE=0.40%, Voc=0.71 V, Jsc=1.17 mA/cm2, FF=48.23%. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:47:16Z (GMT). No. of bitstreams: 1 ntu-100-R98549004-1.pdf: 21471238 bytes, checksum: a05e4377880f8e3d06195bf9a5032155 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 摘要.................................................................................................................................I
Abstract..................................................................................................................................II 目錄...........................................................................................................................V 圖目錄................................................................................................................................VIII 表目錄.................................................................................................................................XII 第一章 文獻回顧...................................................................................................................1 1-1 前言.................. ..........................................................................................................1 1-2 有機太陽能電池.........................................................................................................2 1-2-1染料敏化太陽能電池...........................................................................................2 1-2-2 高分子太陽能電池..............................................................................................3 1-3高分子太陽能電池基本運作原理...............................................................................5 1-4有機太陽能元件的原理及特性分析...........................................................................7 1-4-1 開路電壓 (open circuit voltage, Voc)..................................................................8 1-4-2 短路電流(short circuit current,Isc).....................................................................10 1-4-3 填充因子(fill factor)..........................................................................................12 1-4-4 光電轉換效率(power conversion efficiency,PCE)............................................14 1-5 無機氧化物的改質應用於有機太陽能電池………………………….................15 1-5-1 異質接面固態元件(Heterojunction Solid-State Device)..................................15 1-5-2 有機無機雙層太陽能電池(Bilayer solar cell)..................................................17 1-5-3染料敏化液態以及固態薄膜太陽能電池…………………………………..18 1-5-4有機無機混摻太陽能電池.…...………………………..………………........23 1-5-4-1 P3HT/TiO2混摻太陽能電池…………………….......................................23 1-5-4-2 P3HT/ZnO混摻太陽能電池…….………………………….…………..25 1-5-4-3 P3HT/CdSe混摻太陽能電池…………………………………………......26 1-6 研究動機……………………………………………………………………….....29 第二章 實驗….………………………………………….………………………………...30 2-1實驗藥品…………………………………………………..……………………......30 2-2實驗儀器………………………………………………………………..…………..31 2-3實驗步驟…………………………………………………………………..………..33 2-3-1 材料的合成…...…...……………………………..…………………..………..33 2-3-1-1 TiO2奈米桿的合成…………………………..……………………………33 2-3-1-2 (2-cyano-3-(5-(7-(thiophen-2-yl)benzothiadiazol-4-yl)thiophen-2-yl)acrylic acid)(W4)的合成與純化…………………………………………………34 2-3-1-3 (Z)-cyano-3-(5-(7-(5-(9,9-dioctyl-9H-fluoren-2-yl)thiophen-2-yl)benzo[c] [1,2,5]thiadiazol-4-yl)thiophen-2-yl)acrylic acid(WF)的合成與純化36 目錄 2-3-2 TiO2奈米桿的表面改質……………………………………………………….37 2-3-2-1 由TiO2-OA置換成TiO2-PYR、TiO2-LUT以及TiO2-TBP…………….38 2-3-2-2 由TiO2-PYR derivatives置換成TiO2-PYR derivatives-W4、TiO2- PYR-WF………………..………………………………………………...38 2-3-3 表面改質TiO2奈米桿的不同分析樣品製備與實驗流程………………….39 2-3-3-1 元素分析儀…….…….……………………………………………….....39 2-3-3-2 X射線光電子光譜儀(X-ray photoelectonicspectroscopy,XPS)…………40 2-3-3-3 接觸角的測量(Contact angle goniometer)..…….………………...……41 2-3-3-4 以空間電荷限制電流(Space charge limitedcurrent,SCLC)測量pristin TiO2 薄膜電子移動率…………….…………………………….………42 2-3-4 P3HT/TiO2混摻薄膜的應用……………………..…………………………43 2-3-4-1 混摻太陽能電池元件的製作…………………………………………..43 2-3-4-1-1 光作用層的溶液配置……………………………………………..43 2-3-4-1-2 太陽能電池元件的製作…………………………………………….43 2-3-4-2 利用Charge Extration by Linearly IncreasingVoltage(CELIV)量測混摻薄 膜元件的電荷載子移動率……………………………………………...46 2-3-4-3 電化學阻抗頻譜分析(Electrochemical Impedance Spectroscopy,EIS)47 2-3-5 分子理論模擬計算………………………………………………...……......49 第三章 結果與討論……………………………………………………………………...50 3-1 吡啶衍生物改質TiO2奈米桿的化性物性及其太陽能電性特性.………………..51 3-1-1 吡啶衍生物表面改質劑在TiO2奈米桿上的元素分析…………………...…51 3-1-2 吡啶衍生物表面改質劑在TiO2奈米桿上的XPS分析……………………55 3-1-3 吡啶衍生物表面改質劑在TiO2奈米桿上的表面性質…………….………57 3-1-4 吡啶衍生物表面改質TiO2奈米桿的電性…………………………………...58 3-1-5 吡啶衍生物改質的TiO2奈米桿製作 P3HT/TiO2太陽能電池的特性研究..60 3-2 染料改質TiO2-PYR 奈米桿的化性物性及與P3HT混摻太陽能電池的特性研究 ………………………………………………………………….…………………62 3-2-1 染料的物性與化性…………………………………………………………..63 3-2-2 染料改質在TiO2PYR奈米桿上的數量分析………………...………………64 3-2-3 染料改質的TiO2-PYR奈米桿製作P3HT/TiO2太陽能電池的特性研究....67 3-2-3-1 染料改質的TiO2-PYR奈米桿與P3HT混摻太陽能電池元件效率…..67 3-2-3-2 以SCLC量測染料改質的TiO2-PYR奈米桿與P3HT混摻薄膜的電 性……………………………….…………………………………………69 3-2-3-3 以CELIV量測染料改質的TiO2-PYR奈米桿製作P3HT/TiO2元件的電 性…………………………………………………………….……………70 3-2-3-4 以EIS分析元件內部電荷轉移的效應…………………..……….........71 3-2-3-5 以不同光強度研究染料改質的TiO2-PYR奈米桿製作P3HT/TiO2元件的 損失機制分析..…………………………………………………………...73 3-2-4 以W4接支經吡啶衍生物改質的TiO2 奈米桿與P3HT混摻元件太陽能電 池的特性研究…….…………………………...……………………………79 3-2-4-1 W4改質經吡啶衍生物接支TiO2奈米桿的染料數量………..……...80 3-2-4-2 以W4接支經吡啶衍生物改質的TiO2 奈米桿與P3HT混摻元件太陽 能電池的效率表現…………………..……...…………………………81 第四章 結論...…………………………...………………………………………………...83 第五章 未來工作或建議事項………………………………….…………………………84 第六章 參考文獻………………………………………………………………………… 85 | |
dc.language.iso | zh-TW | |
dc.title | 以表面改質工程增進聚三己基噻吩/二氧化鈦奈米桿混摻太陽能電池的效率 | zh_TW |
dc.title | Improve the Efficiency of Poly(3-hexylthiophene)
/Titanium Oxide Nanorod Hybrid Solar Cell via Interface Engineering | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 薛景中,陳學禮,黃裕清 | |
dc.subject.keyword | 二氧化鈦奈米桿,太陽能電池,界面改質,聚三己基噻,吩, | zh_TW |
dc.subject.keyword | TiO2 nanorod,hybrid,P3HT,solar cell,interface, | en |
dc.relation.page | 96 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-16 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 20.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。