Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43111
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor符文美(Wei-Mei Fu)
dc.contributor.authorShih-Ya Hungen
dc.contributor.author洪詩雅zh_TW
dc.date.accessioned2021-06-15T01:37:29Z-
dc.date.available2009-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-16
dc.identifier.citationAmersi F, Buelow R, Kato H, Ke B, Coito AJ, Shen XD, Zhao D, Zaky J, Melinek J, Lassman CR, Kolls JK, Alam J, Ritter T, Volk HD, Farmer DG, Ghobrial RM, Busuttil RW and Kupiec-Weglinski JW (1999) Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury. J Clin Invest 104(11):1631-1639.
Applegate LA, Luscher P and Tyrrell RM (1991) Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res 51(3):974-978.
Baranano DE, Rao M, Ferris CD and Snyder SH (2002) Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci U S A 99(25):16093-16098.
Barnham KJ, Masters CL and Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3(3):205-214.
Beal MF (2003) Mitochondria, oxidative damage, and inflammation in Parkinson's disease. Ann N Y Acad Sci 991:120-131.
Bianchi LM, Conover JC, Fritzsch B, DeChiara T, Lindsay RM and Yancopoulos GD (1996) Degeneration of vestibular neurons in late embryogenesis of both heterozygous and homozygous BDNF null mutant mice. Development 122(6):1965-1973.
Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H and Meijer AJ (1997) The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 243(1-2):240-246.
Bohn MC (1999) A commentary on glial cell line-derived neurotrophic factor (GDNF). From a glial secreted molecule to gene therapy. Biochem Pharmacol 57(2):135-142.
Boyer TD (1989) The glutathione S-transferases: an update. Hepatology 9(3):486-496.
Brewer GJ, Torricelli JR, Evege EK and Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35(5):567-576.
Chang EF, Wong RJ, Vreman HJ, Igarashi T, Galo E, Sharp FR, Stevenson DK and Noble-Haeusslein LJ (2003) Heme oxygenase-2 protects against lipid peroxidation-mediated cell loss and impaired motor recovery after traumatic brain injury. J Neurosci 23(9):3689-3696.
Chen-Roetling J, Benvenisti-Zarom L and Regan RF (2005) Cultured astrocytes from heme oxygenase-1 knockout mice are more vulnerable to heme-mediated oxidative injury. J Neurosci Res 82(6):802-810.
Chen K, Gunter K and Maines MD (2000) Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death. J Neurochem 75(1):304-313.
Chen PS, Peng GS, Li G, Yang S, Wu X, Wang CC, Wilson B, Lu RB, Gean PW, Chuang DM and Hong JS (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 11(12):1116-1125.
Choi-Lundberg DL, Lin Q, Chang YN, Chiang YL, Hay CM, Mohajeri H, Davidson BL and Bohn MC (1997) Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275(5301):838-841.
Chu CT (2006) Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol 65(5):423-432.
Chu CT, Zhu J and Dagda R (2007) Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death. Autophagy 3(6):663-666.
Chun HS, Son JJ and Son JH (2000) Identification of potential compounds promoting BDNF production in nigral dopaminergic neurons: clinical implication in Parkinson's disease. Neuroreport 11(3):511-514.
Connor B and Dragunow M (1998) The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res Brain Res Rev 27(1):1-39.
Cowan WM and Kandel ER (2001) Prospects for neurology and psychiatry. JAMA 285(5):594-600.
Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14(2):70-77.
Dore S, Sampei K, Goto S, Alkayed NJ, Guastella D, Blackshaw S, Gallagher M, Traystman RJ, Hurn PD, Koehler RC and Snyder SH (1999a) Heme oxygenase-2 is neuroprotective in cerebral ischemia. Mol Med 5(10):656-663.
Dore S, Takahashi M, Ferris CD, Zakhary R, Hester LD, Guastella D and Snyder SH (1999b) Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci U S A 96(5):2445-2450.
Drummond GS and Kappas A (1981) Prevention of neonatal hyperbilirubinemia by tin protoporphyrin IX, a potent competitive inhibitor of heme oxidation. Proc Natl Acad Sci U S A 78(10):6466-6470.
Fang F and Liu GT (2008) Novel squamosamide derivative (compound FLZ) attenuates Abeta25-35-induced toxicity in SH-SY5Y cells. Acta Pharmacol Sin 29(2):152-160.
Farrera JA, Jauma A, Ribo JM, Peire MA, Parellada PP, Roques-Choua S, Bienvenue E and Seta P (1994) The antioxidant role of bile pigments evaluated by chemical tests. Bioorg Med Chem 2(3):181-185.
Gill SS, Patel NK, Hotton GR, O'Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN and Heywood P (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9(5):589-595.
Gomez-Santos C, Ferrer I, Santidrian AF, Barrachina M, Gil J and Ambrosio S (2003) Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J Neurosci Res 73(3):341-350.
Gopinathan V, Miller NJ, Milner AD and Rice-Evans CA (1994) Bilirubin and ascorbate antioxidant activity in neonatal plasma. FEBS Lett 349(2):197-200.
Heanue TA and Pachnis V (2007) Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies. Nat Rev Neurosci 8(6):466-479.
Hellstrom-Lindahl E, Court J, Keverne J, Svedberg M, Lee M, Marutle A, Thomas A, Perry E, Bednar I and Nordberg A (2004) Nicotine reduces A beta in the brain and cerebral vessels of APPsw mice. Eur J Neurosci 19(10):2703-2710.
Hornykiewicz O and Kish SJ (1987) Biochemical pathophysiology of Parkinson's disease. Adv Neurol 45:19-34.
Hu CM, Chen YH, Chiang MT and Chau LY (2004) Heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo. Circulation 110(3):309-316.
Huang E, Ong WY, Go ML and Garey LJ (2005) Heme oxygenase-1 activity after excitotoxic injury: immunohistochemical localization of bilirubin in neurons and astrocytes and deleterious effects of heme oxygenase inhibition on neuronal survival after kainate treatment. J Neurosci Res 80(2):268-278.
Hung SY, Liou HC, Kang KH, Wu RM, Wen CC and Fu WM (2008) Overexpression of heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity. Mol Pharmacol 74(6):1564-1575.
Hy LX and Keller DM (2000) Prevalence of AD among whites: a summary by levels of severity. Neurology 55(2):198-204.
Hyman C, Juhasz M, Jackson C, Wright P, Ip NY and Lindsay RM (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J Neurosci 14(1):335-347.
Juan SH, Lee TS, Tseng KW, Liou JY, Shyue SK, Wu KK and Chau LY (2001) Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 104(13):1519-1525.
Kihara T, Shimohama S, Sawada H, Kimura J, Kume T, Kochiyama H, Maeda T and Akaike A (1997) Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol 42(2):159-163.
Kim HP, Wang X, Galbiati F, Ryter SW and Choi AM (2004) Caveolae compartmentalization of heme oxygenase-1 in endothelial cells. Faseb J 18(10):1080-1089.
Kim J and Klionsky DJ (2000) Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 69:303-342.
Kirschner PB, Jenkins BG, Schulz JB, Finkelstein SP, Matthews RT, Rosen BR and Beal MF (1996) NGF, BDNF and NT-5, but not NT-3 protect against MPP+ toxicity and oxidative stress in neonatal animals. Brain Res 713(1-2):178-185.
Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118(Pt 1):7-18.
Knowles SE and Ballard FJ (1976) Selective control of the degradation of normal and aberrant proteins in Reuber H35 hepatoma cells. Biochem J 156(3):609-617.
Knusel B, Winslow JW, Rosenthal A, Burton LE, Seid DP, Nikolics K and Hefti F (1991) Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc Natl Acad Sci U S A 88(3):961-965.
Kondo Y, Kanzawa T, Sawaya R and Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5(9):726-734.
Kovacs AL and Seglen PO (1981) Inhibition of hepatocytic protein degradation by methylaminopurines and inhibitors of protein synthesis. Biochim Biophys Acta 676(2):213-220.
LaFerla FM and Oddo S (2005) Alzheimer's disease: Abeta, tau and synaptic dysfunction. Trends Mol Med 11(4):170-176.
Lang AE and Lozano AM (1998) Parkinson's disease. First of two parts. N Engl J Med 339(15):1044-1053.
Le WD, Xie WJ and Appel SH (1999) Protective role of heme oxygenase-1 in oxidative stress-induced neuronal injury. J Neurosci Res 56(6):652-658.
Lewin GR and Barde YA (1996) Physiology of the neurotrophins. Annu Rev Neurosci 19:289-317.
Li G, D'Souza-Schorey C, Barbieri MA, Roberts RL, Klippel A, Williams LT and Stahl PD (1995) Evidence for phosphatidylinositol 3-kinase as a regulator of endocytosis via activation of Rab5. Proc Natl Acad Sci U S A 92(22):10207-10211.
Li M, Chen L, Lee DH, Yu LC and Zhang Y (2007) The role of intracellular amyloid beta in Alzheimer's disease. Prog Neurobiol 83(3):131-139.
Lin LF, Doherty DH, Lile JD, Bektesh S and Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111):1130-1132.
Lo Bianco C, Ridet JL, Schneider BL, Deglon N and Aebischer P (2002) alpha -Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proc Natl Acad Sci U S A 99(16):10813-10818.
Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ and Gill SS (2005) Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat Med 11(7):703-704.
Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS and Wu H (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science 304(5669):448-452.
Marks GS (1994) Heme oxygenase: the physiological role of one of its metabolites, carbon monoxide and interactions with zinc protoporphyrin, cobalt protoporphyrin and other metalloporphyrins. Cell Mol Biol (Noisy-le-grand) 40(7):863-870.
Maruyama W, Nitta A, Shamoto-Nagai M, Hirata Y, Akao Y, Yodim M, Furukawa S, Nabeshima T and Naoi M (2004) N-Propargyl-1 (R)-aminoindan, rasagiline, increases glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation of NF-kappaB transcription factor. Neurochem Int 44(6):393-400.
Mattson MP (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 77(4):1081-1132.
Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramauge M, Courtin F and Pierre M (2004) MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 24(2):207-216.
Minetti M, Mallozzi C, Di Stasi AM and Pietraforte D (1998) Bilirubin is an effective antioxidant of peroxynitrite-mediated protein oxidation in human blood plasma. Arch Biochem Biophys 352(2):165-174.
Miwa H, Kubo T, Morita S, Nakanishi I and Kondo T (2004) Oxidative stress and microglial activation in substantia nigra following striatal MPP+. Neuroreport 15(6):1039-1044.
Morris CM and Edwardson JA (1994) Iron histochemistry of the substantia nigra in Parkinson's disease. Neurodegeneration 3(4):277-282.
Motterlini R, Clark JE, Foresti R, Sarathchandra P, Mann BE and Green CJ (2002) Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ Res 90(2):E17-24.
Muller U, Cristina N, Li ZW, Wolfer DP, Lipp HP, Rulicke T, Brandner S, Aguzzi A and Weissmann C (1994) Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell 79(5):755-765.
Munafo DB and Colombo MI (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114(Pt 20):3619-3629.
Munoz AM, Rey P, Parga J, Guerra MJ and Labandeira-Garcia JL (2005) Glial overexpression of heme oxygenase-1: a histochemical marker for early stages of striatal damage. J Chem Neuroanat 29(2):113-126.
Nagele RG, D'Andrea MR, Anderson WJ and Wang HY (2002) Intracellular accumulation of beta-amyloid(1-42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer's disease. Neuroscience 110(2):199-211.
Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A and Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113-122.
Nordberg A, Hellstrom-Lindahl E, Lee M, Johnson M, Mousavi M, Hall R, Perry E, Bednar I and Court J (2002) Chronic nicotine treatment reduces beta-amyloidosis in the brain of a mouse model of Alzheimer's disease (APPsw). J Neurochem 81(3):655-658.
Nussbaum RL and Ellis CE (2003) Alzheimer's disease and Parkinson's disease. N Engl J Med 348(14):1356-1364.
Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2(3):211-216.
Olanow CW (1990) Oxidation reactions in Parkinson's disease. Neurology 40(10 Suppl 3):suppl 32-37; discussion 37-39.
Opacka-Juffry J, Ashworth S, Hume SP, Martin D, Brooks DJ and Blunt SB (1995) GDNF protects against 6-OHDA nigrostriatal lesion: in vivo study with microdialysis and PET. Neuroreport 7(1):348-352.
Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA and Choi AM (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6(4):422-428.
Otterbein LE, Kolls JK, Mantell LL, Cook JL, Alam J and Choi AM (1999) Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. J Clin Invest 103(7):1047-1054.
Otterbein LE, Zuckerbraun BS, Haga M, Liu F, Song R, Usheva A, Stachulak C, Bodyak N, Smith RN, Csizmadia E, Tyagi S, Akamatsu Y, Flavell RJ, Billiar TR, Tzeng E, Bach FH, Choi AM and Soares MP (2003) Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 9(2):183-190.
Palop JJ, Chin J and Mucke L (2006) A network dysfunction perspective on neurodegenerative diseases. Nature 443(7113):768-773.
Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P and Gill SS (2005) Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol 57(2):298-302.
Peng X, Gerzanich V, Anand R, Wang F and Lindstrom J (1997) Chronic nicotine treatment up-regulates alpha3 and alpha7 acetylcholine receptor subtypes expressed by the human neuroblastoma cell line SH-SY5Y. Mol Pharmacol 51(5):776-784.
Price DL and Sisodia SS (1998) Mutant genes in familial Alzheimer's disease and transgenic models. Annu Rev Neurosci 21:479-505.
Qin ZH, Wang Y, Kegel KB, Kazantsev A, Apostol BL, Thompson LM, Yoder J, Aronin N and DiFiglia M (2003) Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet 12(24):3231-3244.
Roberts PJ and Kapur H (1977) Neurochemical changes in rat striatum and substantia nigra following drug administration. Neurochemical Research 2(5):485-494.
Ryter SW, Alam J and Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86(2):583-650.
Scapagnini G, D'Agata V, Calabrese V, Pascale A, Colombrita C, Alkon D and Cavallaro S (2002) Gene expression profiles of heme oxygenase isoforms in the rat brain. Brain Res 954(1):51-59.
Schipper HM (2000) Heme oxygenase-1: role in brain aging and neurodegeneration. Exp Gerontol 35(6-7):821-830.
Schipper HM (2004) Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med 37(12):1995-2011.
Schipper HM, Cisse S and Stopa EG (1995) Expression of heme oxygenase-1 in the senescent and Alzheimer-diseased brain. Ann Neurol 37(6):758-768.
Schipper HM, Liberman A and Stopa EG (1998) Neural heme oxygenase-1 expression in idiopathic Parkinson's disease. Exp Neurol 150(1):60-68.
Schoepfer R, Conroy WG, Whiting P, Gore M and Lindstrom J (1990) Brain alpha-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuron 5(1):35-48.
Schworer CM and Mortimore GE (1979) Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc Natl Acad Sci U S A 76(7):3169-3173.
Seglen PO and Bohley P (1992) Autophagy and other vacuolar protein degradation mechanisms. Experientia 48(2):158-172.
Shintani T and Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306(5698):990-995.
Sindhu KM, Banerjee R, Senthilkumar KS, Saravanan KS, Raju BC, Rao JM and Mohanakumar KP (2006) Rats with unilateral median forebrain bundle, but not striatal or nigral, lesions by the neurotoxins MPP+ or rotenone display differential sensitivity to amphetamine and apomorphine. Pharmacol Biochem Behav 84(2):321-329.
Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R and Young B (2005) Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 102(2):216-222.
Smith A, Alam J, Escriba PV and Morgan WT (1993) Regulation of heme oxygenase and metallothionein gene expression by the heme analogs, cobalt-, and tin-protoporphyrin. J Biol Chem 268(10):7365-7371.
Sossin WS and Barker PA (2007) Something old, something new: BDNF-induced neuron survival requires TRPC channel function. Nat Neurosci 10(5):537-538.
Spenger C, Hyman C, Studer L, Egli M, Evtouchenko L, Jackson C, Dahl-Jorgensen A, Lindsay RM and Seiler RW (1995) Effects of BDNF on dopaminergic, serotonergic, and GABAergic neurons in cultures of human fetal ventral mesencephalon. Exp Neurol 133(1):50-63.
Storch A, Ludolph AC and Schwarz J (2004) Dopamine transporter: involvement in selective dopaminergic neurotoxicity and degeneration. J Neural Transm 111(10-11):1267-1286.
Takahashi T, Morita K, Akagi R and Sassa S (2004) Heme oxygenase-1: a novel therapeutic target in oxidative tissue injuries. Curr Med Chem 11(12):1545-1561.
Teng ZP, Chen J, Chau LY, Galunic N and Regan RF (2004) Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury. Neurobiol Dis 17(2):179-187.
Tenhunen R, Marver HS and Schmid R (1969) Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem 244(23):6388-6394.
Thinakaran G and Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283(44):29615-29619.
Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj-Bello A, Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE and Rosenthal A (1996) Characterization of a multicomponent receptor for GDNF. Nature 382(6586):80-83.
Tsukahara T, Takeda M, Shimohama S, Ohara O and Hashimoto N (1995) Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys. Neurosurgery 37(4):733-739; discussion 739-741.
Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G and Wood NW (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304(5674):1158-1160.
Von Burg R (1999) Carbon monoxide. J Appl Toxicol 19(5):379-386.
Wang J, Zhuang H and Dore S (2006) Heme oxygenase 2 is neuroprotective against intracerebral hemorrhage. Neurobiol Dis 22(3):473-476.
Webb JL, Ravikumar B, Atkins J, Skepper JN and Rubinsztein DC (2003) Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278(27):25009-25013.
Weisiger RA, Ostrow JD, Koehler RK, Webster CC, Mukerjee P, Pascolo L and Tiribelli C (2001) Affinity of human serum albumin for bilirubin varies with albumin concentration and buffer composition: results of a novel ultrafiltration method. J Biol Chem 276(32):29953-29960.
Yasuhara T, Shingo T and Date I (2007) Glial cell line-derived neurotrophic factor (GDNF) therapy for Parkinson's disease. Acta Med Okayama 61(2):51-56.
Yorimitsu T and Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12 Suppl 2:1542-1552.
Yorimitsu T, Nair U, Yang Z and Klionsky DJ (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281(40):30299-30304.
Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Naslund J, Mathews PM, Cataldo AM and Nixon RA (2005) Macroautophagy--a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J Cell Biol 171(1):87-98.
Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT, Cuervo AM and Nixon RA (2004) Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer's disease. Int J Biochem Cell Biol 36(12):2531-2540.
Zamani MR, Allen YS, Owen GP and Gray JA (1997) Nicotine modulates the neurotoxic effect of beta-amyloid protein(25-35)) in hippocampal cultures. Neuroreport 8(2):513-517.
Zhang Y, McLaughlin R, Goodyer C and LeBlanc A (2002) Selective cytotoxicity of intracellular amyloid beta peptide1-42 through p53 and Bax in cultured primary human neurons. J Cell Biol 156(3):519-529.
Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y and Chu CT (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170(1):75-86.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43111-
dc.description.abstractHeme oxygenase-1 (HO-1) 在細胞遭受氧化壓力時會被誘發表現,用以催化血氧基質 (pro-oxidant heme) 裂解、轉換成一氧化碳 (CO),鐵離子 (Fe2+) 及膽紅素 (bilirubin)。目前已有研究指出,HO-1蛋白在巴金森氏症 (Parkinson`s disease) 病人腦部有較高表現,顯示HO-1可能參與巴金森氏症病程發展。在本研究中我們將攜有人類HO-1基因的反轉錄病毒 (adenovirus-HO-1, Ad-HO-1) 與能誘導多巴胺神經元(dopaminergic neuron)死亡的神經毒物1-methyl-4-phenylpyridinium (MPP+) 一同打入大鼠中腦黑核區 (substantia nigra)。在打入大鼠中腦七天之後,以免疫染色 (immunohistochemistry)、高效率液態層析 (HPLC) 及免疫酵素分析 (ELISA) 這些方法去研究,大量表現HO-1對於黑核區多巴胺神經元數目、多巴胺 (dopamine) 含量及發炎反應物質(inflammatory cytokine) 含量是否有影響。本研究結果顯示,利用Ad-HO-1大量表現HO-1對於MPP+所誘發的黑核區多巴胺神經元的退化及死亡具有顯著抑制效果,並同時抑制發炎反應物質TNF-α及IL-1β的增加,提高多巴胺在損傷部位之含量。另外,我們也發現大量表現HO-1,可以促進黑核區神經滋養因子BDNF及GDNF之表現。據先前報導已知,Apomorphine可以在MPP+損傷的巴金森氏症動物模式中,誘發動物自發性旋轉,本研究中我們也發現HO-1可大幅抑制此自發性旋轉動作。另一方面,我們也發現HO-1酵素抑制劑ZnPPIX會促進MPP+所誘發的大鼠朝損傷側旋轉動作,同時也大幅降低損傷側多巴胺含量。HO-1在離體培養的大鼠胚胎中腦組織 (in vitro midbrain neuron-glia co-culture) 中具有類似的保護作用,而經由大量表現HO-1會在星狀細胞 (astrocyte) 中增加BDNF及GDNF表現;在多巴胺神經元中增加BDNF表現。我們的研究顯示,大量表現HO-1不管在in vitro 與 in vivo中對MPP+所誘發的多巴胺神經元死亡模式都具有相當良好的保護效果。內生性HO-1的產生在巴金森氏症的病程扮演相當重要角色,抑制HO-1的產生會加重病情。
由於已知HO-1在細胞遭受氧化壓力時,會被誘導表現以保護細胞、避免損傷。且HO-1及HO-2會分解相同受質 (substrate),也就是血氧基質去產生一氧化碳 (CO),鐵離子 (Fe2+) 及膽紅素 (bilirubin)。目前研究指出,膽紅素是一個極強的抗氧化與神經保護劑。而BDNF及GDNF這兩種神經滋養因子在多巴胺神經元的存活及神經元的型態、分化則扮演極重要角色。據我們先前研究結果顯示,將Ad-HO-1打入大鼠中腦黑核部位會增加此區BDNF、GDNF表現。接著,我們將就HO-1如何增加神經滋養因子表現之機轉加以探討。在離體培養的大鼠胚胎中腦組織,加入BDNF、GDNF抗體去中和細胞所分泌的BDNF、GNDF,發現會增加多巴胺神經元死亡率;但如果同時給予Ad-HO-1則可降低此種抗體中和所造成的神經元死亡。在Ad-HO-1打入大鼠中腦黑核區二十四小時後,由共軛焦雷射顯微影像數據顯示Ad-HO-1所產生的HO-1表現在多巴胺神經元、星狀細胞 (astrocyte) 及microglia。另外,相較於Ad打入側,Ad-HO-1打入側會誘導產生26與21倍的BDNF、GDNF mRNA。HO下游產物之一 『膽紅素』 在glia-enriched culture中會透過活化ERK、PI3K-Akt及增加NFkB入核這些訊息傳遞路徑增加GDNF表現。另外,膽紅素也可在cortical neuron-enriched cultures以相似方式增加BDNF表現。同時,我們利用CO donor來研究HO另一個下游產物 『一氧化碳』 在增加神經滋養因子方面的機轉。我們發現 [Ru(CO)3Cl2]2 在glia及神經細胞則是透過活化sGC-PKG路徑增加神經滋養因子表現。本研究結果顯示HO-1及其下游產物 『膽紅素』 及 『一氧化碳』 會分別經由不同訊息傳遞路徑在神經及glia調控BDNF及GDNF表現。
細胞自噬 (autophagy) 是一個細胞內的分解系統,主要是分解細胞內失去功能的胞器以及易糾結 (aggregation-prone)、不易分解的蛋白分子。目前研究已指出,阿滋海默症 (Alzheimer’s disease) 的主要產生原因之一是β-amyloid (Aβ; β類澱粉蛋白) 這種易糾結的蛋白片段沈積在神經細胞外部,造成神經死亡。而研究也發現阿滋海默症患者腦部有大量細胞自噬小體 (autophagosome) 聚積。直至目前為止,細胞自噬這個負責細胞內清除分解系統與阿滋海默症病發是否相關?以及細胞自噬是否影響Aβ所造成的神經元死亡?亦或是細胞外的Aβ能否被運送至胞內被代謝?仍然是未知。為了研究細胞自噬機制是否與Aβ所造成的神經元死亡有關, 我們在SH-SY5Y 細胞內大量表現攜帶EGFP 的LC3 基(SH-SY5Y/EGFP-LC3)。結果顯示,外加Aβ25-35、Aβ1-42或是血清缺乏的情形下皆可引發SH-SY5Y/EGFP-LC3 強烈細胞自噬反應。共軛焦顯微影像更進一步證實,培養液中外加的Aβ1-42會進入SH-SY5Y/EGFP-LC3 細胞內並與EGFP-LC3-II
autophagosome 共存 (colocalization) 。如果用α-bungarotoxin (α-BTX;α7nAChR高度專一性阻斷劑) 阻斷α7nAChR 功能,發現α-BTX 會大幅增加Aβ所造成
SH-SY5Y 細胞死亡。另一方面,我們也發現nicotine (nAChR 致效劑) 會增強SH-SY5Y/pEGFP-LC3 的細胞自噬反應,且對Aβ所造成的神經死亡具有保護作
用。在初級培養的大鼠海馬迴神經元中,我們也證實nicotine 對A 所造成的海馬
迴神經元死亡具有良好的保護作用;而α-BTX 則是促進神經元死亡。運用siRNA
技術去阻斷Atg7 形成 (可經由細胞自噬機制之上游步驟抑制autophagosome 形成)
或是抑制細胞中α7nAChR 表現量,皆可明顯提升Aβ所造成的SH-SY5Y 細胞死
亡。共軛焦顯微影像數據也顯示,nicotine 會促進Aβ與autophagosome 共存
(colocalization)。以上結果顯示,α7AChR 可能扮演一個負責攜帶並鍵結細胞外Aβ
(eAβ) 的角色,藉此把細胞外Aβ攜入神經元內進行細胞自噬之分解作用,進而降
低A 所造成的神經元死亡。我們的研究結果證實,細胞自噬機制在Aβ所造成的
神經元死亡扮演『神經保護』作用。如果細胞內細胞自噬機制發生缺損,這些細
胞外糾結、聚積的A 可能無法被清除而引發神經元死亡。
zh_TW
dc.description.abstractHeme oxygenase-1 (HO-1) is up-regulated in response to oxidative stress and catalyzes the degradation of pro-oxidant heme to carbon monoxide (CO), Fe2+ and bilirubin. Intense HO-1 immunostaining in the brain of Parkinsonism is demonstrated, indicating that HO-1 may be involved in the pathogenesis of Parkinsonism. We here locally injected adenovirus containing human HO-1 gene (Ad-HO-1) into rat substantia nigra concomitantly with 1-methyl-4-phenylpyridinium (MPP+). Seven days after injection of MPP+ and Ad-HO-1, the brain was isolated for immunostaining, measurement of dopamine content and inflammatory cytokines. It was found that over-expression of HO-1 significantly increased the survival rate of dopaminergic neuron; reduced the production of TNF-α and IL-1β in substantia nigra; antagonized the reduction of striatal dopamine content in MPP+-lesioned side and also up-regulated BDNF and GDNF expression in substantia nigra. Apomorphine-induced rotation following MPP+-treatment was also inhibited by Ad-HO-1. On the other hand, inhibition of HO enzymatic activity by ZnPPIX facilitated the MPP+-induced rotatory behavior and enhanced the reduction of dopamine content. HO-1 over-expression also exerted protection of dopaminergic neurons against MPP+-induced neurotoxicity in midbrain neuron-glia co-cultures. Over-expression of HO-1 increased the expression of BDNF and GDNF in astrocytes and BDNF in neurons. Our results indicate that HO-1 induction exerts neuroprotection both in vitro and in vivo. Endogenous induction of HO-1 is involved in the neuroprotection in Parkinsonism.
We then examined the action of downstream products of HO-1, bilirubin and CO. Bilirubin is a potent antioxidant and neuroprotectant. Neurotrophic factors of BDNF and GDNF also play important roles in survival and morphological differentiation of dopaminergic neurons. We have previously found that HO-1 induction by adenovirus containing human HO-1 gene (Ad-HO-1) in substantia nigra of rat increases BDNF and GDNF expression. As mentioned above, HO-1 in the enhancement of neurotrophic factor expression. Treatment of anti-BDNF/GDNF antibody significantly enhanced dopaminergic neuronal death and Ad-HO-1 co-treatment was able to antagonize the apoptosis effect. Injection Ad-HO-1 into substantia nigra of adult rat for 24 h, the confocal imaging shows that HO-1 induction appeared in dopaminergic neuron, astrocyte and microglia. HO-1 induced-BDNF/GDNF mRNA expression in substantia nigra was 26/21 folds of contralateral Ad-injected side. The downstream product of bilirubin also increased GDNF expression in glia-enriched cultures through ERK and PI3K-Akt pathways, which further enhanced NF-kB (p65) nuclear translocation. In addition, bilirubin also enhanced BDNF expression through similar pathway in cortical neuron-enriched cultures. We also examined the effect of another HO product of CO by using CO donor. [Ru(CO)3Cl2]2 induced neurotrophic factor expression via sGC-PKG pathway in both neuron and glia. Our results indicate that the downstream products of HO-1, bilirubin and CO, modulate BDNF and GDNF expression in neuron and astrocyte.
Autophagy is a degradation pathway for the turnover of dysfunctional organelles or aggregated proteins in cells. Extracellular accumulation of β-amyloid peptide has been reported to be a major cause of Alzheimer's disease (AD) and large numbers of autophagic vacuoles accumulate in the brain of AD patient. However, how autophagic process is involved in Aβ-induced neurotoxicity and how Aβ peptide is transported into neuron and metabolized is still unknown. In order to study the role of autophagic process in Aβ-induced neurotoxicity, EGFP-LC3 was over-expressed in SH-SY5Y cells (SH-SY5Y/pEGFP-LC3). It was found that treatment with Aβ25-35, Aβ1-42 or serum-starvation induced strong autophagy response in SH-SY5Y/pEGFP-LC3. Confocal double-staining image showed that exogenous application of Aβ1-42 in medium caused the co-localization of Aβ1-42 with LC3 in neuronal cells. Concomitant treatment of Aβ with a selective α7nAChR antagonist, α-bungarotoxin (α-BTX), enhanced Aβ-induced neurotoxicity in SH-SY5Y cells. On the other hand, nicotine (nAChR agonist) enhanced the autophagic process and also inhibited cell death following Aβ application. In addition, nicotine but not α-BTX increased primary hippocampal neuronal survival following Aβ treatment. Furthermore, using Atg7 siRNA to inhibit autophagosome formation in an early step or α7nAChR siRNA to knockdown α7nAChR significantly enhanced Aβ-induced neurotoxicity. Confocal double-staining image shows that nicotine treatment in the presence of Aβ enhanced the co-localization of α7nAChR with autophagosomes. These results suggest that α7nAChR may act as a carrier to bind with eAβ and internalize into cytoplasm and further inhibit Aβ-induced neurotoxicity via autophagic degradation pathway. Our results suggest that autophagy process plays a neuroprotective role against Aβ-induced neurotoxicity. Defect in autophagic regulation or Aβ-α7nAChR transport system may impair the clearance of Aβ and enhance the neuronal death.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:37:29Z (GMT). No. of bitstreams: 1
ntu-98-D92423001-1.pdf: 10648896 bytes, checksum: d7064cfa61588043ccdf587fe2c7871a (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
Page
Abbreviations ………………………………………………………1
Abstract in Chinese ………………………………………………7
Abstract in English ………………………………………………13
Chapter 1. Introduction ……………………………19
1-1. Neurodegenerative disease: Parkinson’s disease and Alzheimer’s disease
1-2. HO-1 in Parkinson’s disease
1-3. The biological function of bilirubin and CO
1-4. The function of BDNF and GDNF in neuron
1-5. The role of autophagy in neurodegenerative disease
Chapter 2. Materials and Methods …………………53
Chapter 3. Overexpression of heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridium-induced neurotoxicity ………………………65
Chapter 4. Action mechanism of heme oxygenase-1 in the enhancement of neurotrophic factor expression ………97
Chapter 5. Autophagy protects neurons from Abeta-induced cytotoxicity ……………………………………………121
Chapter 6. Conclusion and Perspective …………149
References …………………………………………………………155
Publications and Honors ………………………………………171
dc.language.isoen
dc.subject神經保護zh_TW
dc.subject第一型血基質氧化酵素zh_TW
dc.subject細胞自噬zh_TW
dc.subject神經退化性疾病zh_TW
dc.subjectneurodegenerative diseasesen
dc.subjectneuroprotectionen
dc.subjectHO-1en
dc.subjectautophagyen
dc.title第一型血基質氧化酵素及細胞自噬在神經退化性疾病保護機轉之探討zh_TW
dc.titleNeuroprotective mechanism of HO-1 and autophagy in neurodegenerative diseasesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee楊春茂(Chuen-Mao Yang),王家儀(Jia-Yi Wang),黃偉邦(Wei-Pang Huang),劉宏輝(Horng-Huei Liou)
dc.subject.keyword第一型血基質氧化酵素,細胞自噬,神經退化性疾病,神經保護,zh_TW
dc.subject.keywordHO-1,autophagy,neurodegenerative diseases,neuroprotection,en
dc.relation.page173
dc.rights.note有償授權
dc.date.accepted2009-07-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
10.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved