請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43118完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 石明豐(Ming-Feng Shih) | |
| dc.contributor.author | Tzu-Yu Wu | en |
| dc.contributor.author | 吳紫瑜 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:37:51Z | - |
| dc.date.available | 2009-07-22 | |
| dc.date.copyright | 2009-07-22 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-16 | |
| dc.identifier.citation | Bibliography
[1] I. K. Kominis et al., Nature 422, 596 (2003). [2] R. Guenther, Modern Optics (1990). [3] S. J. Seltzer, and M. V. Romalis, Applied Physics Letters 85, 4804 (2004). [4] D. Budker, V. Yashchuk, and M. Zolotorev, Physical Review Letters 81,5788 (1998). [5] D. Budker et al., Physical Review A 62, 7 (2000). [6] T.-L. Yang, in Department of Physics (National Taiwan University, 2008). [7] J. Clarke, In SQUID sensors: Fundamentals, Fabrication, and Applications (1996). [8] H. G. Dehmelt, Physical Review 105, 1924 (1957). [9] W. E. Bell, and A. L. Bloom, Physical Review 107, 1559 (1957). [10] W. E. Bell, and A. L. Bloom, Physical Review Letters 6, 280 (1961). [11] D. Budker, and M. Romalis, Nature Physics 3, 227 (2007). [12] W. Happer, Reviews of Modern Physics 44, 169 (1972). [13] A. Yariv, Quantum Electronics, John Wiley & Sons, 3rd edition (1987). [14] M. A. Bouchiat, and J. Brossel, Physical Review 147, 41 (1966). [15] D. F. K. M. T. Graf, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, (2005). [16] D. Budker et al., Physical Review Letters 85, 2088 (2000). [17] M. K. Z. Wu, W. Happer, M. Hou, and J. Daniels Applied optics 25, 4483 (1986). [18] W. Opechowski, Reviews of Modern Physics 25, 264 (1953). [19] I. M. S. M. P. Ledbetter, V. M. Acosta, D. Budker, Physical review A 77 (2008). [20] S. J. Seltzer, in Department of Physics (Princeton University, 2008). [21] Z. Wu, T. G. Walker, and W. Happer, Physical Review Letters 54, 1921 (1985). [22] F. Bloch, Physical Review 70, 460 (1946). [23] J. S. Guzman et al., Physical Review A 74 (2006). [24] R. W. Boyd, Nonlinear Optics, Academic Press, 1st edition (1948). [25] F. M. J. Reitz, and R. Christy, Foundations of Electromagnetic Theroy (1993), pp. 201. [26]R. C. Calhoun, American Association of Physics Teachers 64 (1996). [27]S. J. S. T. W. Kornack, S.-K. Lee and M. V. Romalis, Applied PhysicsLetters 90 (2007). [28]S. Xu, Review of Scientific instruments 77 (2006). [29]H. Xia et al., Applied Physics Letters 89, 3 (2006). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43118 | - |
| dc.description.abstract | 摘要
建造精準的原子磁力測量儀可以廣泛的用於物理科學上以及生物磁場的測量,包括磁性材料測量,以及資料儲存,至人類大腦及心臟運作時的微量磁場變化。精度可測得極微小變化磁場(約是1fT/ Hz )的鉀原子測磁儀其原理為共振非線性磁光效應。此效應來自於金屬原子自旋極化於微小磁場下的拉馬旋進。當一道偏振光進入此原子氣後,其偏振面會因此效應而改變,因此只要能偵測微小的偏振態的不同,即可計算出造成此現象的磁場大小[1]。這類型的原子磁力測量儀,基本 的雜訊限制來自於量子雜訊,此雜訊的大小和垂直磁場方向的自旋緩和速度有關[2]。由於在零磁場附近下運作的原子磁力測量儀可以降低自旋緩和的影響,進而降低雜訊至0.3 fT/ Hz[3],因此原子磁力測量儀需引進三軸赫姆霍茲線圈抵銷外在磁場;若需更高階的屏蔽效果,則需引進高磁導率金屬屏蔽[4]。除了磁場屏蔽可 以降低雜訊以外,使用多頻道的二維偵測器測同一道光源可以做為梯度計;各頻道相減後的讀值,除了可以得到二維磁場的空間解析度外,亦減去磁場的共同雜訊。 此論文改善參考文獻[6]之系統,主要改善的項目為: 架設多通道的測磁計並配以鎖相放大器軟體作為磁場梯度計的前置作業,設計加熱系統以及溫度回饋以降低空氣熱對流所產生的光擾動,亦改善溫度不穩不均勻的問題,並架設磁場屏蔽於系統以阻隔環境磁場雜訊等項目。 | zh_TW |
| dc.description.abstract | Abstract
One of the most potential applications of non-linear optics is a state-of-art atomicmagnetometer, which finds wide range of applications from material science, information storage to direct measurement of biological magnetic fields. The basic principle behind the magnetometer is based on the resonant nonlinear magneto-optical effect, which Larmor precession can be used to measure of spin-polarized atoms in a magnetic field.[1] This precession modifies the optical absorptive and dispersive properties of the atoms and causes the polarization of the probe beam to rotate to a small angle, which can be traced back to characterize the magnetic field. The theoretical sensitivity of atomic magnetometer is limited by the quantum shot noise, related to the transverse relaxation time of the spin polarized atoms.[2] By operating the atomic magnetometers with high atom density in an environment with a near zero magnetic field, spin exchange collision as a source of relaxation could be eliminated and the noise limit could be lowered down to 0.3 fT/ Hz.[3] To block the environmental field, the center piece of this fT atomic magnetometer is shielded by high-permeability magnetic shielding and the residual fields are compensated by three-axis Helmholtz coil.[4, 5] For the work presented here, I provide an improved version of an atomic magnetometer in [6] with noise level below 1 nT / Hz . It has a multichannel-inputs system along with its applicable two-stage Lock-In software been built up for the purpose of constructing a magnetic gradiometer, a heating system redesigned with introducing a temperature feedback controller and a magnetic shielding assembly set on the system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:37:51Z (GMT). No. of bitstreams: 1 ntu-98-R96222005-1.pdf: 14823217 bytes, checksum: bd2f64bf0e0f0f2b8482b6220219f581 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Contents
Abstract iii Chinese Abstract v Contents vii Figure vii Chapter 1 Introduction 1 Chapter 2 General concepts for atomic magnetometry 5 2.1. Optical Rotation 5 2.2. Optical Pumping 8 2.3. Spin relaxation 12 2.4. The response of Spin polarization to B field 14 Chapter 3 Experimental Apparatus 17 3.1. The Probe Laser 17 3.1.1. Beam Shaping for Diode Laser 19 3.1.2. Fluctuations 22 3.2. The Pump Laser 26 3.3. The Potassium Cell 26 3.4. Two-dimensional photodiode array 28 3.5. Electro-Optical Modulation 32 3.6. Two-Stage Lock-In Amplifier software 35 3.7. Heating System 38 3.8. Helmholtz Coils and Current scouses 41 3.9. Magnetic shielding 44 Chapter 4 Experimental Method 45 4.1. Compensation of evironmental magnetic field 45 4.2. Three-axis Vector Detection 47 4.3. Result 49 4.5. Discussion 51 Chapter 5 Summary 53 Bibiography 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 原子測磁計 | zh_TW |
| dc.subject | 非線性磁光效應 | zh_TW |
| dc.subject | 不受自旋交換緩和影響 | zh_TW |
| dc.subject | 拉馬徑動 | zh_TW |
| dc.subject | 自旋偏極化 | zh_TW |
| dc.subject | 光驅動 | zh_TW |
| dc.subject | Spin-exchange-relaxation-free | en |
| dc.subject | nonlinear magneto-optical effect | en |
| dc.subject | Atomic Magnetometer | en |
| dc.subject | Optical Pumping | en |
| dc.subject | Spin Polarization | en |
| dc.subject | Larmor Procession | en |
| dc.title | 在屏蔽磁場下的多通道鉀金屬向量測磁計 | zh_TW |
| dc.title | Shielded three-axis vector operation of a multichannel
atomic magnetometer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊鴻昌(Hong-Chang Yang),曹培熙(Pei-His Tsao) | |
| dc.subject.keyword | 原子測磁計,光驅動,自旋偏極化,拉馬徑動,不受自旋交換緩和影響,非線性磁光效應, | zh_TW |
| dc.subject.keyword | Atomic Magnetometer,Optical Pumping,Spin Polarization,Larmor Procession,Spin-exchange-relaxation-free,nonlinear magneto-optical effect, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 14.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
