Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43199
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝國煌
dc.contributor.authorChih-Kai Huangen
dc.contributor.author黃智楷zh_TW
dc.date.accessioned2021-06-15T01:42:12Z-
dc.date.available2012-07-16
dc.date.copyright2009-07-16
dc.date.issued2009
dc.date.submitted2009-07-13
dc.identifier.citationChapter 1
1. S. M. Borisov and I. Klimant, Analyst, 2008, 133, 1302–1307
2. L. Tong, Q. Wei, A. Wei and J.-X. Cheng, Photochemistry and Photobiology, 2009, 85, 21–32
3. J. Kim, H. Akinaga, N. Atoda and J. Tominaga, Appl. Phys. Lett., 2002, 80, 2764
4. M. Scarselli, S. Masala, P. Castrucci, M. De Crescenzi, E. Gatto, M. Venanzi, A. Karmous, P. D. Szkutnik, A. Ronda and I. Berbezier, Appl. Phys. Lett., 2007, 91, 141117
5. Y. Qin, X. Wang and Z. L. Wang, Nature, 2008, 451, 809-813
6. J. A. Ayllon and M. Lira-Cantu, Appl. Phys. A: Materials Science & Processing, 2009, 95, p249-255
O. D. Velev and S. Gupta, Adv. Mater.,2009, 21, 1-9
7. J. Han, H. Su, F. Song, J. Gu, D. Zhang and L. Jiang, Langmuir, 2009, 25, 3207-3211
8. D. M. Kuncicky, B. G. Prevo and O. D. Velev, J. Mater. Chem., 2006, 16, 1207–1211
9. C.-D. Liu, S.-N. Lee, C.-H. Ho, J.-L. Han and K.-H. Hsieh, J. Phys. Chem. C, 2008, 112, 15956–15960
10. C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu and C.-C. Chen, Jpn. J. Appl. Phys., 2009, 48, 020212
11. R. Guo, J. Nishimura, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, Appl. Phys. B: Lasers & Optics, 2009, 94, p33-38
12. E. Yablonovitch, Phys. Rev. Lett. 1987, 58, 2059-2062
S. John, Phys. Rev. Lett., 1987, 58, 2486–2489
13. Hiltner, PA; IM Krieger (1969). 'Diffraction of Light by Ordered Suspensions'. Journal of Physical Chemistry 73: 2306.
14. Luck, W. et al., Ber. Busenges Phys. Chem., Vol. 67, p.84 (1963)
15. B. Gates and Y. Xia, Adv. Mater., 2000, 12, 1329-1332
O. Painter, R. K. Lee, A. Scherer, Science, 1999, 284, 1819-1821
16. J. D. Joannopoulos, P. R. Villeneuve, S. Fan, Nature, 1997, 386, 143-149
17. A. S. Sinitskii, A. V. Knotko, Y. D. Tretyakov, Solid State Ionics, 2004, 172, 477-479
18. V. Bevger, Curr. Opin. Solid Mater. Sci., 1999, 4, 209-216
19. A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, N.-A. P. Nicorovici, Nature, 2001, 409, 36–37.
S. Yoshioka, and S. Kinoshita, Forma, 2002, 17, 169-181.
20. L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron, Phys. Rev. E, 2003, 021907 (7pp).
21. A. P. Philipse, J. Mat. Sci. Lett., 1989, 8, 1371−1373
J. V. Sanders, Acta Crystallogr., 1968, A24, 427.
22. P. Pieranski, Contemp. Phys., 1983, 24, 25.
23. W. van Megan, I. Snook, Adv. Colloid Interface Sci., 1984, 21, 119.
24. A. P. Gast, W. B. Russel, Phys. Today, 1998, December, 24.
25. Y. Xia, J. Tien, D. Qin, G. M. Whitesides, Langmuir, 1996, 12, 4033.
26. S. Hayashi, Y. Kumamoto, T. Suzuki, T. Hirai, J. Colloid Interface Sci., 1991, 144, 538.
27. C. Murray, MRS Bull., 1998, 23, 33.
28. D. H. Everett, Basic Principles of Colloid Science, Royal Society of Chemistry, London, 1988.
29. W. B. Russel, D. A. Saville and W. R. Schowalter, Colloidal Dispersions, Cambridge University Press,
Cambridge, 1989.
