請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43243
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳先琪(Shian-Chee Wu) | |
dc.contributor.author | Li-Hua Chen | en |
dc.contributor.author | 陳麗華 | zh_TW |
dc.date.accessioned | 2021-06-15T01:44:42Z | - |
dc.date.available | 2014-07-16 | |
dc.date.copyright | 2009-07-16 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-09 | |
dc.identifier.citation | Action Group on Erosion, Technoloy and Concentration (ETC group), No Small Matter I: Nanotech Particles Penetrate Living Cells and Accumulate in Animal Organs. ETC Communique, 76(2002).
Aiken, G.R. and Cronan, C.S., Chegistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York. Geochimicaet Cosmochimica Acta. 49(8), 1697-1705(1985). Baalousha, M., Manciulea, A., Cumberland, S., Kendall, K. and Lead, J.R., Aggregation and surface properties of iron oxide nanoparticles:influence of pHand matural organic matter. Environ. Toxico. Chem., 27(9), 1875-1882(2008). Barceloux, D.G., Zinc. Clinical toxicology. 37(2), 279-292(1999). Bergstorm, L. and James, R.O., Surface and colloid chemistry in advanced ceramic processing. Surfactant Science Series, 51(1994). Brigante, M., Zanini, G. and Avena, M., On the dissolution kinetics of humic acid particles Effects of pH, temperature and Ca+2 concentration. Colloids and Surfaces A: Physicochemistry Engineering Aspects, 294(1-3), 64-70(2007). Buffle, J., Wilkinson, K.J., Stoll, S. and Filella, M. and Zhang, J., A generalized description of aquatic colloidal interaction: the three-colloidal component approach. Environ Sci. Technol., 32(19), 2887-2899(2008). Caillaud, F., Smith, A. and Baumard, J.F., Effect of pH of the solution on the deposition of zinc oxide Films by spray pyrolysis, J. Am. Ceram. Soc., 76(4), 998-1002(1993). Chen, K.L. and Elimelech, M., Aggregation and deposition kinetics of fullerene(C60) nanoparticles. Langmuir, 22, 10994-11001(2006). Cheng, G., Tang, E., Ma, X., Pang, X. and Zhao, Q., Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system. A. Sur. Sci., 252(14), 5227-5232(2006). Cho, Y. and Choi, W., Visible light-induced reactions of humic acids on TiO2. Journal of Phtochemistry and Photobiology A:Chemistry, 148(1-3), 129-135(2002). Degen, A. and Kosec, M., Effect of pH and Impurities on the Surface Charge of Zinc Oxide in Aqueous Solution. J. Eur. Ceram. Soc., 20(6), 667-673(2000). Elimelech, M. and Chen, K.L., Influence of humic acid on the aggregation kinetics of fullerene(C60) nanoparticles in monovalent and divalent electrolyte solutions. Journal of Colloid and Interface Science, 309, 126-134( 2007). Frimmel, F.H., Characterization of natural organic matter as major constituents in aquatic systems. Journal of Contaminant Hydrology, 35, 201-216(1998). Gao, P.X., Mai, W., Wang, Z.L., Superelasticity and nanofracture mechanics of ZnO nanohelices. Nano Letters, 6(11), 2536-2543 (2006). Gu, B., Schmltt, J., Chen, Z.,Liang, L. and McCarthy, F., Adsorption and desorption of natural organic matter on iron oxide:mechanism and models. Environ. Sci. Technol., 28(1), 38-46(1994) Guzman, K.A.D., Finnegan, M.P. and Banfield, J.F., Influence of Surface Potential on Aggregation and Transport of Titania Nanoparticles. Environ. Sci. Technol.,40(24), 7688-7693(2006). Heinzmann, B., Coagulation and flocculation of stormwater from a separate sewer system-a new possibility for enhance treatment, Water Science and Technology, 29(12), 267-278(1994). Hunter, R.J., Foundations of colloid science, Clarendon Press: Oxford, UK,vol I(1987). Hyung, H., Fortner, J.D., Hughes, J.B. and Kim, J.H., Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ. Sci. Technol., 41(1), 179-184(2007). International Humic Substances Society (IHSS), Source materials for IHSS samples, http://ihss.gatech.edu/ihss2/sources.html (2008). Israelachvili, J.N., Intermolecular and surface forces, London, San Diego, CA(1991). Kai, Y., Komazawa, Y., Miyajima, A., Miyata, N. and Yamakoshi, Y., Fullerene as a novel photoinduced antibiotic. Fullerines, Nanotubes and Carbon Nanostructures, 11(1),79-87(2003). Kang, S. and Xing, B., Humic acid fractionation upon sequential adsorption onto goethite, Langmuir, 24(6), 2525-2531(2008). Kinniburgh, D.G., van Riemsdijk, W.H., Koopal, L.K., Borkovec, M., Benedetti, M.F. and Avena, M.J., Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Coll. Sur. A-Physic. Eng. Asp., 151(1-2), 147-166(1999). Lyon, D.Y., Fortner, J.D., Sayes, C.M., Colvin, V.L. and Hughes, J.B., Bacterial cell association and antimicrobial activity of a C-60 water suspension. Environ Toxicol Chem , 24(11),2757-2762(2005) Marshall, J.K. and Kitchener, J.A., The Deposition of Colloidal Particles on Smooth Solids, J. Colloid Inteface Sci., 22(4), 342-351(1966). Milne, C.J., Kinniburgh, D.G. and Tipping, E., Generic NICA-Donnan Model Parameters for Proton Binding by Humic Substances. Environ. Sci. Technol.,35(10), 2049-2059(2001). Morel, F.M.M. and Hering, J.G., Principles and Application of Aquatic Chemistry. Wiley, 3,160(1993). Oberdorster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D. and Olin, S., Monteiro-Riviere N., Warheit, D., Yang, H., Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology , 2, 1-35(2005). Parfitt, R.L., Fraser, A.R.and Farmer, V.C., J. Soil. Sci.,28, 289-296(1977) Pastorelli, C., Formaro, L., Ricca and Severini, F., Electrochemical behavior if the humic acid from leonardite. Colloids and Surface B: Biointerfaces, 13, 127-134 (1999) Pickering, K.D. and Wiesner, M.R., Fullerol-sensitized production of reactive oxygen species in aqueous solution. Environ Sci Technol, 39(5), 1359-1365(2005). Rajagopalan, R. and Kim, J.S., Adsorption of Brownian particles in the presence of potential barrier: effect of different modes of double-layer interaction. Journal of Colloid and Interface Science, 83(2), 428-448(1981). Reichle, R.A., McCurdy, K.G. and Hepler, L.G., Zinc hydro-xide: solubility product and hydroxy-complex stability constants from 12. 5±75℃. Can. J. Chem., 53, 3841-3845(1975). Rice, J.A.and MacCarthy, P., A Model of Humin. Environ. Sci. Technol., 24,1875-1877(1990). Ruckenstein, E. and Prieve, D.C., Adsorption and desorption of particles and their chromatographic separation. AIChE Journal, 22(2), 276-283(1976). Sano, M., Okamura, J. and Shinkai S., Colloidal nature of single-walled carbon nanotubes in electrolyte solution: the Schulze-Hardy rule. Langmuir, 17(22), 7172-7173(2001). Schmidt, H.K., Organically modified silicates and ceramics as two-phasic system: synthesis and processing. J. Sol-Gel Sci. Tech.,8,557-565(1997). Schwarzenbach, R.P.,Gschwend, P.M. and Imboder, D.M., Environmental organic chemistry. 148-150 (2003). Stephen, J.K., Pedro, J.J.A., Graeme, E.B., Teresa, F.F., Richard, D.H., Delina, Y.L., Shaily, M., Michael, J.M. and Jamie, R.L., Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmnental Toxicology and Chemistry, 27(9), 1825-1851(2008). Stevenson, F.J., Humic Chemistry: Genesis,Compositioi, Reactions. Wiley, New York(1982). Stevenson, F.J., Humic Chemistry: Genesis,Compositioi, Reactions. Wiley, New York(1994). Tang, F.Q., Uchikoshi, T. and Sakka, Y., Electrophoretic Deposition Behavior of Aqueous Nanosized Zinc Oxide Suspensions. J. Am. Ceram. Soc., 85(9), 2161-2165( 2002). Tombacz, E. and Illes, E., The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science, 295(1), 115-123(2006). Wang, Z. L., Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter. 16, 829-858 (2004). Warner, J.C. and Johnson, A.M., Trakhtenberg, S., Cannon A.S., Effect of pH on the Viscosity of Titanium Dioxide Aqueous Dispersions with Carboxylic Acids. J. Phys. Chem. A, 111(33), 8139-8146 (2007). Wershaw, R.L, A new model for humic materials and their interactions with hydropobic organic chemicals in soil-water or sediment-water systems. Journal of Contaminant Hydrology. 1,29-45 (1986). Yang, G.C.C. and Lee, H.L., Chemical reduction of nitrate by nanosized iron: Kinetics and pathways. Water Research, 39(5), 884-894 (2005). Zhang, W.X., Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res., 5(3-4), 323-332 (2003). Zhang, W., Wang, C. and Lien, H. L., Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today, 40(4), 387-395 (1998). Zharov, V.P., Mercer, K.E., Galitovskaya, E.N. and Smeltzer, M.S., Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J, 90(2),619-627 (2006). Zhou, J., Rowland, S., Mantoura, R.F.C. and Braven, J., The formation of humic coating on mineral particles under simulated esturine conditions-a mechanistic study. Wat. Res. 31(3),571-579 (1994). 林永昇,「奈米科技與生活 (二)」,儀科中心簡訊71期(2005)。 環境檢驗所,「水中銀、鎘、鉻、銅、鐵、錳、鎳、鉛及鋅檢測方法-火焰式原子吸收光譜法」,檢驗分析方法,NIEA W306.52A(2003)。 施養信,董瑞安,吳先琪,「水環境介質中奈米微粒轉換及宿命研究:期中報告」,行政院環保署(2008)。 施養信,「土壤異質性對有機汙染物在土壤中吸脫附行為之影響」,國立台灣大學環境工程研究所博士論文(2002)。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43243 | - |
dc.description.abstract | 本研究為探討不同pH值、陽離子種類及腐植酸濃度下奈米氧化鋅分散性,以分析奈米氧化鋅懸浮液的上層總鋅濃度及表面電位,進而探討奈米氧化鋅之分散效率。
結果顯示,於表面電位分析說明氧化鋅的pHIEP~8,在pH值靠近等電點越容易聚集,故pH值為9時,奈米氧化鋅懸浮效果差。在陽離子種類分析方面,於奈米氧化鋅懸浮液中分別添加KCl及CaCl2,以DLVO理論計算懸浮液顆粒間之能量變化,結果顯示鉀離子之懸浮液產生的能障較鈣離子高,故添加鉀離子之奈米氧化鋅懸浮液之顆粒分散效果較佳,相較於含鈣離子之穩定性約可提升20%。 最後,探討腐植酸(Humic acid)存在對奈米氧化鋅懸浮液之影響。添加低腐植酸濃度時奈米氧化鋅懸浮液的表面電位由30.7±1.13mV降至-3.93±3.32mV,顆粒間靜電排斥力降低,容易碰撞形成大顆粒,使沉降速率增加,故奈米氧化鋅懸浮性僅為20%。高腐植酸濃度下,帶負電荷的腐植酸包覆於奈米氧化鋅顆粒表面,使顆粒表面轉為帶負電荷,靜電排斥力也增加,顆粒懸浮性較低腐植酸濃度增高60%。 關鍵字:奈米氧化鋅; 腐植酸; DLVO 理論;凡得瓦爾力 | zh_TW |
dc.description.abstract | This study was mainly focused on the behavior of aqueous nano-zinc-oxide under different pH, concentration of cations and humic acid. The amount of the stably dispersed nano-zinc-oxide was determined by measuring the total particle concentration in the supernatant (detected by atomic absorption spectrometry) and zeta potential of the particle surface.
The results showed that the nano-zinc-oxide existed mainly in dissolved form, at lower pH(<8),and the amount of zinc particles in the supernatant could not be determined. On the contrary, under higher pH the nano-zinc-oxide particles formed aggregated easily when the pH of the solution equaled approximately to 8, the isoelectric point (IEP). The effects of the concentration of cations on nano-zinc-oxide aggregation and dispersion were investigated by adding 0.1mM KCl or CaCl2 to the nano-zinc-oxide suspensions. The variations of the energy barrier between supernatant nano-zinc-oxide particles were calculated by using Derjaguin Landau Verwey Overbeek (DLVO) theory. The results revealed that the energy barrier between particles in the presence of K+ was higher than that of Ca2+, and the efficiency of nano-zinc-oxide dispersion by adding K+ was higher than that with Ca2+ by 20%. Besides, the nano-zinc-oxide dispersion was also affected by the presence of humic acid ( a naturally occuringe organic matter in the aquatic environment). Under lower humic acid concentrations(0.5 to 50 mg/L), due to that the zeta potential of the nano-zinc-oxide decreased from 30.7 ± 1.13 mV from without humic acid to -3.93 ± 3.32 mV and the static-electric repulsion between particles diminished, there were dramatic particle collision and sedimentation. The stably dispersed nano-zinc-oxide in the supernatant was only 20%. However, with higher humic acid concentration(2.0 to 50 mg/L), the concentration of the stably dispersed nano-zinc-oxide was higher than that with lower humic aicd concentration by 60% due to that the surface of nano-zinc-oxide particles were thoroughly covered with negatively charged humic acid, and the static-electric repulsion increased significantly. Keywords: nano zinc oxidep; humic acid; DLVO theory; Van der Waals forces | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:44:42Z (GMT). No. of bitstreams: 1 ntu-98-R96541118-1.pdf: 2229175 bytes, checksum: 9478e00d927976ce7e2524ca51de4aca (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 中文摘要
英文摘要 目錄 I 圖目錄 V 表目錄 IX 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的與內容 4 第二章 文獻回顧 5 2.1奈米氧化鋅 5 2.1.1 奈米氧化鋅的應用 5 2.1.2氧化鋅 (ZnO) 於水體中之型態 5 2.2奈米顆粒於水環境下之穩定性 7 2.2.1不同pH 值對奈米顆粒之影響 8 2.2.2 不同離子種類與濃度對奈米顆粒之影響 8 2.2.3添加不同有機物質對奈米顆粒之變化 8 2.3水中有機物之來源及成分 10 2.3.1水中主要有機物-腐植質 10 2.3.2腐植酸受水環境之影響 13 2.3.3 腐植酸與奈米顆粒之反應 14 2.3.4 天然有機物與奈米顆粒鍵結行為 16 2.4 奈米顆粒間之作用力 17 2.4.1 DLVO 理論 17 2.4.1.1凡得瓦爾力 18 2.4.1.2 電荷排斥力 18 2.4.2 DLVO內部作用能量 19 2.4.3 立體屏障 20 第三章 研究方法 22 3.1研究架構 22 3.2奈米懸浮液之製備 24 3.2.1 以磁石攪拌方式製備奈米懸浮液 24 3.2.2 以超音波破碎機配製奈米懸浮液 25 3.3 奈米顆粒於水溶液中之分析 26 3.3.1 奈米顆粒於水溶液下之總量分析 26 3.3.2以0.1 μm濾紙過濾奈米懸浮液之溶解態分析 26 圖 3.5奈米氧化鋅之分析方法 27 3.3.3 粒徑分析 27 3.4 奈米顆粒於不同水環境下之試驗 27 3.4.1 pH值對奈米顆粒之影響 27 3.4.2陽離子對奈米顆粒之影響 28 3.5 腐植酸與奈米顆粒之反應 28 3.5.1腐植酸配製及分析方法 29 3.5.2 奈米懸浮顆粒在不同濃度腐植質溶液中之沉降試驗 29 3.5.3 奈米顆粒在不同pH值之腐植酸溶液中之沉降試驗 29 3.5.4奈米顆粒在不同鈣離子濃度之腐植酸溶液中之沉降試驗 30 3.6 奈米顆粒與腐植酸之吸附試驗 30 3.6.1 吸附動力試驗 30 3.6.2 吸附平衡試驗 30 3.7 水庫水及工業廢水中之沉降試驗 31 3.8 奈米顆粒之特性分析 32 3.8.1 火焰式原子吸收光譜 (AA)法 32 3.8.2 傅立葉紅外線轉換光譜分析 (FIIR)法 32 3.8.3奈米粒徑暨界面電位量測 33 第四章 結果與討論 36 4.1 奈米氧化鋅懸浮液之配製 36 4.1.1配製方法與粒徑之關係 36 4.1.1.1 磁石攪拌法 36 4.1.1.2超音波破碎法 37 4.1.2沉降試驗 38 4.2 奈米氧化鋅顆粒於水環境下之穩定性 40 4.2.1不同pH值下奈米氧化鋅之沉降試驗 40 4.2.2 不同陽離子濃度下奈米氧化鋅之沉降試驗 43 4.3奈米懸浮顆粒於腐植酸溶液中之懸浮試驗 50 4.3.1 不同腐植酸種類之懸浮性分析 50 4.3.1 於不同濃度腐植酸溶液中之沉降試驗 52 4.3.1.1奈米氧化鋅於不同腐植酸濃度的吸附試驗 55 4.3.1.2 FTIR分析結果 57 4.3.2於不同pH值下腐植酸溶液之沉降試驗 62 4.3.3 不同腐植酸濃度及鈣離子濃度下奈米氧化鋅之沉降試驗 65 4.3.4在含不同鈣離子濃度及含腐植酸之奈米氧化鋅沉降試驗 66 4.4 於水庫水與工業廢水下奈米氧化鋅之沉降試驗 69 第五章 結論與建議 72 5.1 結論 72 5.2 建議 74 參考文獻 75 附錄A 附-1 | |
dc.language.iso | zh-TW | |
dc.title | 奈米氧化鋅於水環境介質之宿命研究 | zh_TW |
dc.title | Fate of Nano Zinc Oxide in the Aquatic Environment | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 駱尚廉(Shang-Lien Lo),連興隆 | |
dc.subject.keyword | 奈米氧化鋅,腐植酸,DLVO 理論,凡得瓦爾力, | zh_TW |
dc.subject.keyword | nano zinc oxide,humic acid,DLVO theory,Van der Waals, | en |
dc.relation.page | 113 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-10 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 2.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。