Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43144
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳宗霖(Tzong-Lin Wu)
dc.contributor.authorYu-Wen Huangen
dc.contributor.author黃郁雯zh_TW
dc.date.accessioned2021-06-15T01:39:13Z-
dc.date.available2009-07-17
dc.date.copyright2009-07-17
dc.date.issued2009
dc.date.submitted2009-07-15
dc.identifier.citation[1] International Technology Roadmap for Semiconductors.
(http://www.itrs.net/)
[2] R. Senthinathan and J. L. Prince, “Simultaneous switching ground noise calculation for packaged CMOS devices,” IEEE J. Solid-State Circuits, vol. 26, pp. 1724-1728, Nov. 1991.
[3] S. V. den Berghe, F. Olyslager, D. de Zutter, J. d. Moerloose, and W. Temmerman, “Study of the ground bounce caused by power plane resonances,” IEEE Trans. Electromag. Compat., vol. 40, pp. 111-119, May 1998.
[4] T. L. Wu, Y. H. Lin, J. N. Hwang, and J. J. Lin, “The effect of test system impedance on measurements of ground bounce in printed circuit boards,” IEEE Trans. Electromag.Compat., vol. 43, pp. 600-607, Nov. 2001.
[5] K. Ren, C. Y. Wu, and L. C. Zhang, “The restriction on delta-I noise along the power/ground layer in the high-speed digital printed circuit board,” in Proc. IEEE Int. Symp. Electromag. Compat., Colorado, USA, Aug. 1998, pp. 511-516.
[6] T. L. Wu, S. T. Chen, J. N. Huang, and Y. H. Lin, “Numerical and experimental investigation of radiation caused by the switching noise on the partitioned DC reference planes of high speed digital PCB,” IEEE Trans.Electromagn. Compat., vol. 46, pp. 33-45, Feb. 2004.
[7] T. Sudo, H. Sasaki, N. Masuda, and J. L. Drewniak, “Electromagnetic interference (EMI) of system-on-package (SOP),” IEEE Trans. Adv. Packag., vol. 27, pp. 304-314, May. 2004.
[8] M. Swaminathan and A.E. Engin, Power Integrity Modeling and Design for Semiconductors and Systems
[9] T. H. Hubing, J. L. Drewniak, T. P. Van Doren, and D. M. Hockanson, “Power bus decoupling on multilayer printed circuit boards,” IEEE Trans. Electromag. Compat., vol. 37, pp. 155-166, May 1995.
[10] X. Minjia, T. H. Hubing, J. Chen, T. P. Van Doren, J. L. Drewniak, and R. E. DuBroff, “Power-bus decoupling with embedded capacitance in printed circuit board design,” IEEE Trans. Electromag. Compat., vol. 45, pp. 22-30, Feb. 2003.
[11] H. Kim, B. K. Sun, and J. Kim, 'Suppression of GHz range power/ground inductive impedance and simultaneous switching noise using embedded film capacitors in multilayer packages and PCBs,' IEEE Microwave and Wireless Comp. Letters, vol. 14, no. 2, pp. 71-73, Feb. 2004.
[12] W. Cui, J. Fan, Y. Ren, H. Shi, J. L. D rewniak, and R. E. DuBroff, “DC power-bus noise isolation with power-plane segmentation,” IEEE Trans. Electromagn. Compat., vol. 45, pp. 436–443, May 2003.
[13] T. H. Kim, J. Lee, H. Kim, and J. Kim, “3 GHz wide frequency model of ferrite bead for power/ground noise simulation of high-speed PCB,” Electrical Performance of Electronic Packaging, 2002. pp.217-220.
[14] Murata Manufacturing Co., Ltd.
(http://www.murata.com/)
[15] C. R. Paul, Introduction to Electromagnetic Compatibility, 2nd ed.
[16] T. Kamgaing, and O. M. Ramahi, “A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface,” IEEE Microwave and Wireless Comp. Letters, vol. 13, pp. 21-23, Jan. 2003.
[17] S. Shahparnia and O. M. Ramahi, “Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic band gap structures, ” IEEE Trans. on Electromagn. Compat ., vol. 46, pp. 580-587, Nov. 2004.
[18] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory & Tech., vol. 47, pp. 2059-2074, Nov. 1999.
[19] D. F. Sievenpiper, “High-impedance electromagnetic ground planes,” Ph.D. dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, Los Angeles, CA, 1999.
[20] J. Lee, H. Kim and J. Kim, “High Dielectric Constant Thin Film EBG Power/Ground Network for Broad-band Suppression of SSN and Radiated Emissions”, IEEE Microwave and Wireless Components Letters, vol. 15, No.8, pp. 505-507, Aug. 2005.
[21] C. L. Wang, G. H. Shiue, W. D. Guo, and R. B. Wu, “A Systematic Design to Suppress Wideband Ground Bounce Noise in High-Speed Circuits by Electromagnetic-Band gap-Enhanced Split Powers”, IEEE Trans. Microwave Theory and Tech., vol. 54, No.12, pp. 4209-4217, Dec. 2006.
[22] J. Park, A. C. W. Lu, K. M. Chua, L. L. Wai, J. Lee, and J. Kim, “Double-Stacked EBG Structure for Wideband Suppression of Simultaneous Switching Noise in LTCC-Based SiP Applications”, IEEE Microwave and WirelessComponents Letters, vol. 15, No.8, pp. 505-507, Aug. 2005.
[23] T. L. Wu, Senior Member, IEEE, Y. H. Lin, T. K. Wang, C. C. Wang, and S. T. Chen, “Electromagnetic Band gap Power/Ground Planes for Wideband Suppression of Ground Bounce Noise and Radiated Emission in High-Speed Circuits”, IEEE Trans. Microwave Theory and Tech., vol. 53, No.9, pp. 2935-2942, Sept.2005.
[24] T. L. Wu, Y. H. Lin, and S. T. Chen, “A Novel Power Plane With Super-Wideband Elimination of Ground Bounce Noise on High Speed Circuits”, IEEE Microwave and Wireless Components Letters, vol. 15, No.3, pp. 174-176, March 2005.
[25] 韓子偉,應用於高速系統封裝之新型電磁能隙電源平面設計,國立台灣大學碩士論文,2007年6月。
[26] T. L. Wu and S. T. Chen, “A Photonic Crystal Power/Ground Layer for Eliminating Simultaneously Switching Noise in High-Speed Circuit”, IEEE Trans. Microwave Theory and Tech., vol. 54, No.8, pp. 3398-3406, Aug 2006.
[27] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light
[28] J. Kim and M. Swaminathan,“Modeling of multilayered power distribution planes using transmission matrix method,” IEEE Trans. Adv. Packag., vol. 25, no. 2, pp.189-199, May 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43144-
dc.description.abstract為了達到寬頻的兆赫茲雜訊抑制效果,一個可當元件使用的新式寬能隙結構被提出。此結構由三維的交疊式電容與U型傳輸線週期性串接而成並利用低溫共燒陶瓷製程的特性達到縮小化的效果。為了快速預測截止頻帶,理論的模型也將被建立。此模型能成功的描述出該縮小化結構在高頻時內部的電感性耦合效應。藉由全波模擬軟體的使用與量測,模型的精確性可以得到驗證。同時,利用此模型的協助,不同的結構參數與截止頻帶的關係也將一併被探討。在此論文中,實作成品大小為1.2mm×3.8mm×0.728mm ,模擬與量測結果相當吻合。截止頻帶範圍約為2~5.5 GHz,在此範圍內,雜訊至少有25 dB的抑制效果。除此之外,我們也從事此結構與晶片封裝系統的共模擬,從實驗結果可以發現,在數位與類比電路中,都有很好的雜訊抑制能力。zh_TW
dc.description.abstractA novel electromagnetic band gap (EBG) structure as a component is proposed for broadband suppression of GHz simultaneous switching noise. The structure is composed of three-dimensional interdigital capacitors (3D-IDC) and series U-shaped transmission lines periodically. The EBG structure can be miniaturized based on the LTCC fabrication technology. A theoretical circuit model which considers the inductive coupling in the 3D-IDC will be developed to predict the stop band. The accuracy of the proposed model will be verified by comparing with both the full-wave simulation and the measurement results. This modeling method is also employed to study the variation of band gap dependent on different geometrical parameters for the 3D-IDC and the U-shaped transmission line. A prototype is implemented using the LTCC technology with the dimension 1.2mm×3.8mm×0.728mm. Both simulation and measurement show the rejection band is from 2GHz to 5.5GHz. Over 25dB noise reduction in the stop band could be achieved. In addition, the suppressive ability is also verified in the chip-package co-simulation. From the simulation result, significant reduction of power noise could be found both in digital and mixed signal circuits.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:39:13Z (GMT). No. of bitstreams: 1
ntu-98-R96942015-1.pdf: 3663330 bytes, checksum: b97b93b58eb248624f0cae87e8add88b (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAbstract (Chinese)……………………...……………………………….Ⅰ
Abstract……………………………………………………………...…..Ⅱ
Table of Contents……………………………………………………..…Ⅲ
List of Figures………………………………………………...……........Ⅴ
Acronyms…………………………………………………………...…..Ⅷ
Chapter 1 Introduction
1.1 Research Motivation………………………………………..……1
1.2 Simultaneous Switching Noise (SSN) in Power Distribution Network (PDN) of IC packages………………………………….2
1.3 Chapter Outline of This Paper……………………………………4
Chapter 2 Various Solutions to SSN Problem
2.1 Component……………………………………………..………..6
2.1.1 Decoupling Capacitors…………………………………….6
2.1.2 Ferrite Beads……………………………...……………….11
2.2 Electromagnetic Band Gap Structure…………………………...14
2.2.1 Embedded EBG Structure…………………………..…….15
2.2.2 Coplanar EBG Structure………………….……………….19
2.3 Photonic Crystal Power/Ground Layer…………………………22
Chapter 3 A Miniaturized EBG Structure as A Component
3.1 Design Concept…………………………………………………27
3.2 Theoretical Model and Band Gap Prediction…………......…….31
3.2.1 Theoretical Model of The 3D-IDC………………..….…...31
3.2.2 Prediction of Stop Band……………….……...…......…....40
3.2.3 Parameter Effect on The Band Gap………...………..…....45
3.3 Power Integrity Performance and Co-simlation…………….......50
3.3.1 Fabrication and Measurement………………..….………..50
3.3.2 Chip and Package Co-simulation…….……...…………....53
3.3.2.1 Digital Noise Coupled to Digital Circuit………...55
3.3.2.2 Digital Noise Coupled to RF Circuit…………….58
Chapter 4 Conclusion
Reference 65
dc.language.isoen
dc.subject低溫共燒陶瓷製程zh_TW
dc.subject寬能隙結構zh_TW
dc.subject同步切換雜訊zh_TW
dc.subjectSSNen
dc.subjectLTCCen
dc.subjectEBGen
dc.title以低溫共燒陶瓷製程設計和模型化抑制兆赫茲同步切換雜訊的微小化寬能隙結構zh_TW
dc.titleDesign and Modeling of Miniaturized Band Gap Structure for Wideband GHz-Noise Suppression Based on LTCC Technologyen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪子聖(Tzu-Sheng Hung),洪志斌(Chih-Ping Hung),駱韋仲(Wei-Chung Lo),鄭士康(Shih-Kang Cheng)
dc.subject.keyword寬能隙結構,同步切換雜訊,低溫共燒陶瓷製程,zh_TW
dc.subject.keywordEBG,SSN,LTCC,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2009-07-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved