Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43214
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志(Shinn-Chih Wu)
dc.contributor.authorHui-Yu Liuen
dc.contributor.author劉惠毓zh_TW
dc.date.accessioned2021-06-15T01:43:04Z-
dc.date.available2014-07-16
dc.date.copyright2009-07-16
dc.date.issued2009
dc.date.submitted2009-07-13
dc.identifier.citation中華民國獸醫學會。1992。獸醫解剖生理學。藝軒圖書出版社。台北市。
裴雪濤。2003。幹細胞技術。五南出版社。台北市。
Asahara T, T. Asahara, T. Murohara, A. Sullivan, M. Silver, R. van der Zee, T. Li, B. Witzenbichler, G. Schatteman andJ. M. Isner. 1997. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967
Baddoo, M., K. Hill, R. Wilkinson, D. Gaupp, C. Hughes, G. Kopen and D.G. Pinney.
2003. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J. Cell Biochem. 89: 1235-1249.
Barry F. P. 2003. Biology and clinical applications of mesenchymal stem cells. Birth Defects Res. 69: 250-256.
Bernard, B. A. 2008. Human skin stem cells. J. Soc. Biol. 202: 3-6.
Berry L., M. E. Grant and J. McClure. 1992. Bone marrow-derived chondrogenesis in
vitro. J. Cell. Sci. 101: 333-342.
Bucci, L. R. and Meistrich, M. L. 1987. Effect of busulfan on murine spermatogenesis: cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations. Mutation Research. 176: 259-268
Brinster R.L. and J.W. Zimmermann. 1994. Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. U.S.A. 91: 11298–11302.
Brinster, R. L. 2008. Male Germline Stem Cells: From Mice to Men. Science 316: 404-405.
Brugh, V. M. and Lipshultz, L. I. 2004. Male factor infertility : Evaluation and management. Med. Clin. N. Am. 88: 367-385.
Churchill, P. F. and Kimura, T. 1979. Topological studies of cytochromes P-450scc and P-45011 beta in bovine adrenocortical inner mitochondrial membranes. Effects of controlled tryptic digestion. J. Biol. Chem. 254(20):10443-8.
Conget, P. A. and J. J. Minguell. 1999. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J. Cell. Phys. 181: 67-73.
De Kretser, D. M. and Burger, H. G. 1997. The Y chromosome and spermatogenesis. N. Engl. J. Med. 336:576-577.
Dexter, T.M., E. Spooncer, P. Simmons, and T.D. Allen. 1984. Long-term marrow culture: an overview of techniques and experience. Kroc. Found. Ser. 18: 57-96.
D’Ippolito, G., S. Diabira, G. A. Howard, P. Menei, B. A. Roos and P. C. Schiller. 2004. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J. Cell. Sci. 117:2971–2981.
Drusenheimer N., G.Wulf, J. Nolte, J. H. Lee, A. Dev, R. Dressel, J. Gromoll, J. Schmidtke, W. Engel and actPlus' K. Nayernia. 2007. Putative human male germ cells from bone marrow stem cells. Soc. Reprod. Fertil. Suppl. 63:69-76.
Du H., and Taylor H. S. 2009. Stem cells and female reproduction. Repoud. Sci. 16(2):126-39.
Eslaminejad, M.B., A. Nikmahzar, L. Taghiyar, S. Nadri, M. Massumi. 2006. Murine mesenchymal stem cells isolated by low density primary culture system. Dev. Growth Differ. 48: 361-370.
Friedenstein, A., R. Chailakhyan and U. Gerasimov. 1987. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 20: 263-272.
Hadley, M. E.1988. Hormones and male reproductive physiology. In:M. E. Hadley. (Eds) 2nd, Chap. 18. Endocrinology. Prentice-Hall. Englewood Cliff, NewJersey.pp:428~475.
Hafez, B. and E. S. E. Hafez. 2000. Reproduction in farm animals 7th Edition. Lippincott Williams & Wilkins. U.S.A.
Hall, P. F. 1991. Cytochrome P450 C21scc: one enzyme with two actions: hydroxylase and lyase. J. Steroid. Biochem.Mol. Biol. 40: 527-532
Honaramooz, A., S.O.Megee, W.Zeng, M.M. Destrempes, S.A. Overton, J. Luo, H.L. Galantino-Homer, M. Modelski, F. Chen, S. Blash, D.T. Melican, W.G. Gavin, S.L. Ayres, F. Yang, P.J. Wang, Y. Echelard and I. Dobrinski. 2008. Adenoassociated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB. J. 22: 374–382.
Hou, M., K. Y. Yang, H.Zhang, W. Q. Zhu, F. J. Duan, H. Wang, Y. H. Song, Y. J. Wei and S. S. Hu. 2007. Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats. International Journal of Cardiology. 115 :220–228
Geijsen, N., M. Horoschak, K. Kim, J. Gribnau, K. Eggan and G. Q. Daley. 2003. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427: 148-54.
Guan, K., K. Nayernia, L. S. Maier, S. Wagner, R. Dressel, J. H. Lee, J. Nolte, F. Wolf, M. Li and W. Engel . 2006. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440(7088):1199-203.
Jiang, Y., B. N. Jahagirdar, R. L. Reinhardt, R. E. Schwartz, C. D. Keene, X. R. Ortiz-Gonzalez, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, W. C. Low, D. A. Largaespada and C. M. Verfaillie. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49.
Johnstone, B., T. M. Hering and A. I. Caplan. 1998. In vitro chondrogenesis of bone
marrow-derived mesenchymal progenitor cells. Exp. Cell. Res. 238: 265-272.
Kanatsu-Shinohara M., N.Ogonuki, K. Inoue, A. Ogura, S.Toyokuni and T. Shinohara. 2003. Restoration of fertility in infertile mice by transplantation of cryopreserved male germline stem cells. Hum. Reprod. 18: 2660–2667.
Kucia M, M. Halasa, M. Wysoczynski, M. Baskiewicz-Masiuk, S. Moldenhawer, E .Zuba-Surma, R. Czajka, W. Wojakowski, B. Machalinski and M. Z. Ratajczak. 2007. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21:297–303.
Labrie, F., J. Simard, V. Luu-The, A. Belanger and G. Pelletier. 1992. Structure, function and tissure-specific gene expression of 3β-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase enzymes in classical and peripheral intracrine steroidgenic tissure. J. Steroid. Biochem.Mol. Biol. 43: 805-820
Larry, I., and Lipshutz, S. S. 1997. Infertility in the male. Third edition. Mosby-Year Book, Inc., St. Louis, P.173-174.
LASSALLE, B., M. A. MOUTHON, L. RIOU, V. BARROCA, M. COUREUIL,
F. C. BOUSSIN, J. TESTART, I. ALLEMAND and P. FOUCHET. 2008. Bone Marrow-Derived Stem Cells Do Not Reconstitute Spermatogenesis In Vivo. Stem cell. 26:1385–1386
Lue, Y., K. Erkkila, P. Y. Liu, K. Ma, C. Wang, A. S. Hikim and R. S. Swerdloff. 2007. Fate of bone marrow stem cells transplanted into the testis: potential implication for men with testicular failure. Am. J. Pathol. 170(3):899-908.
Martel, C. E., M. Rheaume, C. Takahashi, J. Couet, V. Luu-The, J. Simard and F. Labrie. 1992. Distribution of 17β-hydroxysteroid dehydrogenase gene expression and activity in rat and human tissure. J. Steroid. Biochem.Mol. Biol. 41: 597-603.
Martin, G. R. 1981. Isolationof a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U.S.A. 78: 7634-7638.
Martin, D. R., N. R. Cox and T. L. Hathcock. 2002. Isolation and characterization of
multipotential mesenchymal stem cells from feline bone marrow. Exp. Hematol. 30: 879-886.
Mak, V., and Jarvi, K. A. (1996) The genetics of male infertility. J. Urol.
156:1245-1257.
Moscoso, I., A. Centeno, E. Lopez, J.I. Rodriguez-Barbosa, and I. Filgueira. 2005. Differentiation in vitro of primary and immortalized porcine mesenchymal stem cells into cardiomyocytes for cell transplantation. Transplant Proc. 37: 481-482.
Nayernia, K., J. Nolte, H. W. Michelmann, , J. H. Lee, K. Rathsack, N. Drusenheimer, A. Dev, G. Wulf, I. E Ehrmann, D. J. Elliott, V. Okpanyi, U. Zechner, T. Haaf, A. Meinhardt and W. Engel. 2006. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev. Cell 11: 125-32.
Nayernia, K., H. J. Lee, N. Drusenheimer, J. Nolte, G. Wulf, R. Dressel, J. Gromoll and W. Engel. 2006. Derivation of male germ cells from bone marrow stem cells. Lab. Invest. 86:654–663.
Ogawa, T., J. M. ARECHAGA, M. Avarbock and P. Brinster. 1997. Transplantation of testis germinal cells into mouseseminiferous tubules. Int. J. Dev. Biol. 41: 111-122.
Oulad-Abdelghani, M., P. Bouillet, D. Décimo, A. Gansmuller, S. Heyberger, P. Dollé, S. Bronner, Y. Lutz and P. Chambon. 1996. Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J Cell Biol. 135:469-77.
Payne, A. H. and G. L. Youngblood. 1995. Regulation of expression of steroidogenic enzymes in Leydig cells. Biol. Reprod. 52: 217-225.
Peister, A., J. A. Mellad, B. L. Larson, B. M. Hall, L. F. Gibson and D. J. Prockop. 2004. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103:1662–1668.
Phinney, D.G., G. Kopen, R.L. Isaacson and D.J. Prockop. 1999. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield , growth and differentiation. J. Cell Biochem. 72: 570-585.
Pittenger, F., A. Mackay, S. Beck. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147.
Ringe, J., C. Kaps, B. Schmitt, K. Buseher, J. Bartel, H. Smolian, O. Schultz, G. R.
Burmester, T. Haupl and M. Sittinger. 2002. Porcine mesenchymal stem cells
induction of distinct mesenchymal cell lineages. Cell Tissue Res. 307: 21-327.
Shi. Q., S. Rafii, M. H. Wu, E. S. Wijelath, C. Yu, A. Ishida, Y. Fujita, S. Kothari, R .Mohle, L. R. Sauvage, M. A. Moore, R. F. Storb and W. P. Hammond. 1998. Evidence for circulating bone marrowderived endothelial cells. Blood 92:362–367.
Silva, C., J. R. Wood, L. Salvador, Z. Zhang, I. Kostetskii, C. J. Willians and J. F. Strauss III. 2009. Expression profile of male germ cell-associated gene in mouse embryonic stem cell cultures treated with all-trans retinoic acid and testosterone. Mol.Reprod. Dev. 76(1):11-21.
Sun, S., Z. Guo, X. Xiao, B. Liu, X. Liu, P. H. Tang and N. Mao. 2003. Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cell. 21: 527-535.
Tavassoli, M., and K. Takahashi. 1982. Morphological studies on long-term culture of marrow cells: characterization of the adherent stromal cells and their interactions in maintaining the proliferation of hemopoietic stem cells. Am. J. Anat. 164: 91-111.
Toyooka, Y., N. Tsunekawa, R. Akasu and T. Noce. 2003. Embryonic stem cells can form germ cells in vitro. Proc. Natl. Acad. Sci. U.S.A. 100: 11457-62.
Tropel, P., D. Noel, N. Platet, P. Legrand, A.L. Benabid and F. Berger. 2004. Isolation and characterization of mesenchymal stem cells from adult mouse bone marrow. Exp. Cell Res. 295: 395-406.
Van Saen D., E,Goossens, G. B. De and H.Tournaye. 2009. Bone marrow stem cells transplanted to the testis of sterile mice do not differentiate into spermatogonial stem cells and have no protective effect on fertility. Fertil Steril. 91: 1549-92.
Wakitani, S., T. Saito and A. I. Caplan. 1995. Myogenic cells derived from rat bone
marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 18: 1417-1426.
Yazawa, T., T. Mizutani, K. Yamada, H. Kawata, T. Sekiguchi, M. Yoshino, T. Kajitani, Z. Shou, A. Umezawa and K. Miyamoto. 2006. Differentiation of adult stem cells derived from bone marrow stroma into leydig or adrenocortical cells. Endocrinology 147: 4104-4111.
Zhang, Z., M. B. Renfree and R.V. Short. 2003. Successful intra- and interspecific male germ cell transplantation in the rat. Biol. Reprod. 68: 961–967.
Zuckerman, K.S., and M.S. Wicha. 1983. Extracelluar matrix production by the adherent cells of long-term murine bone marrow cultures. Blood 61: 5
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43214-
dc.description.abstract世界衛生組織(WHO)估計,約15%的育齡夫婦不孕,且其中50%肇因於男性之不孕症,而造成男性不孕症之主因為先天性精子生成之缺失、精子傳遞之缺失和性荷爾蒙之缺失或後天遭受輻射化學傷害及意外喪失生精能力,迄今仍有許多不孕症問題藉由人工生殖科技尚難解決。鑑此,依新近幹細胞於體內及體外分化之研究進展提示,幹細胞具分化成精子之潛能,可能協助解決先天及後天喪失生精能力病人之生育問題。
首先,本研究使用之綠螢光小鼠之骨髓間葉幹細胞 (enhanced green fluorescent protein-mesenchymal stem cells, EGFP-mMSCs)乃分離自攜帶β-actin啟動子之綠色螢光蛋白(enhanced green fluorescent protein, EGFP)轉基因小鼠之骨髓液。首先,在體外培養EGFP-mMSCs至第三代,在其誘導分化培養液中添加10-6M網膜酸(Retinoic acid; RA),在誘導分化21天後進行定量反轉錄聚合酶連鎖反應(Quantitative real-time PCR; qRT-PCR)和細胞免疫化學( immunocytochemistry, ICC) 染色分析。結果發現經RA誘導分化後之細胞,其雄性生殖細胞之專一基因如Piwil2, Stra8, Tex14 and Dazl之表現量會顯著地上升,ICC染色結果亦發現經RA誘導分化後細胞會表現雄性生殖細胞特殊標記。
從上述結果發現,MSCs具有分化為雄性生殖細胞之潛能,因此進一步進行體內試驗,利用本實驗室所產製之綠色螢光轉基因小鼠與猪分別分離純化其骨髓間葉幹細胞,經顯微手術移植入busulfan處理之不孕症小鼠生精細管中與生精細管間隙,8~12週後進行石蠟切片及ICC染色,發現移植入之表現綠色螢光蛋白質之小鼠及豬之MSCs皆能成功分化為萊狄氏細胞、精原細胞和減數分裂前之精母細胞。惟源自綠色螢光豬骨髓之MSCs於busulfan處理小鼠體內的分化率較低,推測為異種移植之關係。由以上結果證實,無論分離自綠色螢光小鼠或豬骨髓之MSCs皆具有在busulfan處理小鼠體內分化為睪丸細胞之潛能,因此,進一步測試移植後之受損睪丸功能是否修復。
首先,ELISA分析測試其血清中睪固酮( testosterone)含量,發現由於busulfan之破壞導致睪丸萎縮,其小鼠睪丸之睪固酮合成量會下降,但經移植綠色螢光小鼠及豬骨髓之MSCs一個月後之busulfan小鼠,其血中睪固酮會上升且回復正常。另進行生殖能力之試驗,將未移植和移植MSCs後兩週之busulfan處理公小鼠與正常ICR母鼠交配,結果發現移植綠色螢光小鼠及豬骨髓之MSCs之busulfan處理公小鼠皆會比未移植之busulfan處理公鼠提早約一個月恢復生殖能力。
由以上結果顯示,骨髓間葉幹細胞具有分化為睪丸細胞和修復受損睪丸與治療不孕症的潛能,雖然綠色螢豬骨髓MSCs之小鼠體內分化能力較EGFP-mMSCs為低,但其睪固酮與生殖能力試驗結果與植入EGFP-mMSCs試驗結果並沒有顯著之差異,同樣地具有修復受損睪丸之能力,因此EGFP-pMSCs如何修復受損睪丸,還須將來進一步研究確認之。鑑此,MSCs未來可進一步應用於瀕臨絕種之動物和經濟動物上,以及治療化學受損睪丸之臨床研究。
關鍵字:男性不孕症、骨髓間葉幹細胞、男性生殖細胞、睪丸細胞、萊狄氏細胞
zh_TW
dc.description.abstractAccording to the World Health Organization (2005) reports, there are 15% of couples suffered from infertility worldwide; majority is on the male factors. In clinical, chemotherapy is one of the major causes of male infertility, where the somatic cells, including germ cells, are decreased within the process. To this end, embryonic stem cells have been used in treating testicular failures recently, regards to their self-renewal and pluripotent characteristics. However, ethical concerns have made it difficult.
In this study, the regenerative and therapeutic functions of postnatal bone marrow mesenchymal stem cells (MSCs) were examined in mice with testicular failure. Followed by treatments of retinoic acid (RA, 10-6 M) for 21 days, the male germ cells markers, including Stra8, piwil2, Tex14 and Dazl could be significantly induced from the MSCs cultures, confirmed by RT-PCR assay. To validate their potential in vivo, MSCs isolated from mouse (EGFP-mMSCs) and pig (EGFP-pMSCs) expressing foreign EGFP (enhanced green fluorescent protein) gene, for tracking purpose, MSCs were injected into seminiferous tubules and the testicular interstitium of the busulfan-treated mice in an allogenic and xenogenic manner respectively. With evidenced by epifluorescence microscopy, the GFP positive MSCs was observed within the seminiferous structure after 2~3 months of transplantation. As well, some of the injected EGFP-mMSCs expressed the male germ cells specific maker VASA, and leydig cells maker P450scc, while the EGFP-pMSCs exhibited lower expression patterns. Functional analyses demonstrated that the production of testosterone in both EGFP-mMSCs and EGFP-pMSCs treated mice were significantly increased. In addition, their fertilities were also enhanced as compared with the untreated mice after one month.
Collectively, we demonstrated that marrow-derived MSCs of mouse and pig possess the potential to differentiate into testicular cells both in vitro and in vivo. This clinical relevant finding raises the possibility for treatment of male infertility and testosterone deficiency through the therapeutic use of MSCs
Keywords: Male infertility, mesenchymal stem cells, male germ cells, testicular cells, leydig cell
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:43:04Z (GMT). No. of bitstreams: 1
ntu-98-R96626012-1.pdf: 13041152 bytes, checksum: 9daad5509c4c3d9c141b22be990194ee (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents國立臺灣大學碩士學位論文 I
口試委員會審定書 I
謝誌 II
目錄 III
Index of Figures VI
Index of Tables VIII
中文摘要 IX
英文摘要 XI
第壹章 緒論 1
第貳章 文獻檢討 2
2.1雄性生殖介紹 2
2.1.1睪丸組織 2
2.1.2睪丸細胞 2
2.1.3生殖細胞 3
2.2睪固酮合成 7
2.2.1膽固醇的來源 7
2.2.2細胞質膽固醇的運送 7
2.2.3 性類固醇內泌素之合成 8
2.3男性不孕症 11
2.3.1男性不孕症介紹 11
2.3.2 造成男性不孕症之原因 11
2.4雄性生殖細胞移植技術之研究 13
2.5幹細胞 16
2.5.1幹細胞介紹 16
2.5.2 胚幹細胞( ESCs) 17
2.5.3 骨髓幹細胞 (bone marrow stem cells; BMSCs) 17
2.5.4 骨髓間葉幹細胞 18
2.6 應用幹細胞分化為雄性生殖細胞之研究 21
2.6.1胚幹細胞分化為雄性生殖細胞之研究 21
2.6.2 骨髓幹細胞分化為雄性生殖細胞之研究 22
第参章 試驗研究 23
試驗一 23
綠色螢光小鼠及綠色螢光豬骨髓間葉幹細胞之分離和純化 23
一、前言 23
二、材料與方法 24
三、結果與討論 30
試驗二 37
綠色螢光小鼠骨髓間葉幹細胞體外誘導分化為雄性生殖細胞之研究 37
一、前言 37
二、材料與方法 39
三、結果與討論 42
試驗三、化學受損睪丸動物模式之建立 46
一、前言 46
二、材料與方法 47
三、結果與討論 48
試驗四 50
綠色螢光小鼠與豬之骨髓間葉幹細胞體內分化為睪丸細胞之潛能 50
一、前言 50
二、材料與方法 52
三、結果與討論 54
試驗五 66
綠色螢光小鼠與豬之骨髓間葉幹細胞之修復化學受損睪丸功能之探討 66
一、前言 66
二、材料與方法 67
三、結果與討論 70
第肆章 綜合討論 75
第伍章 結論 77
第陸章 未來展望 78
第柒章 參考文獻 80
小傳 88
dc.language.isozh-TW
dc.title綠色螢光小與豬之骨髓間葉幹細胞分化為睪丸細胞之
潛能研究
zh_TW
dc.titlePotentiality of Marrow-Derived Mesenchymal Stem Cells Isolated from EGFP Transgenic-Mice and Pigs Differentiate into Testicular Cellsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭登貴(Winston Teng-Kuei Cheng),黃木秋(Mu-Chiou Huang),黃效民(Shiaw-Min Hwang),宋麗英(Li-Ying Sung)
dc.subject.keyword男性不孕症,骨髓間葉幹細胞,男性生殖細胞,睪丸細胞,萊狄氏細胞,zh_TW
dc.subject.keywordMale infertility,mesenchymal stem cells,male germ cells,testicular cells,leydig cell,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2009-07-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
12.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved