請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43280
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭斯彥 | |
dc.contributor.author | Tsung-Hung Tsai | en |
dc.contributor.author | 蔡宗宏 | zh_TW |
dc.date.accessioned | 2021-06-15T01:46:55Z | - |
dc.date.available | 2009-07-16 | |
dc.date.copyright | 2009-07-16 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-08 | |
dc.identifier.citation | [1] Cucchiara, R.; Piccardi, M.; Mello, P. ”Image analysis and rule-based reasoning for a traffic monitoring system”
Intelligent Transportation Systems, IEEE Transactions on Volume 1, Issue 2, Jun 2000 [2] Kumar, P.; Ranganath, S.; Huang Weimin; Sengupta, K. “Framework for real-time behavior interpretation from traffic video” Intelligent Transportation Systems, IEEE Transactions on Volume 6, Issue 1, March 2005 [3] Jun-Wei Hsieh Shih-Hao Yu Yung-Sheng Chen Wen-Fong Hu Dept. of Electr. Eng., Yuan Ze Univ., Chung-li “Automatic traffic surveillance system for vehicle tracking and classification”, Taiwan; This paper appears in: Intelligent Transportation Systems, IEEE Transactions on Publication Date: June 2006 Volume: 7, [4] Prati, A.; Mikic, I.; Grana, C.; Trivedi, M.M “Shadow detection algorithms for traffic flow analysis: acomparative study”. Intelligent Transportation Systems, 2001. Proceedings. 2001 IEEE Volume , Issue , 2001 [5] Tuzel, O. Porikli, F. Meer, P. “A Bayesian Approach to Background Modeling” Mitsubishi Electric Research Laboratories; This paper appears in: Computer Vision and Pattern Recognition - Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference on Publication Date: 25-25 June 2005 [6] Stefano Messelodi (1), Carla Maria Modena (1), Nicola Segata (2) and Michele Zanin (1) “A Kalman Filter Based Background Updating Algorithm Robust to Sharp Illumination Changes” (1) ITC-irst, Trento, Italy (2) University of Trento, Italy [7] Haritaoglu, I.; Harwood, D.; Davis, L.S. “A fast background scene modeling and maintenance for outdoorsurveillance” Pattern Recognition, 2000. Proceedings. 15th International Conference on Volume 4, Issue , 2000 [8] Stander, J.; Mech, R.; Ostermann, J. “Detection of moving cast shadows for object segmentation” Multimedia, IEEE Transactions on Volume 1, Issue 1, Mar 1999 [9] Kai-Tai Song; Jen-Chao Tai “Image-Based Traffic Monitoring With Shadow Suppression” Proceedings of the IEEE Volume 95, Issue 2, Feb. 2007 [10] Prati, A.; Mikic, I.; Trivedi, M.M.; Cucchiara, R. ”Detecting moving shadows: algorithms and evaluation” Pattern Analysis and Machine Intelligence, IEEE Transactions on Volume 25, Issue 7, July 2003 [11] Cucchiara, R.; Grana, C.; Piccardi, M.; Prati, A. “Detecting objects, shadows and ghosts in video streams byexploiting color and motion information” Image Analysis and Processing, 2001. Proceedings. 11th International Conference on Volume , Issue , 26-28 Sep 2001 [12] Comaniciu, D. Ramesh, V. Meer, P. “Kernel-based object tracking” Real-Time Vision & Modeling Dept., Siemens Corporate Res., Princeton, NJ, USA; This paper appears in: Pattern Analysis and Machine Intelligence, IEEE Transactions on Publication Date: May 2003 Volume: 25 [13] Amer, A. “Voting-based simultaneous tracking of multiple video objects” Circuits and Systems for Video Technology, IEEE Transactions on Volume 15, Issue 11, Nov. 2005 [14] Seong-Wook Joo Chellappa, R. “A Multiple-Hypothesis Approach for Multiobject Visual Tracking” Google Inc., Mountain View; This paper appears in: Image Processing, IEEE Transactions on Publication Date: Nov. 2007 Volume: 16, [15] Foresti, G.L. “Object recognition and tracking for remote video surveillance” Circuits and Systems for Video Technology, IEEE Transactions on Volume 9, Issue 7, Oct 1999 [16] Jianpeng Zhou Jack Hoang “Real Time Robust Human Detection and Tracking System” I3DVR International Inc,Canada; This paper appears in: Computer Vision and Pattern Recognition - Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference on Publication Date: 25-25 June 2005 [17] Michael Isard and Andrew Blake “CONDENSATION -- conditional density propagation for visual tracking” Int. J. Computer Vision, 29, 1, 5--28, (1998) [18] Erik Cuevas1,2, Daniel Zaldivar1,2 and Raul Rojas1 “Kalman filter for vision tracking” 10th August 2005 [19] Youngrock Yoon Kosaka, A. Kak, A.C. “A New Kalman-Filter-Based Framework for Fast and Accurate Visual Tracking of Rigid Objects” Robot Vision Lab., Purdue Univ., Lafayette, IN; This paper appears in: Robotics, IEEE Transactions on Publication Date: Oct. 2008 Volume: 24 [20] Dan Simon “Kalman Filtering” Embedded Systems Programs June 2001 [21] Snidaro, L.; Micheloni, C.; Chiavedale, C. “Video security for ambient intelligence” Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on Volume 35, Issue 1, Jan. 2005 [22] Yu-Ting Chen; Chu-Song Chen; Yi-Ping Hung “Integration of Background Modeling and Object Tracking” Multimedia and Expo, 2006 IEEE International Conference on Volume , Issue , 9-12 July 2006 [23] Elgammal, A.E. Davis, L.S. “Probabilistic framework for segmenting people under occlusion” Comput. Vision Lab., Maryland Univ., College Park, MD; This paper appears in: Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on Publication Date: 2001 Volume: 2, [24] Kumar, P.; Ranganath, S.; Sengupta, K.; Huang Weimin “Cooperative Multitarget Tracking With Efficient Split and Merge Handling” Circuits and Systems for Video Technology, IEEE Transactions on Volume 16, Issue 12, Dec. 2006 [25] Yu-Ting Chen Chu-Song Chen “Fast Human Detection Using a Novel Boosted Cascading Structure With Meta Stages” Inst. of Inf. Sci., Acad. Sinica, Taipei; This paper appears in: Image Processing, IEEE Transactions on Publication Date: Aug. 2008 Volume: 17, Issue: 8 [26] Zhongna Zhou Xi Chen Yu-Chia Chung Zhihai He Han, T.X. Keller, J.M. “Activity Analysis, Summarization, and Visualization for Indoor Human Activity Monitoring” Dept. of Electr. & Comput. Eng., Univ. of Missouri, Columbia, MO; This paper appears in: Circuits and Systems for Video Technology, IEEE Transactions on Publication Date: Nov. 2008 Volume: 18, Issue: 11 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43280 | - |
dc.description.abstract | 由於軍事和社會安全的需要,影像分析和物件追蹤在近年來逐漸成為一個被熱門研究的領域。影像分析和物件追蹤主要是由前端的前景擷取和後端的物件分析這兩個過程所組成,前端的前景擷取效果嚴重影響著之後物件分析的難度和分析準確性,因此本論文對於系統中之背景與前景擷取之效率與正確性特別加以探討與研究。這篇論文先藉由實作許多常見且直觀的背景產生和前景擷取演算法以分析其優缺點,並針對即時性和節省記憶體使用量方面提出了新的背景產生方法。在前景擷取過程中,並針對常導致物件分析出錯的影子利用Sobel Filter來達到預先消除的目的。
在物件追蹤方面,本篇論文採用Kalman filter為核心來對物件運行的軌跡和物件大小變化來做猜測和修正。此外,針對複數物件之間可能會發生的重疊合併與分離做出辨識並持續追蹤。此系統也可以依使用目的讓使用者自由定義所需辨識之物件的特徵、所須監視的區域與所需發出警報的事件。 此系統經過了多部影片的測試,包括室內、室外、人車混合、高速公路與高雜訊環境下之測試,並實際與架設在台灣大學育成中心內之一監視器結合。經過長時間的測試結果,顯示出此系統在物件辨識成功率與即時性上面都有著不錯的成效,並留有許多擴充的空間。 | zh_TW |
dc.description.abstract | As a result of the need of military and social security, image analysis and object tracking has become the field studied popularly in the recent years. Image analysis and object tracking consist of two main steps ‘foreground extraction’ and ‘object analysis and tracking’. The result of foreground extraction has the significant influence on the accuracy of object analysis and tracking, so this paper emphasizes the efficiency and accuracy of background generation and foreground extraction. Firstly, this paper implements many simple and popular background generation and foreground extraction algorithms, then analysis the advantage and disadvantage. Secondly, this paper also presents a new method of background generations that fulfill the requirement of real-time and reduce the usage of memory. For foreground extraction, this system detects and removes shadow by sobel filter.
Object tracking is performed by applying a kalman filter to predict and correct the trajectory and size change of object. In addition, tracking and recognition of merge and split of multiple objects are also available. This system may depend on the user’s goal and let user define freely the feature of object which would be tracked, the region would be monitored and the activity would let the system make an alert. This system passed through many testing videos, including in-door, out-door, mix of human and vehicle, the highway and the high-noise environment. In addition, to test and evaluate the algorithm and method, this work deploys the system in a real living environment out of our lab. The experiment result present that this system have good efficiency in real-time and high accuracy, it is also flexible and robust. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:46:55Z (GMT). No. of bitstreams: 1 ntu-98-R96921068-1.pdf: 1905033 bytes, checksum: e15af02e9ff1b3e54741ef16b9b5a882 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract ii Chapter 1 Introduction 1 Chapter 2 Related Works 6 Chapter 3 System Architecture and Background Generation 12 3.1 System Architecture 12 3.2 Background Generation 15 3.2.1 YUV Histogram 15 3.2.2 Multilevel Background 19 3.2.3 Background generation by training 25 3.2.4 Squeeze Background 26 Chapter 4 Foreground Extraction 32 4.1 Variance formula 34 4.2 Threshold decision according to Gaussian distribution 35 4.3 Threshold decision by training 36 4.4 Threshold decision by k-means clustering 37 Chapter 5 Shadow Detection and Suppression 43 5.1 shadow suppression using the characteristics of shadow 43 5.2 shadow suppression by ratio and offset 45 5.3 shadow detection and suppression by sobel filter 47 Chapter 6 Object tracking and classification 51 6.1 Object Segmentation 53 6.2 Object estimation by Kalman filter 55 6.3 Merge and split handling 60 6.4 Classification of objects and activities 63 Chapter 7 Conclusions and future works 65 7.1 Conclusions 65 7.2 Future works 66 References 67 | |
dc.language.iso | en | |
dc.title | 即時多物件追蹤與分析系統 | zh_TW |
dc.title | A Real-Time Multiple Object Tracking and Analyzing System | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 雷欽隆,王國禎,陳俊良,趙涵捷 | |
dc.subject.keyword | 物件追蹤,影像分析,卡爾曼濾波器,陰影消除,物件分割, | zh_TW |
dc.subject.keyword | object tracking,image analysis,object segmentation,shadow detection,kalman filter,k-means,video surveillance, | en |
dc.relation.page | 70 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-08 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 1.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。