請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43088完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡宜芳(Yi - Fang Tsay) | |
| dc.contributor.author | Ting - Hung Lin | en |
| dc.contributor.author | 林庭弘 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:36:20Z | - |
| dc.date.available | 2012-07-23 | |
| dc.date.copyright | 2009-07-23 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-16 | |
| dc.identifier.citation | Abdallaha, F., Salaminib, F., and Leister D. (2000). A prediction of the size and
evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5, 141-142. Balmer, Y., Koller, A., del Val, G., Manieri, W., Schu‥rmann, P., Buchanan, B.B. (2003) . Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc. Natl. Acad. Sci. U. S. A. 100, 370-375. Bloom, A.J., Sukrapanna, S.S., and Warner, R.L. (1992). Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 99, 1294-1301. Bowsher, C.G., Hucklesby, D.P., and Emes, M.J. (1989). Nitrite reduction and carbohydrate metabolism in plastids purified from roots of Pisum sativum. Planta. 177, 359-366. Bowsher, C.G., Lacey, A.E., Hanke, G.T., Clarkson, D.T., Saker, L.R., Stulen, I., Emes, M.J. (2007). The effect of Glc6P uptake and its subsequent oxidation within pea root plastids on nitrite reduction and glutamate synthesis. J. Exp. Bot. 58, 1109-1118. Brunswick, P., Cresswell, C.F. (1988) .Nitrite uptake into intact pea chloroplasts: II. Influence of electron transport regulators, uncouplers, ATPase and anion uptake inhibitors and protein binding reagents. Plant Physiol. 86, 384–389. Caboche, M., and Rouze, P. (1990) . Nitrate reductase: a target for molecular and cellular studies in higher plants. Trends Genet. 6, 187-191. Cai1, W., Ji, D., Peng, L., Guo1, J., Ma, J., Zou, M., Lu, C., Zhang, L. (2009). LPA66 Is Required for Editing psbF Chloroplast Transcripts in Arabidopsis. Plant Physiol. 150, 1260-1271. Campbell, W. H. (2001). Structure and function of eukaryotic NAD(P)H:nitrate reductase. Cell. Mol. Life Sci. 58, 194-204. Campbell, W.H., and Kinghorn, J.R. (1990). Functional domains of assimilatory nitrate eductases and nitrite reductases. Trends Biochem Sci. 15, 315-319. Champigny, M.-L., Brauer, M., Bismuth, E., Thi-Manh, C., Siegl, G., Van-Quy, L., Stitt, M. (1991) .The short-term effect of NO3- and NH3 assimilation on sucrose synthesis in leaves. J Plant Physiol. 139, 361-368. Chomyn, A., Martinuzzi, A., Yoneda, M., Daga, A., Hurkot, O., Johns, D., LAI, S.T., Nonaka, I., Angelini, C., and Ateaedi, G. (1992).MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc. Natl. Acad. Sci. U. S. A. 89, 4221-4225. Crawford, N.M. (1995). Nitrate: nutrient and signal for plant growth. The Plant Cell. 7, 859-868. Crawford, N.M. and Glass, A.D.M. (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3, 389-395. Doddema, H. and Telkamp, G.P. (1979). Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake or reduction of nitrate. Plant physiol. 45, 332-338. Douglas, P., Pigaglio, E., Ferrer, A., Halford, N.G., and Mackintosh, C. (1997). Three spinach leaf nitrate reductase–3-hydroxy-3-methylglutaryl-CoA reductase kinases that are regulated by reversible phosphorylation and/or Ca2+ ions. Biochem. J. 325, 101-109. Douglas, S.E. (1998). Plastid evolution: origins, diversity, trends. Curr Opin Genet Dev. 8, 655-661. Fernandez-Silva, P., Polosa, P.L., Roberti, M., Ponzio, B.D., Gadaleta, M.N., Montoya, J. and Cantatore, P. (2001). Sea urchin mtDBP is a two-faced transcription termination factor with a biased polarity depending on the RNA polymerase. Nucleic Acids Res. 29, 4736-4743. Forde, B.G., Clarkson, D.T. (1999). Nitrate and ammonium nutrition of plants: physiological and molecular perspectives. Advances in Botanical Research. 30, 1-90. Foyer, C., Ferrario-Mery, S., Noctor, G. (2001). Interactions between carbon and nitrogen metabolism. In: Lea PJ, Morot-Gaudry J-F, eds. Plant nitrogen. Berlin: Springer-Verlag, 237-254. Freney, J.-R., Leuning, R., Simpton, J.-R., Denmead., O.-T., Muirhead, W.-A. (1985). Estimating ammonia volatilization from flooded rice fields by simplified techniques. Soil. Sci. Soc. Am. J. 49, 1049-1054. Geigenberger, P., Kolbe, A., Tiessen, A. (2005). Redox regulation of carbon storage and partitioning in response to light and sugars. J. Exp. Bot. 56, 1469-1479. Guo, S., Brueck, H., and Sattelmacher, B. (2002). Effects of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) plants. Plant and Soil. 239, 267–275. Guo1, S., Zhou, Y., Shen, Q., and Zhang, F. (2006). Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations. Plant Biol. 9, 21-29. Hanke, G.T., Endo, T., Sayoh, F., Hase, T. (2008). Altered photosynthetic electron channelling into cyclic electron flow and nitrite assimilation in a mutant of ferredoxin:NADP(H) reductase. Plant, Cell and Environment. 31, 1017-1028. Hess, J. F., Parasi, M. A., Bennett, J. L., and Clayton, D. A. (1991). Impairment of mitochondrial transcription termination by a point mutation associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 351, 236-239. Kaiser, B.N., Rawat, S.R., Siddiqi, M.Y., Masle, J. and Glass, A.D. (2002). Functional analysis of an Arabidopsis T-DNA knockout of the high-affinity NH4+ transporter AtAMT1;1. Plant Physiol. 130, 1263-1275. Kaiser, W.M., Huber, S.C. (1994) .Posttranslational regulation of nitrate reductase in higher plants. Plant Physiol. 106, 817-821. Kruse, B., Narasimhan, N., and Attardi, G. (1989). Termination of transcription in human mitochondria: Identification and purification of a DNA binding protein factor that promotes termination.Cell. 58, 391-397. LaBrie, S.T., Crawford, N.M., (1994). A Glycine to Aspartic acid change in the MoCo domain of nitrate reductase reduces both activity and phosphorylation levels in Arabidopsis. The Journal of Biological Chemistry. 269, 14497-14501. Lawlor, D.W. (2002). Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J. Exp. Bot. 53, 773-787. Li, W., Wang, Y., Okamoto, M., Crawford, N.M., Siddiqi, M.Y., and Glass, A.D.M. (2007). Dissection of the AtNRT2.1:AtNRT2.2 induciblr high affinity nitrate transporter gene c;uster. Plant physiol. 143, 425-433. Linder, T., Park, C.-B., Asin-Cayuela, J., Pellegrini, M., Larsson, N.-G. Falkenberg, Maria., Samuelsson, T., Gustafsson, C.-M. (2005). A family of putative transcription termination factors shared amongst metazoans and plants. Curr Genet. 48, 265-269. Liu, K.-H., Huang, C.-Y., Tsay, Y.-F. (1999). CHL1 Is a Dual-Affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. The Plant Cell. 11, 865-874. Liu, K.-H., and Tsay, Y.-F. (2003). Switching between the two action modes of the dual affinity nitrate transporter CHL1 by phosphorylation. EMBO J. 22, 1005-1013. Ma, J., Peng, L., Guo, J., Lu, O., Lu, C., and Zhang, L. (2007).LPA2 Is Required for Efficient Assembly of Photosystem II in Arabidopsis thaliana. The Plant Cell. 19, 1980-1993. Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., Hasegawa, M., Penny, D. (2002). Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl. Acad. Sci. U. S. A. 99, 12246-12251. Meurer, J., Plucken, H., V.Kowallik, K., and Westhoff, P. (1998). A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. EMBO J. 17, 5286-5297. Motohashi, K., Kondoh, A., Stumpp, M.T., Hisabori, T. (2001). Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc. Natl. Acad. Sci. U. S. A. 98, 11224-11229. Raven, J. A. (1985). Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytologist. 101, 25-77. Rawat, S.R., Silim, S.N., Kronzucker, H.J., Siddiqi, M.Y., and Glass, A.D.M. (1999). AtAMT1 gene expression and NH4+ uptake in roots of Arabidopsis thaliana: evidence for regulation by root glutamine levels. Plant J. 19, 143-152. Roberti1, M., Bruni, F., Polosa, P.L., Gadaleta, M.N., Cantatore, P. (2006). SURVEY AND SUMMARY The Drosophila termination factor DmTTF regulates in vivo mitochondrial transcription. Nucleic Acids Res. 34, 7 2109-2116. Roberti, M., Fernandez-Silva, P., Polosa, P.L., Fernandez-Vizarra, E., Bruni, F., Deceglie, S., Montoya, J., Gadaleta, M.N., Cantatore, P. (2005). In vitro transcription termination activity of the Drosophila mitochondrial DNA-binding protein DmTTF. Biochemical and Biophysical Research Communications. 331, 357-362. Roberti, M., Polosa,P.L., Bruni, F., Musicco, C., Gadaleta, M.N. and Cantatore, P. (2003). DmTTF, a novel mitochondrial transcription termination factor that recognises two sequences of Drosophila melanogaster mitochondrial DNA. Nucleic Acids Res. 31, 1597-1604. Roberti1, M., Mustich, A., Gadaleta, M.N. and Cantatore, P. (1991). Identification of two homologous mitochondrial DNA sequences, which bind strongly and specifically to a mitochondrial protein of Paracentrotus lividus. Nucleic Acids Res. 19, 6249-6254. Robinson, J.M. (1988). Spinach leaf chloroplast CO2 and NO2- photoassimilations do not compete for photogenerated reductant. Plant Physiol. 88, 1373-1380. Rumeau, D., PELTIER, G., Cournac, L. (2007). Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant, Cell and Environment. 30, 1041-1051. Scheibe, R. (1991). Redox-modulation of chloroplast enzymes. A common principle for individual control. Plant Physiol. 96, 1-3. Schonfeld, C., Wobbe, L., Borgsta‥ dt, R., Kienast, A., Nixon, P.J., Kruse, O. (2004). The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U. S. A. 95, 15134-15139. Scholten, H.J., and Feenstra, W.J. (1986). Uptake of chlorate and other ions in seedlings of the nitrate-uptake mutant B1 of Arabidopsis thaliana. Plant physiol. 66, 265-269. Shelden, M.C., Dong, B., de Bruxelles, G. L., Trevaskis, B.,Whelan, J., Ryan, P.R., Howitt, S. M., and Udvardi, M.K. (2001). Arabidopsis ammonium transporters, AtAMT1;1 and AtAMT1;2, have different biochemical properties and functional roles. Plant and Soil. 231, 151-160. Suorsa, M., Regel, R.E., Paakkarinen, V., Battchikova, N., Herrmann, R.G., and Aro, E.-M. (2003). Protein assembly of photosystem II and accumulation of subcomplexes in the absence of low molecular mass subunits PsbL and PsbJ. Federation of European Biochemical Societies. JBC. 279, 50366-50374. Tsay, Y.-F., Schroeder, J.I. Feldmann, K.A. and Crawford, N.M. (1993).The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell. 72, 705-713. Tsay, Y.-F., Chiu, C.- C, Tsai, C.-B., Ho, C-H, Hsu, P.-K. (2007). Nitrate transporters and peptide transporters. FEB . 581, 2290-2300. von Wire′n, N., Lauter, F.-R., Ninnemann, O., Gillissen, B., Walch-Liu, P., Engels, C., Jost, W., Frommer, W.B. (2000). Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. The Plant Journal. 21, 167-175. Walch-Liu, P., Neumann, G., Bangerth, F. and Engels, C. (2000). Rapid effects of nitrogen form on leaf morphogenesis in tobacco.J. Exp. Bot. 51, 227-237. Wang, R.-C., Liu, D. and Crawford, N.M. (1998). The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc. Natl. Acad. Sci. U. S. A. Plant Biology 95, 15134-15139. Wang, M.Y., Siddiqi, M.Y., Ruth, T.J., Glass, A., (1993). Ammonium uptake by rice roots (II. Kinetics of 13NH4þ Influx across the Plasmalemma). Plant Physiol. 103, 1259-1267. Weigel, D., Ahn, J.H., Bla′zquez, M.A., Borevitz, J.O., Christensen, S.K., Fankhauser, C., Ferra′ndiz, C., Kardailsky, I., Malancharuvil, E.J., Neff, M.M., Nguyen, J.T., Sato, S., Wang,Z.Y., Xia, Y., Dixon, R.A., Harrison, M.J., Lamb, C.J., Yanofsky, M.F, Chory,J. (2000). Activation Tagging in Arabidopsis. Plant Physiol. 122, 1003-1013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43088 | - |
| dc.description.abstract | 氮是構成核酸與胺基酸的重要元素,也是限制植物生長的要素之一,土壤中的硝酸鹽是大多數植物主要的氮素來源,根部吸收週遭環境中的硝酸鹽後,需要經過一連串的同化作用,將硝酸鹽還原成銨鹽,銨鹽經固氮形成麩醯胺後,再轉換成其他胺基酸供植物生長利用。過量的銨鹽對植物是種傷害,必須盡快的在葉綠體內進行固氮解毒,為了避免銨鹽的過度累積,植物必須嚴格的調控硝酸鹽以及銨鹽同化作用的效率,來維持體內銨鹽的含量。光合作用提供植物體內各種代謝反應所需的能量、碳源及還原劑,其中約有10%的化學能,被用於硝酸鹽以及銨鹽的同化作用,這是僅次於二氧化碳同化作用外,需要消耗最多能量與碳水化合物的代謝反應。碳水化合物與胺基酸都是植物組成的必要成分,然而光合作用產生的化學能有限,如何依據植物的生理需求來調控能量及相關物質的分配便顯得十分重要,現今認為氮與碳同化作用間具有高度的協調性,不過詳細的調控機制以及兩者間的交互作用在植物生理上扮演的角色仍有待進一步的研究。
本篇研究利用順向遺傳學的方式,篩選出具有銨鹽毒害過度敏感性狀的阿拉伯芥突變株,透過多種生化與分生技術發現,此突變株第四號染色體上的At4g14605基因產生缺失。雖然At4g14605基因被預期是粒線體轉錄終止因子蛋白家族中的一員(mitochondrial transcription termination factor-related protein, mTERF-related),但我們的研究發現,At4g14605蛋白會進入葉綠體內並參予葉綠體基因體轉錄機制的調控,當At4g14605基因發生突變時,會影響葉綠體基因體中光系統II相關基因在RNA與蛋白質層次上的表現,這樣的結果可能會干擾光系統II複合體的形成,導致光合作用無法正常的進行,只能仰賴光系統I製造ATP,而降低了還原劑的產生,可能連帶影響了硝酸鹽及銨鹽同化作用的過程,利用這些研究,我們闡述了一個新的氮碳交互調控之可能機制。 | zh_TW |
| dc.description.abstract | For most of plants, nitrate and ammonium are the two major nitrogen sources. Nitrate taken into plants can be stored, or assimilated first to ammonium and then incorporated into carbon skeleton to generate amino acids. Excess ammonium is toxic to most plant. To avoid the toxicity, ammonium has to be incorporated into amino acids in chloroplast efficiently. In addition, nitrate and ammonium transport and assimilation system should be precisely regulated to keep balanced with energy, reducing power and carbon fixed from photosynthesis. About 10 % of the photosynthesis outcome is used in nitrogen metabolism. Nitrogen metabolism and carbon fixation are the most energy consuming pathway for plant. To avoid competition, these two pathways have to be coordinately regulated. However, the interaction and regulation mechanism between nitrogen metabolism and carbon fixation remain to be elucidated.
In this study, using genetic mapping and microarray analysis, an Arabidopsis ammonium sensitive and chlorate resistant mutant was found to be mutated at At4g14605 gene. Although At4g14605 is predicted to be a mitochondrial transcription termination factor-related protein, we found that it is targeted to chloroplast, and affect the expression of several photosystem II (PSII) related gene. Therefore, blocking the function of this gene will disrupt the normal assembling of PSII complex and reduce the cyclic electron transfer chain in photosynthesis, a key process to provide reducing power for carbon fixation and nitrogen metabolism. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:36:20Z (GMT). No. of bitstreams: 1 ntu-98-R96b43015-1.pdf: 3580680 bytes, checksum: e86de55c765894dc6e41e1d765874c1e (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄:
致謝: I 目錄: II 圖目錄: II 中文摘要: III Abstract: IV 前言: 1 材料與方法: 8 結果: 28 討論: 39 圖表: 45 參考資料 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光合作用 | zh_TW |
| dc.subject | 硝酸鹽 | zh_TW |
| dc.subject | 氮同化作用 | zh_TW |
| dc.subject | photosynthesis | en |
| dc.subject | nitrogen assimilation | en |
| dc.subject | nitrate | en |
| dc.title | 利用銨鹽突變株探討植物氮利用與光合作用之交互調控 | zh_TW |
| dc.title | Characterization of an ammonium toxicity mutant reveals the cross talk between nitrogen and photosynthesis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李秀敏(Hsou-min Li),王淑美(Shue-Mei Wang) | |
| dc.subject.keyword | 硝酸鹽,氮同化作用,光合作用, | zh_TW |
| dc.subject.keyword | nitrate,nitrogen assimilation,photosynthesis, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-16 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
