請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43228
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曹承礎(Seng-Cho Chou) | |
dc.contributor.author | Fan-Chieh Lin | en |
dc.contributor.author | 林方傑 | zh_TW |
dc.date.accessioned | 2021-06-15T01:43:51Z | - |
dc.date.available | 2009-07-16 | |
dc.date.copyright | 2009-07-16 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-10 | |
dc.identifier.citation | [1] Nicholas Carr Is Google Making Us Stupid? The Atlantic Monthly Group (2008) http://www.theatlantic.com/doc/200807/google
[2] Frank van Harmelen, Dieter Fensel AIFB, Practical Knowledge Representation for theWeb, In Proceedings of the Workshop on Intelligent Information Integration (III99) during IJCAI-99,Stockholm, Sweden, August 1999, 2000. [3] Ricardo Baeza-Yates, Carlos Hurtado, and Marcelo Mendoza, Query Recommendation using Query Logs in Search Engines, In International Workshop on Clustering Information over the Web (ClustWeb, in conjunction with EDBT), Creete, Greece, March, Springer, LNCS, 2004, 588-596. [4] Jeff Heflin and James Hendler, Searching the Web with SHOE, In AAAI-2000 Workshop on AI for Web Search, 2000. [5] SLI SYSTEMS, Related Search™ : Search Suggestions (for Web Search) http://www.sli-systems.com/related_search.php [6] Max Braun, Klaas Dellschaft, Thomas Franz, Dominik Hering, Peter Jungen, Hagen Metzler, Eugen Muller, Alexander Rostilov, Carsten Saathoff, Personalized Search and Exploration with MyTag, In Proceedings of the WWW 2008 Poster Session, 2008. [7] Robert J‥aschke, Leandro Marinho2, Andreas Hotho, Lars Schmidt-Thieme and Gerd Stumme, Tag Recommendations in Folksonomies, In PKDD, pages 506–514, 2007. [8] Yen-Lin Chen, A desktop collaborative tagging system for personal information search based on concept space, National Taiwan University’s master thesis [9] Sarah Hayman, FOLKSONOMIES AND TAGGING: New developments in social bookmarking, Ark Group Conference: Developing and Improving Classification Schemes (27-29 June, 2007) [10] C.-C. Hung, Y.-C. Huang, J. Y.-j. Hsu, and D. K.-C. Wu. Tag-based user profiling for social media recommendation. In Intel ligent Techniques for Web Personalization and Recommender Systems, Chicago, Illinois, USA, July 2008. AAAI Press. [11] Ting-Chun Peng, Seng-cho T. Chou, iTrustU: A Blog Recommender System Based on Multi-faceted Trust and Collaborative Filtering, SAC’09, Vol.0, No.0, Pages 0-0. [12] Begelman, G., Keller, P., & Smadja, F. (2006). Automated tag clustering: Improving search and exploration in the tag space. In Collaborative Web Tagging Workshop, 15th International World Wide Web Conference. [13] DIK L. LEE, HUEI CHUANG, KENT SEAMONS, Document Ranking and the Vector-Space Model, IEEE Softw. 14, 2, 67~75. [14] Paolo Massa, Bobby Bhattacharjee, Using Trust in Recommender Systems: an Experimental Analysis, Proceedings of 2nd International Conference on Trust Managment, Oxford, England, 2004. [15] Cheng-De Chen (陳正德), An Item-Based Collaborative Filtering Method for Material Browsing Recommendation in E-Learning System(以項目為基礎的協同過濾應用於網路教材瀏覽推薦之研究), MCU (銘傳大學) 碩士論文 [16] Chris Anderson, The Long Tail: Why the Future of Business Is Selling Less of More, Originally published: New York : Hyperion, c2006. 1st ed. [17] John Berry, Updating Standardizing Management of Knowledge, Business Intelligence Advisory Service Executive Update Vol. 6, No. 13 [18] http://dir.yahoo.com/ [19] Dan Orzech, In pursuit of intelligent search engines, published on internet.com, a online computer industry publication http://itmanagement.earthweb.com/erp/article.php/602751 (May 1, 1998) [20] Edwin Simpson, Clustering Tags in Enterprise and Web Folksonomies, HP Labs, Technical Report, July 2007, http://www.hpl.hp.com/techreports/2007/HPL-2007-190.html, 27 April 2008 [21] Thomas Gruberin, Ontology of Folksonomy: A Mash-up of Apples and Oranges, Int’l Journal on Semantic Web & Information Systems (ijswis), (2007). [22] Ching-man Au Yeung, Nicholas Gibbins, Nigel Shadbolt, A Study of User Profile Generation from Folksonomies, In Proceedings of the Workshop on Social Web and Knowledge Management at WWW2008, 2008. [23] Michael White, Wikipedia is a Valid Alternative to Britannica, personal blog http://www.scribd.com/doc/913976/Wikipedia-vs-Britannica#document_metadata [24] Hyun-oh Jung, Min-shik Son, and Kun-pyo Lee, Folksonomy-Based Collaborative Tagging System for Classifying Visualized Information in Design Practice, CHI, Beijing [25] M Nandeesha, Folksonomy in Social Question & Answer Platform: A Case study of TCS, Accepted in CALIBER 2009 (Convention on Automation of Libraries in Education and Research) on Web 2.0/ Library 2.0 (2009) [26] (R.O.C.)中央研究院語言學研究所研究員 黃居仁, 語意網、詞網與知識本體:淺談未來網路上的知識運籌, 中央研究院語言學研究所專題演講 [27] Wen-Tai Hsieh, Wei-Shen Lai , Seng-Cho T. Chou. (2006). A collaborative tagging system for learning resources sharing, In IV International Conference on Multimedia and Information and Communication Technologies in Education (m-ICTE2006), Seville, Spain (2006) 1364-1368 [28] Aixin Sun, Anwitaman Datta, On Stability, Clarity, and Co-occurrence of Self-Tagging, Second ACM International Conference on Web Search and Data Mining, Barcelona, Spain - February 9-12, 2009 [29] Tony Hammond, Timo Hannay, Ben Lund, and Joanna Scott, Social Bookmarking Tools (I) A General Review, D-Lib Magazine, April 2005 [30] Greg White, Social Bookmarking Top Sites, personal blog http://www.blogmarketingtactics.com/social-bookmarking/social-bookmarking-top-links.html [31] Tony Hammond, Timo Hannay, Ben Lund, and Joanna Scott, Social Bookmarking Tools (II) A Case Study - Connotea, D-Lib Magazine, April 2005 [32] http://en.wikipedia.org/wiki/Technorati [33] Burke, R., Hybrid Recommender systems: survey and experiment, User Model. User Adapt. Inter., Vol. 12, pp. 331-370, 2002. [34] Roberto Dias Torres Junior, Combining Collaborative and Content-based Filtering to Recommend Research Papers, Master’s thesis, 2004 [35] Paolo Massa, Paolo Avesani, Trust-aware Collaborative Filtering for Recommender Systems In: Proceedings of International Conference on Cooperative Information Systems, Agia Napa, Cyprus, 25 Oct – 29 Oct 2004. [36] Guo, X., Lu, J. (2005) Applying web personalization techniques in Egovernment services. Proceedings of the 11th Australian World Wide Web Conference, Gold Coast, Australia, 233-238. [37] San Murugesan, Understanding Web 2.0, IEEE Computer Society, Aug. 2007 [38] Chopra, K., Wallace, W. A., Aptima, I., and Woburn, M. A., Trust in electronic environments System Sciences, 2003, Proceedings of the 36th Annual Hawaii International Conference on, P. 10, 2003 [39] Rotter, J. B., Generalized expectancies for interpersonal trust, American Psychologist, vol. 26, pp 443-52, 1971 [40] Mayer, R. C., Davis, J. H., Schoorman, F. D. An integrative model of organizational trust, Academy of Management Review, vol. 20, pp. 709-734, 1995 [41] James Dabney, M. S., Show me what you care: The Presence of relational trust between a principal and teachers in an urban school, Educational Policy and Leadership, Ohio State University’s doctoral thesis, 2008 [42] Gambetta, D., Can we trust trust, Trust: Making and Breaking Cooperative Relations, pp. 213-237, 1988 [43] Lewis, J. D., Weigert, A., Trust as a Social Reality, Social Forces, vol.63, pp. 967-985, 1985 [44] Rousseau, D. M., Sitkin, S. B., Burt, R. S.. Camerer, C., Introduction to special topic forum. Not so different after all: A cross-discipline view of trust, Academy of Management Review, vol. 23, pp. 393-404, 1998 [45] R. J. Lewicki, D. J. McAllister and R. J. Bies. Trust and distrust: New relationships and realities. Academy of Management Review, 23, 33, 1998. 438-458. [46] Yaniv, I., Receiving other people’s advice: Influence and benefit, Organizational Behavior and Human Decision Processes, vol. 93, pp.1-13, 2004 [47] Gefen, D., Nurturing clients’ trust to encourage engagement success during the customization of ERP systems, Omega: The International Journal of Management Science 30 (4), 287–299. [48] Mooney, R. J., Roy, L. Content-based book recommending using learning for text categorization, Proceedings of the fifth ACM conference n Digital libraries, pp. 195-204, 2000 [49] Yaniv, I. and Kleinberger, E., Advice Taking in Decision Making: Egocentric Discounting and Reputation Formation, Organizational Behavior and Human Decision Processes, vol. 83, pp.. 260-281, 2000 [50] Josang, A., Gray, E., and Kinateder, M., Analysing topologies of transitive trust, Proceedings of the Workshop of Formal Aspects of Security and Trust (FAST 2003), 2003 [51] Beth, T., Borcherding, M., and Klein, B., Valuation of Trust in Open Networks, Computer Security-ESORICS 94: Third European Symposium on Research in Computer Security, Brighton, United Kingdom, Nov, 7-9, 1994 [52] Guha, R., Open rating systems, Proceedings of the 1st workshop on Friends of a Friend, Social Networking and the Semantic Web, 2004 [53] Avesani, P., Massa, P., and Tiella, R., A trust-enhanced recommender system application: Moleskiing, Proceedings of the 2005 ACM symposium on Applied computing, pp. 1589-1593, 2005 [54] Paolo Avesani, Paolo Massa, and Roberto Tiella. Moleskiing: a trust-aware decentralized recommender system. 1st Workshop on Friend of a Friend, Social Networking and the Semantic Web. Galway, Ireland, 2004. [55] J. Golbeck. Generating Predictive Movie Recommendations from Trust in Social Networks. Proceedings of The Fourth International Conference on Trust Management, 2006. [56] University of Illinois at Urbana-Champaign Digital Libraries Initiative, 1998, http://dli.grainger.uiuc.edu/glossary.htm [57] Baeza-Yates, R., and Tiberi, A. 2007. Extracting semantic relations from query logs. In KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, 76–85. New York, NY, USA: ACM. [58] Andrew Byde, Hui Wan, Steve Cayzer, Personalized Tag Recommendations via Tagging and Contentbased Similarity Metrics, Proceedings of the International Conference on Weblogs and Social Media (ICWSM), 2007. [59] David R Millen and Jonathan Feinberg, Using Social Tagging to Improve Social Navigation, AH2006 workshop, Social navigation and community-based adaptation, Dublin, Ireland, 20 June 2006. [60] Wang, Y., Vassileva, J., Bayesian network-based trust model in peer-to-peer netwoeks, In: Proceedings of the Workshop on Deception, Fraud and Trust in Agent Societies. (2003) pp. 57~68 [61] Lik Mui, Mojdeh Mohtashemi, Ari Halberstadt, A Computational Model of Trust and Reputation, In Proceedings of the 35th Hawaii International Conference on System Science (HICSS), 2002. [62] Stephen Farrell, Michael Muller, Tessa Lau, Eric Wilcox, Stefan Nusser, Socially Augmenting Employee Profiles with People Tagging, IBM Research, Submitted to CHI 2007. [63] Elke Michlmayr, Steve Cayzer, Learning User Profiles from Tagging Data and Leveraging them for Personal(ized) Information Access, In Proceedings of the Workshop on Tagging and Metadata for Social Information Organization, 16th International World Wide Web Conference (WWW2007), May 2007. [64] Byron Y-L. Kuo1, Thomas Hentrich1, Benjamin M. Good1, Mark D. Wilkinson1, Tag Clouds for Summarizing Web Search Results, Poster paper in the Proceedings of the 16th international conference on World Wide Web, pages 1203–1204, 2007. [65] S. Wasserman and K. Faust. Social Network Analysis. Cambridge University Press, Cambridge, 1994. [66] Borkur Sigurbjornsson, Roelof van Zwol, Flickr Tag Recommendation based on Collective Knowledge, Proceeding of the 17th international conference on World Wide Web, April 21-25, 2008, Beijing, China [67] Wei-Yun Ma, Huan-Hsing Liu,Yu-Fang Tsai, Ming-Hong Bai, Chinese Word Segmentation System with Unknown Word Identification, ACADEMIA SINICA, http://rocling.iis.sinica.edu.tw/CKIP/engversion/wordsegment.htm [68] http://en.wikipedia.org/wiki/JavaServer_Pages [69] 邱智銘, 詞類與詞類標記原則:現代漢語, 中央研究院語言學研究所 [70] Yusef Hassan-Montero and Victor Herrero-Solana, Improving Tag-Clouds as Visual Information Retrieval Interfaces, Proc. InfoSciT2006. [71] Beate Krause, Robert J‥aschke, Andreas Hotho, and Gerd Stumme. Logsonomy –social information retrieval with logdata. In HT ’08: Proc. the 19th ACM conf. on Hypertext and hypermedia, pages 157–166, New York, NY, USA, 2008. ACM. [72] Audun Josang, Stephen Marsh, Simon Pope, Exploring Different Types of Trust Propagation In Ketil Stolen, WIlliam Winsborough, Fabio Martinelli, and Fabio Massacci, editors, Trust Management: Proceedings of the 4th International Conference on Trust Management (iTrust’06), 2006, volume 3986 of Springer Lecture Noted in Computer Science, pages 197–192, 2006. [73] B.M. Sarwar et al. Item-based Collaborative Filtering Recommendation Algorithms, 10th Int’l World Wide Web Conference, ACM Press, 2001, pp 285-295 [74] Olga Murdoch, Lorcan Coyle, and Simon Dobson, Ontology-Based Query Recommendation as a Support to Image Retrieval, 19th Irish Conference on Artificial Intelligence and Cognitive Science, Cork, Ireland, pp. 103-112, 27/08/2008. [75] J. Wen, J. Nie, and H. Zhang. Clustering user queries of a search engine. In Proc. at 10th International World Wide Web Conference, pages 162–168. W3C, 2001. [76] R. Baeza-Yates. Query usage mining in search engines. Web Mining: Applications and Techniques, Anthony Scime, editor. Idea Group, 2004. [77] B. M. Fonseca, P. B Golgher, E. S. De Moura, and N. Ziviani. Using association rules to discovery search engines related queries. In First Latin American Web Congress (LAWEB’ 03), November, 2003. Santiago, Chile. [78] Ranieri Baraglia, Fidel Cacheda, Victor Carneiro, Vreixo Formoso, Raffaele Perego, Fabrizio Silvestri, Search shortcuts using click-through data, Web Search and Web Data Mining, Proceedings of the 2009 workshop on Web Search Click Data [79] Zhiyuan Liu, Maosong Sun, Asymmetrical Query Recommendation Method Based on Bipartite Network Resource Allocation, In: Proceedings of the 17th international conference on World Wide Web, Beijing (2008) [80] 異塵行者, Bing也聊聊微軟的最新搜尋引擎服務,有針對性的特定搜索http://playpcesor.blogspot.com/2009/06/bing.html, personal blog 電腦玩物 [81] Budzik, J. and Hammond, K. J. (1999). Q&A: A System for the Capture, Organiation and Reuse of Expertise. In Proceedings of the Sixty-second Annual Meeting of the American Society for Information Science. Learned Information, Inc., Medford, NJ, 1999. [82] Kay-Uwe Schmidt, Tobias Sarnow, Ljiljana Stojanovic, Socially Filtered Web Search, An Approach Using Social Bookmarking Tags to Personalize Web Search, In Proceedings of the 2009 ACM symposium on Applied Computing. Pages 670-674, Honolulu, Hawaii, U.S.A.: ACM, 2009 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43228 | - |
dc.description.abstract | 資訊超載早已是惡名昭彰的問題。尤其在目前以搜尋服務為主力的資訊取得模式下,許多真正被需要的線上資源常常因為受限於個人對於專業領域的掌握程度不足﹝導致想不出合適的搜尋關鍵字﹞而久不見天日。面對這樣的情況,如果系統能夠主動推薦資訊、同時考慮個人化的需求,相信能降低不少前述資訊超載所帶來的衝擊與挑戰。
本研究提出了運用從社會性標籤(Social Tags)與搜尋關鍵字(Search Keywords)搜集而來的詞彙,為使用者、線上內容/文件以及前述的「詞彙(terms)」(包含社會性標籤或搜尋關鍵字)建構以向量空間模式(VSM)為基礎的識別標誌(Profile);同時一併保存由搜尋關鍵字與從搜尋結果中去蕪存菁地選為線上書籤(Online Bookmark)的文章,並將這樣的組合視為一種珍貴且值得推薦的資源。而透過使用者與使用者、使用者與文章、使用者詞彙的相關度計算,系統將透過上述的推薦以提供一種個人化知識分享的服務,嘗試更貼近使用者的需求。 在考慮識別標誌間的「相關度」時,我們除了引用常見的相似度(Similarity)計算,亦延伸了一種對人下標籤的「聯繫人管理(Contact Management)」機制作為具體化使用者間信任之平台以及個人表達需求的管道。對某人下標籤將使該人識別標記中與所被下之標籤相對應的特徵因此被加權,進而影響相關度/相似度的計算使結果更能反應個人的偏好與需求。 最後,我們亦延伸了常見的「加為好友」社群功能以加權來自於「朋友」的標籤(記錄),並透過非對襯式的「標籤共存(tag co-occurrence)」分析以提供客製化的標籤關聯以提供更好的個人化服務。 | zh_TW |
dc.description.abstract | Information overload has been notoriously posing tremendous obstacles to more efficient and effective (online) resource utilization. Under the dominance of information pull, in which users have to actively find what they need, services being able to push what we would be interested in or in demand of are often expected.
In this paper, we propose an approach, with which social tags and keywords extracted from search inputs are coordinated in terms of VSM to profile users, online contents/documents, and the textual terms themselves. The system stores pairs of users’ search inputs and (Internet) bookmarks selected from the search results, and treats the resulting pairs as valuable resources that are worthy of recommendation. By computing user-user, user-document, and user-tag relatedness values from VSM-based profiles, the system aims to achieve personalized knowledge sharing by recommending the previously-mentioned search input-output pairs that are expected to be related to and catering for users’ needs. In addition to (profile) similarity, we also take interpersonal “trust” into consideration while defining “relateness.” By adopting an innovative contact management mechanism—People Tagging, we allow users to express their preferences for recommendations and their willingness to trust others in specific domains, therefore making recommendations more relevant. Lastly, based on commonly-seen social network function, for each individual we weight tagging records from people accepted as friends/buddies and provide customized tag relatedness based on an asymmetric tag co-occurrence measure. With these features we expect to achieve higher level of personalization. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:43:51Z (GMT). No. of bitstreams: 1 ntu-98-R96725007-1.pdf: 3646839 bytes, checksum: bf40bb86f326505ed75fedfd8339fb51 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | List of Contents
謝詞 I ABSTRACT II 摘要 III LIST OF CONTENTS 1 LIST OF TABLES 4 1 INTRODUCTION 5 1.1 BACKGROUND—INFORMATION OVERLOAD 5 1.2 MOTIVATIONS 6 1.2.1 The Limitations of Contemporary Search Services 7 1.2.1.1 Search Input Problem 7 1.2.1.2 Search Output Problem 9 1.2.2 The Potential of (Social) Tags 10 1.2.3 The Potential of Search Inputs (From Social Tagging’s Point of View) 11 1.3 DESIGN PREMISE 12 1.3.1 Which is the Targeted Information World 13 1.3.2 What Does the Targeted World Look Like 13 1.4 APPROACH & CONTRIBUTION 15 1.4.1 Approach Overview 15 1.4.2 Proposed Contribution 16 1.5 THESIS STRUCTURE 17 2 LITERATURE REVIEW 19 2.1 FOLKSONOMY 19 2.1.1 Folksonomy’s Flexibility 19 2.1.2 Folksonomy’s Richness 21 2.1.3 Some Examples 23 2.2 RECOMMENDER SYSTEM (RS) 25 2.2.1 Content-Based Filtering (CBF) 26 2.2.1.1 Pros and Cons 27 2.2.2 Collaboratibe Filtering 28 2.2.2.1 User-based CF 28 2.2.2.2 Item-based CF 29 2.2.3 Summary of RS Algorithms 31 2.2.4 Tag Recommendation 32 2.2.5 Search Input Recommendation 33 2.3 TRUST 35 2.3.1 About Trust 35 2.3.1.1 Scopes of Trust 36 2.3.1.2 Trust V.S. Reputation 36 2.3.1.3 Trust’s Characteristics 37 2.3.2 Trust-enhanced Recommender System 38 2.3.2.1 Moleskiing [53,54] 38 2.3.2.2 FilmTrust [55] 39 2.4 SUPPLEMENTARY CONCEPTS 40 2.4.1 Concept Space 40 2.4.2 Concepts of Vector Profiles & Similarity Computation 41 2.4.2.1 For Tags 41 2.4.2.2 For documents and people 42 2.4.3 Profile Construction Methods 43 2.4.3.1 Naïve Approach 43 2.4.3.2 Co-occurrence Approach 45 2.4.3.3 Adaptive Approach 46 2.4.4 People Tagging 46 3 SYSTEM DESIGN 48 3.1 DESIGN GOAL 48 3.2 SYSTEM CONCEPT 48 3.2.1 Proceeding Activities—Data Collecting 49 3.2.2 (User-based) Collaborative Filtering 50 3.2.3 Content-based Filtering 51 3.2.4 Trust in Action 52 3.2.4.1 People Tagging 52 3.2.4.2 BuddyList 54 3.2.5 Extracting Terms’ (Inter-)relatedness 55 3.2.5.1 Asymmetric Tag Co-occurrence Measure 55 3.2.5.2 (Term/Domain) Profile Weighting 56 3.3 SYSTEM ARCHITECTURE 57 3.3.1 Use Case Diagram 58 3.3.2 Sequence Diagrams 59 3.3.2.1 Query Recommendation 59 3.3.2.2 People Tagging 61 3.3.2.2.1 People Tag Collecting 61 3.3.2.2.2 People Tag Utilizing (6~12) 62 3.3.2.3 BuddyList 64 4 SYSTEM IMPLEMENTATION 66 4.1 DEVELOPMENT ENVIRONMENT 66 4.2 SYSTEM FEATURES 66 4.2.1 Keyword Extraction 66 4.2.2 Typical Social-Bookmarking-Website-Like Functions 69 4.2.3 User Profile 70 4.2.4 People Tagging and Search Input Recommendation 71 4.2.4.1 Implicit Self-Tagging 73 4.2.4.2 Query-bookmark Pair’s Forming Scenarios 74 4.2.5 Updating BuddyList 76 4.2.6 Summary of Inter-PeopleTagging 77 4.2.7 Contextual Information 77 4.2.8 Expert Generation 78 4.3 EMPIRICAL EVALUATION OF OUR PERFORMANCE 79 4.4 DATABASE SCHEMA 82 5 CONCLUSION AND DISCUSSIONS 85 5.1 SUMMARY 85 5.2 CONTRIBUTIONS 86 5.2.1 From Functional View 86 5.2.2 Compare and Contrast 88 5.3 LIMITIONS 91 5.4 FUTURE WORKS 92 6 BIBLIOGRAPHY 95 | |
dc.language.iso | en | |
dc.title | 運用搜尋關鍵字、社會化書籤與標籤以實現考慮信任度的個人化知識分享 | zh_TW |
dc.title | Trust-Enhanced Personalized Knowledge Sharing Via Search Inputs, Social Bookmarks and Tags | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳建錦(Chien-Chin Chen),林俊叡(chun-jui Lin) | |
dc.subject.keyword | 知識分享,個人化,向量空間模型,搜尋,社會化標籤與書籤,混合式推薦機制,對人下標籤,社會網路, | zh_TW |
dc.subject.keyword | Knowledge Sharing,Personalization,VSM,Search,Social Tagging and Bookmarking,Hybrid Recommendation (Algorithm),People Tagging,Social Network, | en |
dc.relation.page | 100 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-13 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 3.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。