30. R. J. Hunter, Introduction to Modern Colloid Science, Oxford University Press, Oxford, 1993.
31. A. K. Arora and B. V. R. Tata, Ordering and Phase Transitions in Colloidal Systems, VCH, Weinheim,
1996.
32. I. Piirma, Emulsion Polymerization, Academic, New York, 1982
33. G. W. Poehlein, R. H. Ottewill, J. W. Goodwin, Science and Technology of Polymer Colloids Vol. II, Martinus Nijhoff, Boston, MA 1983.
34. R. K. Iler, The Chemistry of Silica, Wiley, New York, 1979.
35. T. Sugimoto, Fine Particles: Synthesis, Characterization, and Mechanisms of Growth. Marcel Dekker, Inc. New York, Basel, 2000
36. K. E. J. Barrett, Dispersion Polymerization in Organic Media, John Wiley & Son, London, 1975
37. M. P. Stevens, Polymer Chemistry: An Introduction, 3rd Ed., Oxford, 1999
38. G. Odian, Principles of Polymerization, 3rd Ed., Wiely, 1991
39. G. Kolbe. Das komplexchemische Verhalten der Kieselsäure: Dissertation, Friedrich-Schiller Universität Jena. 1956.
40. W. Stöber, A. Fink and E. Bohn, J. Colloid. Interface Sci., 1968, 26, 62-69
41. C. J. Brinker and G. W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing; Academic Press: San Diego, 1990.
42. T. Matsoukas and E. Gulari, J Colloid Interface Sci., 1988, 124, 252-261
43. T. Matsoukas and E. Gulari, J Colloid Interface Sci., 1989, 132, 13-21
44. V. K. LaMer and R. H. Dinegar, J. Am. Chem. Soc., 1950, 72, 4847-4854
45. G. H. Bogush and C. F. Zukoski IV., J Colloid Interface Sci., 1991, 142, 1-18
46. G. H. Bogush and C. F. Zukoski IV., J Colloid Interface Sci., 1991, 142, 19-34
47. D. C. Giancoli, Physics: Principles with Applications, Pearson Education, Inc., Pearson Prentice Hall, 2008
48. N. F. Colaneri and L. W. Shacklette, IEEE Transactions on Instrumentation and Measurement, 1992, 41, 291-297
49. J. Markarian, Plastics Additives & Compounding, 2005, 7, 36-39
50. P. B. Jana, A. K. Mallick and S. K. De, IEEE Transactions on Electromagnetic Compatibility, 1992, 34, 478-481
51. S. Yasufuku, IEEE Electrical Insulation Magazine, 1990, 6, 21-30
52. J. Amarasekera, Reinforced Plastics, 2005, 49, 38-41
J. Joo and C. Y. Lee, J. Appl. Phys., 2000, 88, 513–518.
53. D. D. L. Chung, Carbon, 2001, 39, 279-285.
54. P. Y. Silvert, PhD thesis, Université de Picardie Jules Verne, Amiens, France, 1996
55. P. Y. Silvert, R. Herrera-Urbina, K. Tekaia-Elhsissen, J. Mater. Chem., 1997, 7, 293-299
56. T. Yonezawa, N. Toshima, J. Chem. Soc. Faraday Trans., 1995, 91, 4111-4119
Chapter 2
1. J. E. G. J. Wijnhoven, W. L. Vos, Science, 1998, 281, 802.
2. M. Egen, R. Zentel, Chem. Mater., 2002, 14, 2176.
3. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, Nature, 2001, 414, 289.
4. P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, M. C. Netti, Chem. Mater., 2002, 14, 2199.
5. E. Yablonovitch, J. Phys.: Condens. Matter., 1993, 5, 2443.
6. S. Noda, K. Tomoda, N. Yamamoto and A. Chuntinan, Science, 2000, 289, 604
7. R. C. Schroden, M. Al-Daous, C. F. Blanford and A. Stein, Chem. Mater., 2002, 14, 3305
8. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader and H. M. van Driel, Nature, 2000, 405, 437
9. C. H. Chan, C. C. Chen, C. K. Huang, W. H. Weng, H. S. Wei, H. Chen, H. T. Lin, H. S. Chang, W. Y. Chen, W. H. Chang, T. M. Hsu, Nanotechnology, 2005, 16, 1440.
10. J. L. Ou, J. J. Yang and H. Chen, Eur. Polym. J., 2001, 37, 789
11. J. L. Ou, M. H. Wu and H. Chen, J. Mater. Sci. Lett., 2001, 20, 2221
Chapter 3
1. E. Yablonovitch, Phys. Rev. Lett., 1987, 58, p.2059-2062
2. S. John, Phys. Rev. Lett., 1987, 58, p.2486-2489
3. S. Noda, K. Tomoda, N. Yamamoto and A.Chutinan, Science, 2000, 289, p.604-606
4. K. P. Velikov, C. G. Christova, R. P. A. Dullens and A. V. Blaaderen, Science, 2002, 296, p.106-109
5. H. Fudouzi and Y. Xia, Adv. Mater., 2003, 15, p.892-896
6. C. K. Huang, C. H. Chan, C. Y. Chen, Y. L. Tsai, C. C. Chen, J. L. Han and K. H. Hsieh, Nanotechnology, 2007, 18, 265305 (7pp)
7. J. Ye, R. Zentel, S. Arpiainen, J. Ahopelto, F. Jonsson, S. G. Romanov and C. M. S. Torres, Langmuir, 2006, 22, p.7378-7383
8. C. H. Chan, C. C. Chen, C. K. Huang, W. H. Weng, H. S. Wei, H. Chen, H. T. Lin, H. S. Chang, W. Y. Chen, W. H. Chang and T. M. Hsu, Nanotechnology, 2005, 16, p.1440-1444
9. N. Wakabayashi, J. Yamanaka, M. Murai, K. Ito, T. Sawada and M. Yonese, Langmuir, 2006, 22, p.7936-7941
10. R. L. Edelstein, C. R. Tamanaha, P. E. Sheehan, M. M. Miller, D. R. Baselt, L. J. Whitman and R. J. Colton, Biosensors & Bioelectronics, 2000, 14, p.805-813
11. C. C. Berry and A. S. G. Curtis, J. Phys. D: Appl. Phys., 2003, 36, p.198-206
12. D. K. Kim, Y. Zhang, W. Voit, K. V. Rao and M. Muhammed, J. Magn. Magn. Mater., 2001, 225, p.30-36
13. M. Inoue, K. Arai, T. Fujii and M. Abe, J. Appl. Phys., 1999, 85, p.5768-5770
14. I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik and S. Žumer, Science, 2006, 313, p.954
15. A. V. Baryshev, T. Kodama, K.Nishimura, H. Uchida, and M. Inoue, IEEE Transactions on Magnetics, 2004, 40, p.2829-2831
16. T. Kodama, K. Nishimura, A. V. Baryshev, H. Uchida, and M. Inoue, Phys. Stat. Sol. (b),2004, 241, p.1597–1600
17. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina and A. Granovsky, J. Phys. D: Appl. Phys., 2006, 39, R151–R161
18. S. Shouheng, Z. Hao, B. R. David, R. Simone, M. R. Philip, X. W. Shan and L. Guanxiong, J. Am. Chem. Soc., 2004, 126, p.273-279
19. F. Matsuoka, M. Shinkai, H. Honda, T. Kubo, T. Sugita, T. Kobayashi, BioMagnetic Research and Technology, 2004, 2, p.3
Chapter 4
1. F. Caruso, Adv. Mater., 2001, 13, p.11–22.
2. C.-K. Huang, C.-H. Chan, C.-Y. Chen, Y.-L. Tsai, C.-C. Chen, J.-L. Han, and K.-H. Hsieh, Nanotechnology, 2007, 18, 265305 (7 pp).
3. C.-K. Huang, C.-H. Hou, C.-C. Chen, Y.-L. Tsai, L.-M. Chang, H.-S.Wei, K.-H. Hsieh, and C.-H. Chan, Nanotechnology, 2008, 19, 055701 (5 pp).
4. A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, and H. Weller , Adv. Mater., 2000, 12, p.333–337.
5. Z. Dai, A. Voigt, S. Leporatti, E. Donath, L. Dähne, and H. Möhwald, Adv. Mater., 2001, 13, p. 1339–1342.
6. M. J. Percy, C. Barthet, J. C. Lobb, M. A. Khan, S. F. Lascelles, M. Vamvakaki, and S. P. Armes, Langmuir, 2000, 16, p.6913–6920
7. F. Caruso, A. S. Susha, M. Giersig, and H. Möhwald, Adv. Mater., 1999, 11, p.950–953
8. S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, Langmuir, 1998, 14, p.5396–5401
9. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett., 1998, 288, p.243–247
10. A. Dokoutchaev, J. T. James, S. C. Koene, S. Pathak, G. K. S. Prakash, and M. E. Thompson, Chem. Mater., 1999, 11, p.2389–2399
11. F. H. Scholes, A. Bendavid, F. L. Glenn, M. Critchley, T. J. Davis, and B. A. Sexton, J. Raman Spectrosc., 2008, early view, DOI: 10.1002/jrs.1914.
12. N. Masuda, M. Kawashita and T. Kokubo, J. Biomed. Mater. Res. B: Appl. Biomater., 2007, 83B, p.114–120.
13. M. Kawashita, S. Toda, H.-M. Kim, T. Kokubo, and N. Masuda, J. Biomed. Mater. Res. A., 2003, 66, p.266–274.
14. F. X. Liu, Y. Xiao, and Y. S. Li, J. Raman Spectrosc., 2001, 32, p.73–77.
15. S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, Nanotechnology, 2008, 19, 075710 (7 pp).
16. K. Yano and Y. Fukushima, J. Mater. Chem., 2003, 13, p.2577–2581
17. J.-M. Lee, D.-W. Kim, Y.-D. Jun, S.-G. Oh, Materials Research Bulletin, 2006, 41, p.1407–1416
18. X. Ye, Y. Zhou, J. Chen, Y. Sun, Applied Surface Science, 2007, 253, p.6264–6267
19. C. R. Paul, Introduction to Electromagnetic Compatibility, Wiley-Interscience: New York, 2006; 2nd ed.
20. D. D. L. Chung, Carbon, 2001, 39, p.279-285
21. W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci., 1968, 26, p.62–69
22. C. J. Brinker and G. W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing; Academic Press: San Diego, 1990.
Chapter 5
1. C. R. Paul, Introduction to Electromagnetic Compatibility, Wiley-Interscience: New York, 2006; 2nd ed
2. K. S. Chou, K. C. Huang, and Z. H. Shih, J. Appl. Polym. Sci., 2005, 97, p.128–135
3. J. Joo and C. Y. Lee, J. Appl. Phys., 2000, 88, p.513–518
4. D. D. L. Chung, Carbon, 2001, 39, p.279-285
5. Y. Yang, M. C. Gupta, K. L. Dudley, and R. W. Lawrence, Nano Lett., 2005, 5, p.2131–2134
6. Y. Yang, M. C. Gupta, and K. L. Dudley, Nanotechnology, 2007, 18, 345701 (4 pp)
7. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, Nano Lett., 2006, 6, p.1141–1145
8. P. C. P. Watts, W. K. Hsu, A. Barnes, and B. Chambers, Adv. Mater., 2003, 15, p.600–603
9. C.-D. Liu, S.-N. Lee, C.-H. Ho, J.-L. Han, and K.-H. Hsieh, J. Phys. Chem. C, 2008, 112, p.15956–15960
10. H. Kanbara, H. Hagiwara, and M. Tosaka, United States Patent, No. 6,086,979
11. H. Kanbara, A. Nakaso, and M. Tosaka, United States Patent, No. 6,207,266 B1
12. Y. Sun, B. Gates, B. Mayers, and Y. Xia, Nano Lett., 2002, 2, p.165–168
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43199-
dc.description.abstract近年來,因為奈米材料與奈米結構擁有許多特殊與極好的性質能應用於許多不同之領域,而引起大家的注意與熱烈討論,因此有許多的研究就是主要著重於設計與如何控制奈米材料於製備奈米結構之研究。本論文主要著重於奈米材料(高分子或二氧化矽顆粒以及奈米銀顆粒或奈米銀線)之製備,並且利用這些材料應用於製備光子晶體結構與電磁波屏蔽材料。
在製備光子晶體結構上,首先利用乳化聚合法、無乳化聚合法與懸浮聚合法合成粒徑均一之高分子(聚苯乙烯或聚甲基丙烯酸甲酯)顆粒為模板,於基材上可排列成二維或三維光子晶體之結構,改變不同之顆粒粒徑可得相對應之光能量禁帶,再藉由溶膠凝膠法導入無機之二氧化矽前驅物,而後以階段升溫的方式將高分子模板移除可得到二維或三維規則排列之多孔性材料。由實驗結果可以發現,調配適當的無機物前驅物濃度可以得到二維或三維規則排列之多孔性材料。
除了高分子模板外,二氧化矽粒子也同樣能推疊成排列規則之光子晶體結構,而為了能有效的控制二氧化矽粒子之排列,在此利用二氧化矽包覆四氧化三鐵奈米粒子形成粒徑均一之磁性顆粒(粒徑為700nm)為模板,先以共沉澱法製備四氧化三鐵奈米粒子,再利用溶膠凝膠法以二氧化矽包覆四氧化三鐵奈米粒子,以此粒徑均一之磁性複合粒子為模板,於外加磁場的引導下,可使粒徑均一之磁性粒子整齊的排列於基材上而得三維光子晶體之結構,在光譜測量結果可以發現,所得之磁性光子晶體結構其光能量禁帶為1620nm。
在製備電磁波屏蔽材料上,利用奈米銀顆粒包覆二氧化矽粒子形成複合顆粒,先以溶膠凝膠法合成粒徑均一之二氧化矽顆粒,再與帶硫醇官能基之矽烷反應,將二氧化矽顆粒表面改質成硫醇官能基,再經由氧化還原反應將奈米銀顆粒沉積於二氧化矽表面。藉由調整不同的醇類反應系統,可得不同粒徑之二氧化矽顆粒;改變二氧化矽表面硫醇之改質程度與系統中硝酸銀之添加量,可得不同大小之奈米銀顆粒(2.9 ~ 51.5nm)。將銀包覆之二氧化矽複合粒子塗佈於基材上測試其電磁波屏蔽效果,由實驗中可發現隨著銀含量的提升可使電磁波屏的蔽效果隨之提升,在電磁波頻率為761MHz下其電磁波屏蔽效果可達到32.5dB。
為製備出更佳之電磁波屏蔽材料,在此導入高長徑比之奈米銀線與紫外光可硬化樹脂混合後形成紫外光可硬化奈米銀膠,並利用微影製程得到含銀之一維圖案而應用於電磁波屏蔽。奈米銀顆粒為利用多元醇法在乙二醇下將銀還原成銀種子,藉由添加更多的銀離子與高分子立體穩定劑使其長成線狀或是顆粒狀。奈米銀顆粒和紫外光可硬化樹脂混合後可得紫外光可硬化奈米銀膠,經微影製程後可得負型光阻之圖案。改變不同之奈米銀顆粒型態(球狀或是線狀與球狀混合)與微影圖案,探討對於電磁波屏蔽效果之影響,由實驗中可發現隨著銀含量的提升可使電磁波屏蔽效果隨之提升,並且隨著圖案密度的改變可影響最大屏蔽值之電磁波頻率。經過高溫燒結後,可移除有機高分子留下無機銀顆粒而使圖案線寬變窄,電磁波屏蔽效果可因此大幅的提升。本研究中,僅須添加12wt%的奈米銀線狀與球狀的混合物,就能得電磁波屏蔽效果達30dB之材料。在添加銀含量28wt%時,經過燒結後的試片在414MHz下,電磁波屏蔽效果可達到73dB。
zh_TW
dc.description.abstractIn recent decades, the interests in nanomaterials and nanostructures have been growing rapidly as a result of their distinctive and fascinating properties as well as unique applications in diversified fields. Many researches have addressed on the design and controlled fabrication of nanostructured materials prepared from nanomaterials. In this dissertation, we focus on the preparation of nanomaterials (polymeric and silica microspheres as well as silver nanospheres and nanowires) and their corresponding applications to photonic crystals (PCs) nanostructures and electromagnetic interference (EMI) shielding materials.
In the field of PCs nanostructures, we proposed a rapid and feasible method to fabricate two-dimensional (2-D) and three-dimensional (3-D) PCs structures using monodisperse polymeric microspheres as the templates. The approaches toward the creation of their corresponding inversed structures are also described. The inversed structures were prepared by subjecting an introduced silica source to a sol–gel process; programmed heating was then performed to remove the template without spoiling the inversed structures. Thus, 2-D and 3-D PCs and their corresponding highly-ordered inversed multilayer or monolayer structures were developed on the substrate.
Besides polymer microspheres, monodispersed silica microspheres could also be prepared and utilized to construct the PCs structures. In order to control the array of silica colloids, we also synthesized monodisperse SiO2 coated magnetic Fe3O4 (SiO2/Fe3O4) microspheres to fabricate magnetic PCs. The magnetic SiO2/Fe3O4 microspheres with a diameter of 700 nm were synthesized in the basic condition with ferric sulfate, ferrous sulfate, tartaric acid and tetraethyl orthosilicate (TEOS) in the reaction system. Monodisperse SiO2/Fe3O4 superparamagnetic microspheres have been successfully used to fabricate PCs under the existing magnetic field. The photonic bandgap of the 700nm SiO2/Fe3O4 magnetic PCs was observed at 1620nm.
In addition, we also developed the following nanomaterials: silver-silica composites nanoparticles, silver nanoparticles (Ag NPs) and their applications of EMI shielding materials. The Ag NPs have been immobilized onto silica microspheres through the adsorption and subsequent reduction of Ag+ ions on the surfaces of the silica microspheres. The neat silica microspheres that acted as the core materials were prepared through sol–gel processing, then their surfaces were functionalized using 3-mercaptopropyl trimethoxysilane (MPTMS). The average particle size of the obtained Ag NPs on the silica microsphere was found to be controllable (ranging from 2.9 to 51.5nm) by adjusting the ratio of MPTMS/TEOS and the amount of AgNO3. The silver-silica composites microspheres exhibited an EMI shielding effectiveness (SE) of 32.5 dB at 761 MHz.
To improve the EMI SE, we prepared a UV-curable silver nanowire paste comprising a UV-curable resin, photoinitiators, and Ag NPs (nanowires and nanospheres), which was obtained from the polyol process using silver nitrate as the Ag source, ethylene glycol as the solvent and reducing agent, and polyvinylpyrrolidone (PVP) as a polymeric stabilizer that guided the growth of the Ag nanowires. Various patterns of Ag NPs on glass substrates which was obtained using the UV-curable Ag pastes and lithography processes were examined for their use as EMI shielding materials. The electromagnetic wave SE of a pattern prepared using 28% Ag NPs reached 41.3 dB at 780.7 MHz. After sintering, its value increased to 73 dB at 413.8 MHz. The effects on the SE of varying the pattern shape and the content of Ag NPs are also discussed.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:42:12Z (GMT). No. of bitstreams: 1
ntu-98-D94549007-1.pdf: 7615216 bytes, checksum: 8204b059bca4a6953f4f33dbca0173a7 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要.............. I
Abstract.......... III
Content..............V
List of Figure..............VII
Chapter 1 Introduction..............1
1-1 Photonic Crystals..............1
1-2 Colloidal Particles..............5
1-2-1 Polymeric Microspheres..............6
1-2-2 Silica Microspheres..............7
1-3 Electromagnetic Interference (EMI) Shielding..............10
1-4 Synthesis of Silver Particles Through Polyol Process..............13
Chapter 2 Fabrication of Photonic Crystals and Their Inversed Structures..............26
2-1 Introduction..............26
2-2 Experimental Section..............29
2-3 Results and Discussion..............31
2-4 Conclusions..............34
Chapter 3 Fabrication of Magnetic SiO2/Fe3O4 Colloidal Crystal..............46
3-1 Introduction..............46
3-2 Experimental Section..............49
3-3 Results and Discussion..............51
3-4 Conclusions..............53
Chapter 4 Immobilization of Silver Nanoparticles on Silica Microspheres..............60
4-1 Introduction..............60
4-2 Experimental Section..............64
4-3 Results and Discussion..............66
4-4 Conclusions..............70
Chapter 5 Fabrication of Electromagnetic Interference-Shielding Films Using a UV-Curable Silver Nanowire Paste 80
5-1 Introduction..............80
5-2 Experimental Section..............83
5-3 Results and Discussion..............86
5-4 Conclusions..............90
Chapter 6 Summary..............102
List of Publications..............104
Introduction to Author..............111
dc.language.isoen
dc.title奈米顆粒之製備與其應用於光子晶體與電磁波屏蔽之研究zh_TW
dc.titlePreparation of Nanoparticles and Their Applications of Photonic Crystals and Electromagnetic Interference Shielding Materialsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee邱文英,林江珍,韓錦鈴,王怡仁,詹佳樺
dc.subject.keyword光子晶體,乳化聚合,溶膠凝膠法,電磁波屏蔽材料,多元醇法,zh_TW
dc.subject.keywordPhotonic crystals (PCs),emulsion polymerization,sol-gel process,electromagnetic interference (EMI) shielding materials,polyol process,en
dc.relation.page111
dc.rights.note有償授權
dc.date.accepted2009-07-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
7.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved