請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43209完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳安宇 | |
| dc.contributor.author | Cheng-Hung Lin | en |
| dc.contributor.author | 林承鴻 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:42:46Z | - |
| dc.date.available | 2011-07-20 | |
| dc.date.copyright | 2009-07-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-13 | |
| dc.identifier.citation | [1] Global System for Mobile communication (GSM), [Online]. Available:
http://www.gsmworld.com/ [2] 3rd Generation Partnership Project (3GPP), [Online]. Available: http://www.3gpp.org/ [3] Wireless Fidelity (Wi-Fi), [Online]. Available: http://www.wi-fi.org/ [4] Worldwide Interoperability for Microwave Access (WiMAX), [Online]. Available: http://www.wimaxforum.org/home/ [5] IEEE 802.16 Working Group, [Online]. Available: http://www.ieee802.org/16/ [6] 3rd Generation Partnership Project 2 (3GPP2), [Online]. Available: http://www.3gpp2.org/ [7] Digital Video Broadcasting (DVB), [Online]. Available: http://www.dvb.org/ [8] G. Desoli and E. Filippi, “An outlook on the evolution of mobile terminals: from monolithic to modular multi-radio, multi-application platforms,” IEEE Circuits Syst. Mag., vol. 6, no. 2, pp. 17-29, 2nd Quarter 2006. [9] N. S. Choubey and M. U. Kharat, “Overview of 3G and WiMAX technology,” Pacific Journal of Science and Technology, vol.9, no.10, pp. 59-65, May 2008. [10] G. Tedesco, “The road to 4G: LTE and WiMAX lead the way worldwide,” In-Stat, MDR Rep. IN0803987WBB, Oct. 2008. [11] “The 4G Era: Mobile WiMAX and Long Term Evolution: competitors or friends - technology and markets assessment”, Practel, Inc., Rep. PT1782427, May 2008. [12] A. Tasic, W. A. Serdijin, and J. R. Long, “Adaptive multi-standard circuits and systems for wireless communications,” IEEE Circuits Syst. Mag., vol. 6, no. 1, pp. 29-36, 1st Quarter 2006. [13] U. Ramacher, “Software-defined radio prospects for multistandard mobile phones,” IEEE Computer, vol. 40, no. 10, pp. 62-69, Oct 2007. [14] A. Baker, S. Ghosh, A. Kumar, and M. Bayoumi, “LDPC decoder: A cognitive radio perspective for next generation (XG) Communication,” IEEE Circuits Syst. Mag., vol. 7, no. 3, pp. 24-37, 3rd Quarter 2007. [15] I. S. Reed, and G. Solomon, “Polynomial codes over certain finite fields,” J. Soc. Indust. and Appl. Math, vol. 8, no. 2, pp. 300-304, June 1960. [16] S. Whitaker, J. Canaris, and K. Cameron, “Reed-Solomon VLSI codec for advanced television,” IEEE Trans. Circuits Syst. Video Technol., vol. 1, 1991, pp. 230-236. [17] P. Elias, “Coding for noisy channels,” IRE Conv. Rec, pt. 4, vol. 3, pp. 37-46, Mar. 1955. [18] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. IT-13, pp. 260-269, April 1967. [19] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. 7, pp. 21-28, Jan. 1962. [20] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 3, pp. 399-431, Jan. 1999. [21] R. M. Pyndiah, “Near-optimum decoding of product codes: Block turbo codes,” IEEE Trans. Commun., vol. 46, pp. 1003-1010, Aug. 1998. [22] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo Codes,” in Proc. IEEE Int. Conf. Communications (ICC), 1993, pp. 1064-1070. [23] C. Berrou and M. Jezequel, 'Non binary convolutional codes for turbo coding', Electron. Lett., vol. 35, no. 1, pp. 39-40, Jan. 1999. [24] C. Berrou, M. Jezequel, C. Douillard, and S. Kerouedan, “The advantages of non-binary turbo codes”, in Proc. IEEE Information Theory Workshop (ITW), 2001, pp. 61-63. [25] C. Douillard and C. Berrou, “Turbo codes with rate-m = (m + 1) constituent convolutional codes,” IEEE Trans. Commun., vol. 53, no. 10, pp. 1630-1638, Oct. 2005. [26] C. Douillard, M. Jezequel, and C. Berrou, “The turbo code standard for DVB-RCS”, in Proc. Int. Symp. Turbo Codes & Related Topics (ISTC), 2000, pp. 535-538. [27] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate (Corresp.),” IEEE Trans. Inf. Theory, vol. 20, pp. 284-287, 1974. [28] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24Mb/s radix-4 logMAP turbo decoder for 3GPP-HSDPA mobile wireless,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech. Papers, vol. 1, 2003, pp. 150-151. [29] B. Bougard et al., “A scalable 8.7nj/bit 75.6Mb/s parallel concatenated convolutional (turbo-)codec,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2003, pp. 152-153. [30] J. A. Erfanian and S. Pasupathy, “Low-complexity parallel-structure symbol-by-symbol detection for ISI channels,” in Proc. IEEE Pacific Rim Conf. Communications, Computers and Signal Processing (PacRim), 1989, pp.350-353. [31] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. IEEE Int. Conf. Communications (ICC), 1995, pp. 1009-1013. [32] S. Papaharalabos, P. Sweeney, and B.G. Evans, “SISO algorithms based on combined max/max* operations for turbo decoding,” Electron. Lett., vol. 41, no. 3, pp. 142-143, Feb. 2005. [33] J. Vogt and A. Finger, “Improving the MAX-Log-MAP turbo decoder”, Electron. Lett., vol. 36, no.23, pp. 1937-1939, Nov. 2000. [34] J. Hagennauer and L. Papke, “Decoding ‘turbo’-codes with the soft output Viterbi algorithm (SOVA),” in Proc. IEEE Int. Symp. Information Theory (ISIT), 1994, p. 164. [35] S. Benedetto and G. Montorsi, “Unveiling turbo-codes: Some results on parallel concatenated coding schemes,” IEEE Trans. Inf. Theory, vol. 42, no.2, pp. 408-428, Mar. 1996. [36] S. Halter, M. Oberg, P. M. Chau, and P. H. Siegel, “Reconfigurable signal processor for channel coding and decoding in low power SNR wireless communications,” in Proc. IEEE Workshop Signal Processing Systems (SiPS), 1998, pp. 260-274. [37] S. Hong, J. Yi, and W.E. Stark, “VLSI design and implementation of low complexity adaptive turbo-code encoder and decoder for wireless mobile communication applications,” in Proc. IEEE Workshop Signal Processing Systems (SiPS), 1998, pp. 233-242. [38] C. Berrou, P. Combells, P. Penard, and B. Talibart, “An IC for turbo-codes encoding and decoding,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech. Papers, 1995, pp. 90-91. [39] D. Garrett and M. Stan, “Low power architecture of the soft output Viterbi algorithm,” in Proc. IEEE Int. Symp. Low Power Electronics and Design (ISLPED), 1998, pp. 262-267. [40] J. Hagennauer, E. Ofeer, and L. Papke, “Iterative decoding of binary block and convolutional code,” in Proc. IEEE Int. Symp. Information Theory (ISIT), 1996, pp. 429-445. [41] J. P. Woodard, and L. Hanzo, “Comparative study of turbo decoding techniques: An overview,” IEEE Trans. Veh. Technol., vol. 49, no.6, pp. 2208-2233, Nov. 2000. [42] Y. Ould-Cheikh-Mouhamedou, P. Guinand, and P. Kabal, “Enhanced Max-Log-APP and enhanced Log-APP decoding for DVB-RCS,” in Int. Symp. Turbo Codes & Related Topics (ISTC), pp. 259-269, Sept. 2003. [43] J. B. Anderson and S. M. Hladik, “Tailbiting MAP decoders,” IEEE J. Sel. Areas Commun., vol. 16, no.2, pp. 297-302, Feb. 1998. [44] C. Weiss, C. Bettstetter, and S. Riedel, “Code construction and decoding of parallel concatenated tailbiting codes,” IEEE Trans. Inf. Theory, vol. 47, no. 1, pp. 366-386, Jan. 2001. [45] C. Zhan, T. Arslan, A.T. Erdogan, and S. MacDougall, “An efficient decoder scheme for double binary circular turbo codes,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), 2006, pp. IV-297-302. [46] S.-B. Im, M.-G. Kim, and H.-J. Choi, “An efficient tail-biting MAP decoder for convolutional turbo codes in OFDM systems,” in Proc. IEEE Region 10 Annual Conf. (TENCON), 2004, pp. 589-592. [47] A. Nimbalker, T. E. Fuja, D. J. Costello, T.K. Blankenship, and B. Classon, “Contention-free interleavers,” Proc. IEEE Int. Symp. Information Theory (ISIT), 2004, pp. 54. [48] A. Tarable and S. Benedetto, “Mapping interleaving laws to parallel turbo decoder architectures,” IEEE Commun. Lett., vol. 8, pp. 162-164, Mar. 2004. [49] A. Tarable, L. Dinoi, and S. Benedetto, “Design of prunable interleavers for parallel turbo decoder architectures,” IEEE Commun. Lett., vol. 11, no. 2, pp. 167-169, Feb. 2007. [50] R. Asghar and D. Liu, “Dual standard re-configurable hardware interleaver for turbo decoding,” in Proc. IEEE Int. Symp. Wireless Pervasive Computing (ISWPC), 2008, pp. 768-772. [51] D. Divsalar and F. Pollara, “Turbo codes for PCS applications,” in Proc. IEEE Int. Conf. Communications (ICC), 2005, pp. 54-59. [52] J. Sun and O. Y. Takeshita, “Interleavers for turbo codes using permutation polynomials over integer rings,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 101-119, Jan. 2005. [53] C. Berrou, Y. Saouter, C. Douillard, S. Kerouedan, and M. Jezequel, “Designing good permutations for turbo codes: Towards a single model,” in Proc. IEEE Int. Conf. Communications (ICC), 2004, pp. 341-345. [54] A. Nimbalker, Y. Blankenship, B. Classon, and T. K. Blankenship, “ARP and QPP interleavers for LTE turbo coding,” in Proc. IEEE Wireless Communications and Networking Conf. (WCNC), 2008, pp. 1032-1037. [55] R. Dobkin, M. Peleg, and R. Ginosar, “Parallel VLSI architecture for MAP turbo decoder,” in Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications (PIMRC), vol.1, 2002, pp. 384-388. [56] M. Martina, M. Nicola, and G. Masera, “Hardware design of a low complexity, parallel interleaver for WiMax duo-binary turbo decoding,” IEEE Commun. Lett., vol. 12, no. 11, pp. 846-848, Nov. 2008. [57] Y. Ould-Cheikh-Mouhamedou, “On distance measurement methods for turbo codes,” Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. McGill, Montreal, Quebec, Canada, Nov. 2005. [58] C.-H. Lin, “Development of MAP algorithm and VLSI design of turbo decoding for 3GPP,” Master thesis, Dept. Elect. Eng., Nat. Central Univ., Jhongli, Taiwan, July 2004. [59] M.-C. Hsu, “An area-efficient double-binary CTC decoder for WiMAX applications,” Master thesis, Dept. Electron. Eng., Nat. Chiao-Tung Univ., Hsinchu, Taiwan, July 2008. [60] Y.-Y. Lee, “Research on reconfigurable turbo decoder for LTE applications,” M.S. Thesis, Dept. Electron. Eng., Nat. Chiao-Tung Univ., Hsinchu, Taiwan, June 2008. [61] C.-Y. Chen, “High-throughput reconfigurable convolutional turbo decoder design for future wireless WAN,” Master thesis, Grad. Inst. Electron. Eng., Nat. Taiwan Univ., Taipei, Taiwan, Jan. 2009. [62] A. J. Viterbi, “An intuitive justification and simplified implementation of the MAP decoder for convolutional codes,” IEEE J. Sel. Area Commun., vol. 16, no.2, pp. 260-264, Feb. 1998. [63] G. Masera, G. Piccinini, M. R. Roch, and M. Zamboni, “VLSI architectures for turbo codes,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 7, no. 3, pp. 369-379, Sept. 1999. [64] G. Masera, M. Mazza, G. Piccinini, F. Viglione, and M. Zamboni, “Architectural strategies for low-power VLSI turbo decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 10, no. 3, pp. 279-285, June 2002. [65] E. Boutillon, W. J. Gross, and P. G. Gulak, “VLSI architectures for the MAP algorithm,” IEEE Trans. Commun., vol. 51, no. 2, pp. 175-185, Feb. 2003. [66] A. Raghupathy and K. J. R. Liu, “A transformation for computational latency reduction in turbo-MAP decoding,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 1999, vol. 4, pp. 402-405. [67] T.-H. Tsai and C.-H. Lin, 'A VLSI design of new memory reduction turbo code decoder,' in Proc. IEEE Int. Workshop Cellular Neural Networks and their Applications (CNNA), 2005, pp. 249-252. [68] T.-H. Tsai, C.-H. Lin and A.-Y. Wu, “A memory-reduced log-MAP kernel for turbo decoder,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 2005, pp. 1032-1035. [69] D. Garrett, B. Xu, and C. Nicol, “Energy efficient turbo decoding for 3G mobile,” in Proc. IEEE Int. Symp. Low Power Electronics and Design (ISLPED), 2001, pp. 328-333. [70] M. Tiwari, Y. Zhu, and C. Chakrabarti. “Memory subbanking schemes for high throughput MAP based SISO decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 4, pp. 494-498, Apr. 2005. [71] J. Kaza and C. Chakrabarti, “Design and implementation of low-energy turbo decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 9, pp. 968-977, Sept. 2004. [72] C.-M. Wu, M.-D. Shieh, C.-H. Wu, Y.-T. Hwang, and J.-H. Chen, “VLSI architectural design tradeoffs for sliding-window log-MAP decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 4, pp. 439-447, April 2005. [73] F.-M. Li, C.-H. Lin, and A.-Y. Wu, “Unified convolutional/turbo decoder design using tile-based timing analysis of VA/MAP kernel,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 10, pp. 1358-1371, Oct. 2008. [74] M.-C. Shin and I.-C. Park, “A programmable turbo decoder for multiple 3G wireless standards,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech. Papers, vol. 1, 2003, pp. 154-484. [75] M.C. Shin and I.-C. Park, “Processor-based turbo interleaver for multiple third-generation wireless standards”, IEEE Commun. Lett., vol. 7, no. 5, pp. 210-212, May 2003. [76] M.-C. Shin and I.-C. Park, “SIMD processor-based turbo decoder supporting multiple third-generation wireless standards,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.15, no.7, pp. 801-810, July 2007. [77] J.-H. Kim and I.-C. Park, “A 50Mbps double-binary turbo decoder for WiMAX based on bit-level extrinsic information exchange,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2008, pp. 305-308. [78] H. Dawid, G. Gehnen, and H. Meyr, “MAP channel decoding: Algorithm and VLSI architecture,” in Proc. IEEE Workshop VLSI Signal Processing, vol. VI, 1993, pp. 141-149. [79] J.-H. Kim and I.-C. Park, “Energy-efficient double-Binary tail-biting turbo decoder based on border metric encoding,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 2007, pp. 1325-1328. [80] J.-H. Kim and I.-C. Park, “Duo-binary circular turbo decoder based on border metric encoding for WiMAX,” in Proc. IEEE Asia and South Pacific Design Automation Conf. (ASP-DAC), 2008, pp. 109-110. [81] D.-S. Lee and I.-C. Park, “Low-power log-MAP decoding based on reduced metric memory access,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 6, pp. 1244-1253, June 2006. [82] H.-M. Choi, J.-H. Kim, and I.-C. Park, “Low-power hybrid turbo decoding based on reverse calculation,” IEICE Trans. Fund. Electron. Comm. Comput. Sci., vol.E89-A, no.3, pp. 782-789, March 2006. [83] J.-H. Kim and I.-C. Park, “Double-binary circular turbo decoding based on border metric encoding,” IEEE Trans. Circuits. Syst. II, Exp. Briefs, vol. 55, no.1, pp.79-83, Jan. 2008. [84] J.-H. Kim and I.-C. Park, “Bit-level extrinsic information exchange method for double-binary turbo codes,” IEEE Trans. Circuits. Syst. II, Exp. Briefs, vol.56, no.1, pp.81-85, Jan. 2009. [85] H. Liu, J.-P. Diguet, C. Jego, M. Jezequel, and E. Boutillon, “Energy efficient turbo decoder with reduced the state metric quantization,” in Proc. IEEE Workshop Signal Processing Syst. (SiPS), 2007, pp. 237-242. [86] F. Catthoor, E. de Greef, and S. Suytack, “Cost models and estimation,” in Custom Memory Management Methodology: Exploration of Memory Organization for Embedded Multimedia System Design, Kluwer Academic Publishers, Norwell, MA, 1998, pp. 55-81. [87] C.-H. Lin, C.-Y. Chen, and A.-Y. Wu, “High-throughput 12-mode CTC decoder for WiMAX standard,” in Proc. IEEE Int. Symp. VLSI Design, Automation and Test (VLSI-DAT), 2008, pp. 216-219. [88] J.-M. Hsu and C.-L. Wang, “A parallel decoding scheme for turbo decoders,” in Proc. IEEE Int. Symp. Circuits and Syst. (ISCAS), 1998, vol. 4, pp. 445-448. [89] C. Schurgers, F. Catthoor, and M. Engels, “Memory optimization of MAP turbo decoder algorithms,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 9, no. 2, pp. 305-312, Apr. 2001. [90] Z. He, P. Fortier, and S. Roy, 'Highly-parallel decoding architectures for convolutional turbo codes,' IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 10, pp.1147-1151, Oct. 2006. [91] Z. Wang, Z. Chi, and K. K. Parhi, “Area-efficient high-speed decoding schemes for turbo decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 10, no. 6, pp. 902-912, Aug. 2002. [92] A. Worm, H. Lamm, and N. Wehn, “A high-speed MAP architecture with optimized memory and power consumption,” in Proc. IEEE Workshop Signal Processing Syst. (SiPS), 2000, pp. 265-274. [93] M. M. Mansour and N. R. Shanbhag, “VLSI architectures for SISO-APP decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 4, pp. 627-650, Aug. 2003. [94] S.-J. Lee, N.R. Shanbhag, and A.C. Singer, “Area-efficient high-throughput MAP decoder architectures,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 8, pp. 921-933, Aug. 2005. [95] S.-J. Lee, N.R. Shanbhag, and A.C. Singer, “A 285-MHz pipelined MAP decoder in 0.18.um CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1718-1725, Aug. 2005. [96] C.-C. Wong, Y.-Y. Lee, and H.-C. Chang, “A 188-size 2.1mm2 reconfigurable turbo decoder chip with parallel architecture for 3GPP LTE system,” in Proc. Int. Symp. VLSI Circuits (SOVC), 2009, pp. 288-289. [97] IEEE 802.16e CTC decoder core, Xilinx LogiCORE, XiLinx IP Center, DS137 (V2.2), June 5, 2006. [98] T. Vogt and N. Wehn, “A reconfigurable ASIP for convolutional and turbo decoding in an SDR environment,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 10, pp. 1309-1320, Oct. 2008. [99] O. Muller, A. Baghadadi, and M. Jezequel, “From parallelism levels to a multi-ASIP Architecture for turbo decoding,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 1, pp. 92-102, Jan. 2009. [100] Y. Sun, Y. Zhu, M. Goel, and J.R. Cavallaro, “Configurable and scalable high throughput turbo decoder architecture for multiple 4G wireless standards,” in Proc. IEEE Int. Conf. Application-Specific Systems, Architectures and Processors (ASAP), 2008, pp. 209-214. [101] C.-Y. Chen, C.-H. Lin, and A.-Y. Wu, “High-throughput dual-mode single/double binary MAP processor design for wireless WAN,” in Proc. IEEE Workshop Signal Pocessing Syst. (SiPS), 2008, pp. 83-87. [102] C.-H. Lin, C.-Y. Chen, and A.-Y. Wu, “Low-power traceback MAP decoding for double-binary convolutional turbo decoder,” in Proc. IEEE Int. Symp. Circuits and Syst. (ISCAS), 2008, pp. 736-739. [103] C.-H. Tang, C.-C. Wong, C.-L. Chen, C.-C. Lin, and H.-C. Chang, “A 952MS/s max-log MAP decoder chip using radix-4x4 ACS architecture,” in Proc. IEEE Asian Solid-State Circuits Conference (A-SSCC), 2006, pp. 79-82. [104] C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “A 58mW 1.2mm2 HSDPA turbo decoder ASIC in 0.13μm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 264-612. [105] C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “Design and optimization of an HSDPA turbo decoder ASIC,” IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 98-106, Jan. 2009. [106] C.-C. Wong et al. “A 0.22nJ/b/iter 0.13μm turbo decoder chip using inter-block permutation interleaver,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2007, pp. 273-276. [107] T. Abe and T. Matsumoto, “Space-time turbo equalization in frequency-selective MIMO channels,” IEEE Trans. Vehicular Technology, vol. 52, no. 3, pp. 469-475, May 2003. [108] T. Abe and T. Matsumoto, “A MIMO turbo equalization in frequency-selective channels with unknown interference,” IEEE Trans. Vehicular Technology, vol. 52, no. 3, pp. 476-482, May 2003. [109] A. M. Tonello, “MIMO MAP equalization and turbo decoding in interleaved space-time coded systems,” IEEE Trans. Commun., vol. 51, no. 2, pp. 155-160, Feb. 2003. [110] L. Boher, R. Rabineau, and M. Helard, “FPGA implementation of an iterative receiver for MIMO-OFDM systems,” IEEE J. Selected areas communi., vol. 26, no. 6, Aug. 2008. [111] D. Bertozzi and Luca Benini, “Xpipes: A network-on-chip architecture for Gigascale system-on-chip,” IEEE Circuits Syst. Mag., vol. 4, no. 2, pp. 18-31, 2nd Quarter 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43209 | - |
| dc.description.abstract | 隨著多媒體服務的快速成長,為了取得在雜訊通道中可靠的資料傳輸,渦輪碼(convolutional turbo code)已經廣泛地應用在無線通訊系統中,並且成為這些系統中前饋式錯誤更正(forward error correction)機制之一。此外,多數前瞻的無限通訊標準會採用不同的渦輪碼機制,例如:單二元(single-binary)渦輪碼與雙二元(double-binary)渦輪碼,並且伴隨著各式各樣的框架大小與吞吐率。因此,一個專為應用於多標準渦輪解碼的可重組化且面積優畫的硬體設計是相當重要的。
適用於高吞吐量渦輪解碼,以視窗解碼(window-based decoding)為基礎、平行且可量化的最大事後機率演算法(maximum a posteriori algorithm,MAP)廣泛地使用於處理任何框架大小的解碼。本論文第一部份提出三種將平行視窗(parallel-window,PW))與綜合視窗(hybrid-window,HW)以面積優化結合的MAP解碼,可以在平行視窗MAP解碼與綜合視窗MAP解碼間切換。為了驗證所提出的概念,一個單位元與雙位元雙模式2PW-1HW MAP處理器以0.13 μm CMOS製程實現在一顆面積1.28 mm2的晶片上。這顆原型晶片在操作頻率125 MHz下可以達到500 Mbps的吞吐率且解碼面積效率為3.13 bits/mm2。適用於多標準系統,五顆雙模式2PW-1HW MAP處理器即可達到WiMAX與LTE渦輪解碼所預期的吞吐量。 由於渦輪解碼的疊代運算造成了解碼時很高的記憶體功率耗損。本論文第二部份提出了低成本低功率的追回式(Traceback)最大機率演算法來降低狀態記憶體快取(state metrics cache)所耗損的功率。針對雙二元最大機率演算法,以二乘二為基底和以四為基底的追回式架構提供了功率消耗與操作頻率的選擇架構。這兩個架構可以為雙位元渦輪解碼器取得約7%的功率下降。一個高吞吐量採用二乘二為基底追回式架構的12模式WiMAX渦輪解碼器以0.13 μm CMOS製程實現在一顆面積7.16 mm2的晶片上。這顆原型晶片在操作頻率100 MHz下可以達到115.4 Mbps的吞吐率且解碼面積效率為0.18 bits/mm2、能源效率為0.43 nJ/bit per iteration。 本論文第三部份提出一個可以同時支援單位元和雙位元渦輪解碼的雙模(單位元�雙位元)以四為基底的最大機率演算法。這個雙模最大機率演算法的運算模組與存取單元在以達到高面積使用率的考量下被設計出來。與一個沒有硬體共用的單位元和雙位元最大機率演算法處理器來做比較,所提出的雙模最大機率演算法處理器可以減少約45%的面積。為了驗證所提出的概念,一個高吞吐量採用二乘二為基底追回式架構的35模式WiMAX/LTE渦輪解碼器以90 nm CMOS製程實現在一顆面積3.38 mm2的晶片上。這顆原型晶片在操作頻率164 MHz下可以達到241.2 Mbps的吞吐率且解碼面積效率為0.43 bits/mm2。 總結本論文所提出上述三種面積優畫迴旋渦輪解碼的設計方式,皆可同時應用在任何前瞻通訊系統的渦輪碼中,本論文並針對目前廣泛使用的通訊標準,以三顆不同應用的原型晶片來驗證所提出這三種面積優畫迴旋渦輪解碼的設計方法。 | zh_TW |
| dc.description.abstract | With the rapid growth of multimedia services, convolutional turbo codes (CTCs) have been widely adopted as one of forward error correcting (FEC) schemes for wireless communications to have a reliable transmission over noisy channels. Most of advanced wireless standards have adopted distinct CTC schemes, such as single-binary (SB) CTC or double-binary (DB) CTC, with various block sizes and throughput rates. Thus, a reconfigurable and area-efficient dedicated hardware design for multistandard CTC decoding is necessary.
To perform the alternative parallel-window (PW) and hybrid-window (HW) maximum a posteriori algorithm (MAP) decoding, three area-efficient combinations of PW and HW MAP decoding are proposed in this dissertation. To verify the proposed approach, a 1.28 mm2 dual-mode (SB/DB) 2PW-1HW MAP processor is implemented in 0.13 μm CMOS process. The prototyping chip achieves a maximum throughput rate of 500 Mbps at 125 MHz with an area efficiency of 3.13 bits/mm2. For the multistandard systems, the expected throughput rates of the WiMAX and LTE CTC schemes is achieved by using five dual-mode 2PW-1HW MAP processors. The iterative decoding of CTC has a large memory power consumption. To reduce the power consumption of the state metrics cache (SMC), low-cost and low-power memory-reduced traceback MAP decoding is proposed. For double-binary (DB) MAP decoding, radix-2x2 and radix-4 traceback structures are introduced to provide a tradeoff between power consumption and operating frequency. These two traceback structures achieve an around 7% power reduction of the DB MAP decoders. A high-throughput 12-mode WiMAX CTC decoder applying the proposed radix-2x2 traceback structure is implemented by using a 0.13 μm CMOS process in a core area of 7.16 mm2. Based on post-layout simulation results, the proposed decoder achieves a maximum throughput rate of 115.4 Mbps at 100 MHz with an area efficiency of 0.18 bits/mm2 and an energy efficiency of 0.43 nJ/bit per iteration. Finally, dual-mode (SB/DB) radix-4 MAP decoding is proposed. The computational modules and storages of the dual-mode (SB/DB) MAP decoding are designed to achieve a high area utilization. The proposed dual-mode MAP decoding can achieve around 45% silicon area reductions compared with the hardware non-shared radix-4 SB MAP and radix-4 DB MAP decoding. To verify the proposed approaches, a 3.38 mm2 35-mode WiMAX/LTE CTC decoder is implemented in 90 nm CMOS process. The prototyping chip achieves a maximum throughput rate of 241.2 Mbps at 164 MHz with an area efficiency of 0.43 bits/mm2. To the best of our knowledge, the prototyping decoder chip is the first CTC decoder to meet the throughput rate requirements of WiMAX and LTE CTC schemes. In summary, the proposed three designs of the area-efficient CTC decoding are applied to the CTC schemes of advanced communication systems. To verify the proposed designs for the prevalent communication standards, three prototyping implementations of CTC decoding are presented in this dissertation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:42:46Z (GMT). No. of bitstreams: 1 ntu-98-D93943014-1.pdf: 4942359 bytes, checksum: 229022bc036190a5a682f7f32027fbd3 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 III Abstract V Contents VII List of Figures X List of Tables XIII Chapter 1 Introduction 1 1.1 BACKGROUND 1 1.2 MOTIVATION AND DESIGN OBJECTIVE 5 1.3 RESEARCH CONTRIBUTIONS 7 1.4 DISSERTATION ORGANIZATION 10 Chapter 2 Fundamentals of Convolutional Turbo Codes 12 2.1 ENCODING OF CONVOLUTIONAL TURBO CODES 12 2.1.1 TYPICAL ENCODER STRUCTURE 12 2.1.2 SINGLE-BINARY RECURSIVE SYSTEMATIC CONVOLUTIONAL CODE 13 2.1.3 DOUBLE-BINARY RECURSIVE SYSTEMATIC CONVOLUTIONAL CODE 14 2.1.4 INTERLEAVING 16 2.1.5 TRELLIS TERMINATIONS 18 2.2 DECODING OF CONVOLUTIONAL TURBO CODES 20 2.2.1 TYPICAL DECODER STRUCTURE 20 2.2.2 RADIX-2 SINGLE-BINARY (SB) MAP DECODING 22 2.2.3 RADIX-4 DOUBLE-BINARY (DB) MAP DECODING 24 2.2.4 INITIALIZATION OF TRELLIS FOR MAP DECODING 25 2.3 SUMMARY 26 Chapter 3 Area-Efficient Combinations of Window-Based MAP Decoding 27 3.1 WINDOW-BASED MAP DECODING 27 3.1.1 SLIDING-WINDOW (SW) MAP DECODING 28 3.1.2 PARALLEL-WINDOW (PW) MAP DECODING 31 3.1.3 HYBRID-WINDOW (HW) MAP DECODING 33 3.2 PROPOSED COMBINED PARALLEL-WINDOW AND HYBRID-WINDOW MAP DECODING 35 3.2.1 1PW-1HW MAP DECODING 35 3.2.2 2PW-1HW MAP DECODING 38 3.2.3 MODIFIED 2PW-1HW MAP DECODING 40 3.3 THROUGHPUT ANALYSIS 41 3.3.1 GENERAL THROUGHPUT RATE FORM FOR CTC DECODING 41 3.3.2 THROUGHPUT ANALYSES OF THE PROPOSED MAP PROCESSORS 43 3.4 PROPOSED DESIGN FLOW FOR AREA-EFFICIENT CTC DECODING 46 3.5 EXPERIMENTAL RESULTS 49 3.6 PROTOTYPING CHIP IMPLEMENTATION OF 2PW-1HW MAP PROCESSOR 53 3.6.1 CHIP IMPLEMENTATION AND COMPARISON 53 3.6.2 APPLICATIONS OF THE PROTOTYPING 2PW-1HW MAP PROCESSOR 56 3.7 SUMMARY 60 Chapter 4 Low-cost Low-power Memory-Reduced Traceback MAP Decoding 62 4.1 POWER ISSUE OF MAP DECODING 62 4.2 POWER REDUCTIONS OF STATE METRICS CACHE 63 4.2.1 CONVENTIONAL (WINDOW-BASED) DECODING PROCEDURE 63 4.2.2 RECOMPUTED DECODING PROCEDURE 64 4.2.3 REVERSE DECODING PROCEDURE 66 4.3 PROPOSED MEMORY-REDUCED TRACEBACK MAP DECODING 69 4.4 RADIX-2 TRACEBACK MAP DECODING 71 4.5 RADIX-4 TRACEBACK MAP DECODING 74 4.5.1 TRACEBACK COMPUTATION FOR THE DB MAP DECODING 74 4.5.2 RADIX-2X2 TRACEBACK PAIR 75 4.5.3 RADIX-4 TRACEBACK PAIR 78 4.6 EXPERIMENTAL RESULTS FOR RADIX-4 DB TRACEBACK MAP DECODING 80 4.6.1 HARDWARE AND TIMING ANALYSES OF RADXI-4 DB TRACEBACK COMPUTATION 80 4.6.2 AREA AND POWER EVALUATIONS OF TRACEBACK COMPUTATION 83 4.6.3 AREA AND POWER EVALUATIONS OF PW EML-MAP DECODERS 87 4.7 PROTOTYPING IMPLEMENTATION OF 12-MODE WIMAX CTC DECODER 89 4.8 SUMMARY 93 Chapter 5 Area-Efficient Dual-Mode Single-/Double-Binary MAP Decoding 95 5.1 DESIGN CONCEPT OF THE DUAL-MODE (SB/DB) MAP DECODING 95 5.2 RADIX-4 SINGLE-BINARY MAP ALGORITHMS 96 5.3 PROPOSED AREA-EFFICIENT DUAL-MODE SB/DB MAP DECODING PATH 98 5.3.1 BRANCH METRICS DECOMPOSITION FOR RADIX-4 SB/DB MAP DECODING 98 5.3.2 TRELLIS STRUCTURE OF RADIX-4 SB/DB MAP DECODING 103 5.3.3 DUAL-MODE LAPO FOR RADIX-4 SB/DB MAP DECODING 104 5.4 EXPERIMENTAL RESULTS 107 5.5 PROTOTYPING CHIP IMPLEMENTATION 109 5.6 SUMMARY 114 Chapter 6 Conclusions 116 6.1 DESIGN ACHIEVEMENTS 116 6.2 FUTURE WORK 119 6.3 CONTRIBUTION TO THE LITERATURE 120 Bibliography 122 | |
| dc.language.iso | en | |
| dc.subject | 面積優化 | zh_TW |
| dc.subject | 渦輪碼 | zh_TW |
| dc.subject | 最大事後機率演算法 | zh_TW |
| dc.subject | 多標準 | zh_TW |
| dc.subject | Turbo code | en |
| dc.subject | Area efficiency | en |
| dc.subject | Multiple standards | en |
| dc.subject | Maximum a posteriori algorithm | en |
| dc.title | 可重組面積優化渦輪解碼器之演算法與積體電路設計 | zh_TW |
| dc.title | Algorithms and VLSI Designs of Area-Efficient Reconfigurable Convolutional Turbo Decoder | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 曹恆偉,陳紹基,謝明得,蔡宗漢,黃穎聰,蔡佩芸,丁邦安 | |
| dc.subject.keyword | 渦輪碼,最大事後機率演算法,多標準,面積優化, | zh_TW |
| dc.subject.keyword | Turbo code,Maximum a posteriori algorithm,Multiple standards,Area efficiency, | en |
| dc.relation.page | 137 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
