Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43276
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇銘嘉(Ming-Jai Su)
dc.contributor.authorYen-Chu Linen
dc.contributor.author林彥竹zh_TW
dc.date.accessioned2021-06-15T01:46:40Z-
dc.date.available2019-07-08
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-08
dc.identifier.citation1. Michael L. Mohler YH, Zhongzhi Wu, Dong Jin Hwang, Duane D. Miller,: Recent and emerging anti-diabetes targets. Medicinal Research Reviews 29:125-195, 2009
2. Bureau of Health Promotion DoH, R.O.C(Taiwan): Diabetes Prevention and Future in Taiwan. Bureau of Health Promotion DoH, R.O.C(Taiwan), Ed., 2003
3. Brunton LL: GOODMAN & GILMAN'S THE PHARMACOLOGICAL BASIS OF
THERAPEUTICS. McGRAW-HILL, Medical Publishing Division, 2006
4. Fryer LGD, Parbu-Patel A, Carling D: The Anti-diabetic Drugs Rosiglitazone and
Metformin Stimulate AMP-activated Protein Kinase through Distinct Signaling Pathways. J. Biol. Chem. 277:25226-25232, 2002
5. Towler MC, Hardie DG: AMP-activated protein kinase in metabolic control and
insulin signaling. Circ Res 100:328-341, 2007
6. Kahn BB, Alquier T, Carling D, Hardie DG: AMP-activated protein kinase: ancient
energy gauge provides clues to modern understanding of metabolism. Cell Metab
1:15-25, 2005
7. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE: Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167-1174, 2001
8. Hsu FL, Chen YC, Cheng JT: Caffeic acid as active principle from the fruit of
Xanthium strumarium to lower plasma glucose in diabetic rats. Planta Med 66:228-230, 2000
9. Matsui T, Ebuchi S, Fujise T, Abesundara KJ, Doi S, Yamada H, Matsumoto K:
Strong antihyperglycemic effectss of water-soluble fraction of Brazilian propolis and its bioactive constituent, 3,4,5-tri-O-caffeoylquinic acid. Biol Pharm Bull 27:1797-1803, 2004
10. Tolan I, Ragoobirsingh D, Morrison EY: Isolation and purification of the
hypoglycaemic principle present in Capsicum frutescens. Phytother Res 18:95-96, 2004
11. Yoshida T, Yamagishi S, Matsui T, Nakamura K, Ueno T, Takeuchi M, Sata M:
Telmisartan, an angiotensin II type 1 receptor blocker, inhibits advanced glycation
end-product (AGE)-elicited hepatic insulin resistance via peroxisome
proliferator-activated receptor-gamma activation. J Int Med Res 36:237-243, 2008
12. Park S, Scheffler TL, Gunawan AM, Shi H, Zeng C, Hannon KM, Grant AL,
Gerrard DE: Chronic elevated calcium blocks AMPK-induced GLUT-4 expression in
skeletal muscle. Am J Physiol Cell Physiol 296:C106-115, 2009
13. Tzeng TF, Liu IM, Cheng JT: Activation of opioid mu-receptors by loperamide to
improve interleukin-6-induced inhibition of insulin signals in myoblast C2C12 cells.
Diabetologia 48:1386-1392, 2005
14. Chi TC, Lee SS, Su MJ: Antihyperglycemic effects of aporphines and their derivatives in normal and diabetic rats. Planta Med 72:1175-1180, 2006
15. Huang S, Czech MP: The GLUT4 glucose transporter. Cell Metab 5:237-252, 2007
16. Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE: 5'-AMP-activated protein
kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to
5-aminoimidazole-4-carboxamide riboside. J Biol Chem 276:46912-46916, 2001
17. Jing M, Cheruvu VK, Ismail-Beigi F: Stimulation of glucose transport in response to activation of distinct AMPK signaling pathways. Am J Physiol Cell Physiol
295:C1071-1082, 2008
18. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP: The effects of
insulin on the disposal of intravenous glucose. Results from indirect calorimetry and
hepatic and femoral venous catheterization. Diabetes 30:1000-1007, 1981
19. Postic C, Dentin R, Girard J: Role of the liver in the control of carbohydrate and
lipid homeostasis. Diabetes Metab 30:398-408, 2004
20. Michaluart P, Masferrer JL, Carothers AM, Subbaramaiah K, Zweifel BS, Koboldt
C, Mestre JR, Grunberger D, Sacks PG, Tanabe T, Dannenberg AJ: Inhibitory Effectss of Caffeic Acid Phenethyl Ester on the Activity and Expression of Cyclooxygenase-2 in Human Oral Epithelial Cells and in a Rat Model of Inflammation. Cancer Res
59:2347-2352, 1999
21. Chen YJ, Shiao MS, Wang SY: The antioxidant caffeic acid phenethyl ester induces apoptosis associated with selective scavenging of hydrogen peroxide in human leukemic HL-60 cells. Anticancer Drugs 12:143-149, 2001
22. Park EH, Kahng JH: Suppressive effectss of propolis in rat adjuvant arthritis. Arch
Pharm Res 22:554-558, 1999
23. Ohara K, Uchida A, Nagasaka R, Ushio H, Ohshima T: The effectss of
hydroxycinnamic acid derivatives on adiponectin secretion. Phytomedicine 16:130-137, 2009
24. Park SH, Min TS: Caffeic acid phenethyl ester ameliorates changes in IGFs
secretion and gene expression in streptozotocin-induced diabetic rats. Life Sci
78:1741-1747, 2006
25. Lee ES, Uhm K-O, Lee YM, Han M, Lee M, Park JM, Suh P-G, Park S-H, Kim HS: CAPE (caffeic acid phenethyl ester) stimulates glucose uptake through AMPK
(AMP-activated protein kinase) activation in skeletal muscle cells. Biochemical and
Biophysical Research Communications 361:854-858, 2007
26. Kelly M, Keller C, Avilucea PR, Keller P, Luo Z, Xiang X, Giralt M, Hidalgo J,
Saha AK, Pedersen BK, Ruderman NB: AMPK activity is diminished in tissues of IL-6 knockout mice: the effects of exercise. Biochemical and Biophysical Research
Communications 320:449-454, 2004
27. Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhausl W, Furnsinn C: Thiazolidinediones, like metformin, inhibit
respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 53:1052-1059, 2004
28. El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X:
Dimethylbiguanide inhibits cell respiration via an indirect effects targeted on the
respiratory chain complex I. J Biol Chem 275:223-228, 2000
29. Zhang L, He H, Balschi JA: Metformin and phenformin activate AMP-activated
protein kinase in the heart by increasing cytosolic AMP concentration. Am J Physiol
Heart Circ Physiol 293:H457-466, 2007
30. Mohler ML, He Y, Wu Z, Hwang DJ, Miller DD: Recent and emerging anti-diabetes targets. Med Res Rev 29:125-195, 2009
31. Miyamoto L, Toyoda T, Hayashi T, Yonemitsu S, Nakano M, Tanaka S, Ebihara K,
Masuzaki H, Hosoda K, Ogawa Y, Inoue G, Fushiki T, Nakao K: Effects of acute
activation of 5'-AMP-activated protein kinase on glycogen regulation in isolated rat
skeletal muscle. J Appl Physiol 102:1007-1013, 2007
32. Iglesias MA, Ye JM, Frangioudakis G, Saha AK, Tomas E, Ruderman NB, Cooney
GJ, Kraegen EW: AICAR administration causes an apparent enhancement of muscle
and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes 51:2886-2894,
2002
33. Holmes BF, Kurth-Kraczek EJ, Winder WW: Chronic activation of
5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in
muscle. J Appl Physiol 87:1990-1995, 1999
34. Hegarty BD, Turner N, Cooney GJ, Kraegen EW: Insulin resistance and fuel
homeostasis: the role of AMP-activated protein kinase. Acta Physiol (Oxf) 196:129-145, 2009
35. Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE:
Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion.
Obes Res 9:414-417, 2001
36. Hotamisligil GS, Shargill NS, Spiegelman BM: Adipose expression of tumor
necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87-91, 1993
37. Senn JJ, Klover PJ, Nowak IA, Mooney RA: Interleukin-6 induces cellular insulin
resistance in hepatocytes. Diabetes 51:3391-3399, 2002
38. Kristiansen OP, Mandrup-Poulsen T: Interleukin-6 and diabetes: the good, the bad,
or the indifferent? Diabetes 54 Suppl 2:S114-124, 2005
39. Zhong H, Minneman KP: Alpha1-adrenoceptor subtypes. Eur J Pharmacol
375:261-276, 1999
40. Faintrenie G, Geloen A: Alpha-1 adrenergic stimulation of glucose uptake in rat
white adipocytes. J Pharmacol Exp Ther 286:607-610, 1998
41. Cheng JT, Liu IM: Stimulatory effects of caffeic acid on alpha1A-adrenoceptors to
increase glucose uptake into cultured C2C12 cells. Naunyn Schmiedebergs Arch
Pharmacol 362:122-127, 2000
42. Kim EJ, Jung SN, Son KH, Kim SR, Ha TY, Park MG, Jo IG, Park JG, Choe W, Kim SS, Ha J: Antidiabetes and antiobesity effects of cryptotanshinone via activation of AMP-activated protein kinase. Mol Pharmacol 72:62-72, 2007
43. Pang T, Zhang ZS, Gu M, Qiu BY, Yu LF, Cao PR, Shao W, Su MB, Li JY, Nan FJ, Li J: Small molecule antagonizes autoinhibition and activates AMP-activated protein
kinase in cells. J Biol Chem 283:16051-16060, 2008
44. Lin B, Li Z, Park K, Deng L, Pai A, Zhong L, Pirrung MC, Webster NJ:
Identification of novel orally available small molecule insulin mimetics. J Pharmacol
Exp Ther 323:579-585, 2007
45. Saltiel AR, Kahn CR: Insulin signalling and the regulation of glucose and lipid
metabolism. Nature 414:799-806, 2001
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43276-
dc.description.abstractKS-C370G是caffeic acid phenethyl ester (CAPE)的相似物,CAPE是蜂膠裡的成分,KS-C370G具有許多生化及藥理作用類似CAPE甚至更好。我們實驗室之前研究發現,KS-C370G在STZ-induced的type 1糖尿病鼠和high fat-induced的type 2糖尿病鼠單次給藥有降空腹血糖作用,長期治療type 2糖尿病鼠則有降血糖作用及治療血中高胰島素(hyperinsulinemia)等糖尿病症狀,惟詳細機轉仍不清楚。
本實驗使用C2C12小鼠骨骼肌細胞株及Hep 3B人類肝癌細胞株來作為細胞模式探討KS-C370G降血糖作用及機制。本實驗發現,KS-C370G可以促進C2C12小鼠骨骼肌細胞株對葡萄糖的吸收及增加Hep 3B肝臟細胞肝醣含量。在C2C12細胞給予不同濃度藥物刺激30分鐘,從0.03 µM開始可以顯著活化AMPK,濃度增加到1 µM AMPK活化有下降的趨勢,到了3 µM來到了最低點,但是10 µM又有開始活化的現象。使用高濃度10 µM在不同時間測C2C12細胞AMPK活化狀態,發現15分鐘AMPK有最大的活化,一直到30分鐘還會活化AMPK,60分鐘後AMPK活化消失,但給藥120分鐘後又開始活化AMPK,而使用低濃度0.03 µM做time course實驗,發現KS-C370G從5分鐘開始活化C2C12細胞的AMPK,一直持續到120分鐘AMPK都有很強的活化,然而KS-C370G活化Akt模式與其活化AMPK有所不同,在低濃度和高濃度下KS-C370G從5分鐘開始活化Akt,此作用持續到120分鐘。
在Hep 3B細胞中,給予不同濃度藥物1小時,發現KS-C370G在濃度0.3和1 µM 可使AMPK活化,但是此條件下Akt並沒有被活化,而在濃度10 µM刺激下,我們發現給予藥物15分鐘AMPK活性增至最大,但是在30分鐘活化狀態下降持續到60分鐘,在120分鐘後AMPK活化漸增加,而Akt則是在15分鐘開始被活化,60分鐘活化消失,但是給予藥物120分鐘Akt又被活化。
我們進一步探討KS-C370G對細胞ATP含量之影響,結果發現在C2C12細胞給予藥物不同濃度30分鐘,ATP隨著濃度提高而下降,高濃度10 µM作用下,則發現ATP隨著給藥時間越久有漸恢復的趨勢,但是仍然低於未給藥組別。此外,KS-C370G促進肝臟細胞肝醣合成的現象會被Compound C和prazosin抑制。在IL-6引起之胰島素阻抗細胞模式中,KS-C370G可以些微提升C2C12細胞對胰島素阻抗的反應,增加葡萄糖吸收,其作用機制可能是透過改善insulin receptor substrate對胰島素的反應。
在健康的ICR小鼠,給予KS-C370G藥物有降血糖、促進胰島素釋放、增加對於葡萄糖的耐受性,同時KS-C370G可以促進ICR小鼠肝臟和骨骼肌肝醣的含量,其效果比單純使用胰島素或同時併用胰島素和KS-C370G的作用來的好。
總結本篇實驗,我們發現KS-C370G降血糖作用的有效劑量與其活化AMPK及Akt訊息傳遞的有效濃度一致,但是活化AMPK和Akt是否和降血糖作用有關以及彼此如何互相調控仍須進一步研究。
zh_TW
dc.description.abstractKS-C370G is a derivative of caffeic acid phenethyl ester (CAPE), an active component of propolis, which has several biological and pharmacological properties similar to CAPE or even better. Our previous research has shown that KS-C370G has an antidiabetic effects in streptozotocin -induced diabetic mice and high-fat-induced type 2 diabetic mice. In acute treatment, KS-C370G can reduce fasting blood glucose in both STZ-induced diabetic mice and high-fat induced type 2 diabetic mice. In chronic treatment, KS-C370G can also lower the fasting blood glucose and reverse hyperinsulinemia in high-fat induced type 2 diabetic mice.
In this study, we used C2C12 mouse skeletal myoblast cell lines and Hep 3B human hepatocellular carcinoma cell lines as cell models to investigate the mechanism of KS-C370G hypoglycemic effectss. KS-C370G enhanced C2C12 cells glucose uptake and Hep 3B cells glycogen synthesis. In C2C12 cells, KS-C370G incubation for 30 minute induced AMPK activation at concentrations of 0.03 µM and 1 µM but activation disappeared at 3 µM, and AMPK activation reappeared at 10 µM. In study of the time course of cellular response, KS-C370G at 10 µM induced C2C12 cells AMPK activation at 15 minutes and sustained to 30 minutes. AMPK activation diminished after 60 minutes and reappeared at 120 minutes which seemed like biphasic effectss. In a time course of response to 0.03 µM KS-C370G, C2C12 cells AMPK activation started from 5 minutes and sustained to 120 minutes in a highly activation manner. However, KS-C370G showed different activating patterns on Akt signals. KS-C370G induced Akt activation in C2C12 cells both at 10 µM and 0.03 µM which sustained from 5 minutes to 120 minutes after the drug incubation.
In Hep 3B cells, KS-C370G incubation for one hour showed that AMPK was activated at 0.3 and 10 µM but Akt was not activated under this condition. In study of the time course of cellular response, KS-C370G at 10 µM induced peak AMPK activation at 15 minutes which declined from 30 minutes to 60 minutes, and reactivated at 120 minutes. Akt was activated from 15 minutes to 30 minutes but declined at 60 minutes, and reactivated at 120 minutes.
We further investigated whether stimulation by KS-C370G affected cell ATP contents. We found that KS-C370G induced initial depletion of C2C12 cells ATP contents concentration-dependently in 30 minutes. The ATP content decreased to a minimal level in 5 minutes which then recovered time-dependently to a level lower than control value. The KS-C370G-stimulated Hep 3B glycogen synthesis effectss could be blocked by Compound C and prazosin. The IL-6 induced inhibition of insulin-stimulated glucose uptake was reduced and insulin receptor signaling was partly recovered by KS-C370G via improving insulin substrate-1 responding to insulin stimulation.
In healthy ICR mice, we found that KS-C370G had hypoglycemic effectss, stimulating insulin release, improving glucose tolerance. Also, KS-C370G increased liver and skeletal muscle glycogen content in ICR mice even better than insulin-stimulated groups.
In conclusion, KS-C370G was found to have hypoglycemic activity to a dose ranges comparable to the effectsive concentrations required for the activation of AMPK and Akt signaling in cultured cells.The relationship between AMPK and Akt regulation and the hypoglycemic effects of KS-C370G require for further investigation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:46:40Z (GMT). No. of bitstreams: 1
ntu-98-R96443013-1.pdf: 3786177 bytes, checksum: 02de4e2b3c74c1e687bfd3107b7be3bc (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員審定書.................................I
誌謝……………………………………………………...II
縮寫表…………………………………………………...III
中文摘要………………………………………………...V
英文摘要………………………………………………...VII
第一章 緒論………………………………………....1
研究動機與目的………………………………………...10
第二章 實驗材料與方法……………………………...11
第三章 實驗結果……………………………………...17
第四章 討論…………………………………………...25
第五章 結論與展望…………………………………...31
圖表……………………………………………………...32
參考文獻………………………………………………...64
dc.language.isozh-TW
dc.subject降血糖zh_TW
dc.subject蜂膠zh_TW
dc.subjectAMP活化蛋白激&#37238zh_TW
dc.subjectAkten
dc.subjectantihyperglycemic effectsen
dc.subjectdiabetesen
dc.subjectCAPEen
dc.subjectAMPKen
dc.titleKS-C370G在培養細胞及ICR小鼠降血糖作用及機制研究zh_TW
dc.titleAntihyperglycemic Effect and Mechanism of KS-C370G on ICR Mice and Cultured Cell Linesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴凌平,林正一
dc.subject.keyword蜂膠,AMP活化蛋白激&#37238,降血糖,zh_TW
dc.subject.keywordCAPE,AMPK,Akt,diabetes,antihyperglycemic effects,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2009-07-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved