請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43081
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 于明暉(Ming-Whei Yu) | |
dc.contributor.author | Wei-Yi Kao | en |
dc.contributor.author | 高瑋怡 | zh_TW |
dc.date.accessioned | 2021-06-15T01:35:59Z | - |
dc.date.available | 2019-07-31 | |
dc.date.copyright | 2009-09-16 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-16 | |
dc.identifier.citation | 1. Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis 1999;19(3):271-85.
2. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 2002;31(4):339-46. 3. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007;132(7):2557-76. 4. Stevens CE, Beasley RP, Tsui J, Lee WC. Vertical transmission of hepatitis B antigen in Taiwan. N Engl J Med 1975;292(15):771-4. 5. Yu MW, You SL, Chang AS, Lu SN, Liaw YF, Chen CJ. Association between hepatitis C virus antibodies and hepatocellular carcinoma in Taiwan. Cancer Res 1991;51(20):5621-5. 6. Chen CJ, Yu MW, Liaw YF. Epidemiological characteristics and risk factors of hepatocellular carcinoma. J Gastroenterol Hepatol 1997;12(9-10):S294-308. 7. Yu MW, Chang HC, Liaw YF, Lin SM, Lee SD, Liu CJ, et al. Familial risk of hepatocellular carcinoma among chronic hepatitis B carriers and their relatives. J Natl Cancer Inst 2000;92(14):1159-64. 8. Szmuness W, Prince AM, Hirsch RL, Brotman B. Familial clustering of hepatitis B infection. N Engl J Med 1973;289(22):1162-6. 9. Yu MW, Chang HC, Chen PJ, Liu CJ, Liaw YF, Lin SM, et al. Increased risk for hepatitis B-related liver cirrhosis in relatives of patients with hepatocellular carcinoma in northern Taiwan. Int J Epidemiol 2002;31(5):1008-15. 10. Hassan MM, Spitz MR, Thomas MB, Curley SA, Patt YZ, Vauthey JN, et al. The association of family history of liver cancer with hepatocellular carcinoma: a case-control study in the United States. J Hepatol 2009;50(2):334-41. 11. Cai RL, Meng W, Lu HY, Lin WY, Jiang F, Shen FM. Segregation analysis of hepatocellular carcinoma in a moderately high-incidence area of East China. World J Gastroenterol 2003;9(11):2428-32. 12. Shen FM, Lee MK, Gong HM, Cai XQ, King MC. Complex segregation analysis of primary hepatocellular carcinoma in Chinese families: interaction of inherited susceptibility and hepatitis B viral infection. Am J Hum Genet 1991;49(1):88-93. 13. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005;6(2):95-108. 14. Bernard S, Touzet S, Personne I, Lapras V, Bondon PJ, Berthezene F, et al. Association between microsomal triglyceride transfer protein gene polymorphism and the biological features of liver steatosis in patients with type II diabetes. Diabetologia 2000;43(8):995-9. 15. Perlemuter G, Sabile A, Letteron P, Vona G, Topilco A, Chretien Y, et al. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. FASEB J 2002;16(2):185-94. 16. Gewaltig J, Mangasser-Stephan K, Gartung C, Biesterfeld S, Gressner AM. Association of polymorphisms of the transforming growth factor-beta1 gene with the rate of progression of HCV-induced liver fibrosis. Clin Chim Acta 2002;316(1-2):83-94. 17. Jeng JE, Tsai JF, Chuang LY, Ho MS, Lin ZY, Hsieh MY, et al. Tumor necrosis factor-alpha 308.2 polymorphism is associated with advanced hepatic fibrosis and higher risk for hepatocellular carcinoma. Neoplasia 2007;9(11):987-92. 18. Migita K, Maeda Y, Abiru S, Nakamura M, Komori A, Miyazoe S, et al. Polymorphisms of interleukin-1beta in Japanese patients with hepatitis B virus infection. J Hepatol 2007;46(3):381-6. 19. Tanabe KK, Lemoine A, Finkelstein DM, Kawasaki H, Fujii T, Chung RT, et al. Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis. JAMA 2008;299(1):53-60. 20. Chen PJ, Chen DS. Hepatitis B virus infection and hepatocellular carcinoma: molecular genetics and clinical perspectives. Semin Liver Dis 1999;19(3):253-62. 21. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420(6917):860-7. 22. Migita K, Miyazoe S, Maeda Y, Daikoku M, Abiru S, Ueki T, et al. Cytokine gene polymorphisms in Japanese patients with hepatitis B virus infection--association between TGF-beta1 polymorphisms and hepatocellular carcinoma. J Hepatol 2005;42(4):505-10. 23. Hirankarn N, Kimkong I, Kummee P, Tangkijvanich P, Poovorawan Y. Interleukin-1beta gene polymorphism associated with hepatocellular carcinoma in hepatitis B virus infection. World J Gastroenterol 2006;12(5):776-9. 24. Miyazoe S, Hamasaki K, Nakata K, Kajiya Y, Kitajima K, Nakao K, et al. Influence of interleukin-10 gene promoter polymorphisms on disease progression in patients chronically infected with hepatitis B virus. Am J Gastroenterol 2002;97(8):2086-92. 25. Shin HD, Park BL, Kim LH, Jung JH, Kim JY, Yoon JH, et al. Interleukin 10 haplotype associated with increased risk of hepatocellular carcinoma. Hum Mol Genet 2003;12(8):901-6. 26. Ben-Ari Z, Mor E, Papo O, Kfir B, Sulkes J, Tambur AR, et al. Cytokine gene polymorphisms in patients infected with hepatitis B virus. Am J Gastroenterol 2003;98(1):144-50. 27. Kiran M, Saxena R, Chawla YK, Kaur J. Polymorphism of DNA repair gene XRCC1 and hepatitis-related hepatocellular carcinoma risk in Indian population. Mol Cell Biochem 2009;327(1-2):7-13. 28. Kirk GD, Turner PC, Gong Y, Lesi OA, Mendy M, Goedert JJ, et al. Hepatocellular carcinoma and polymorphisms in carcinogen-metabolizing and DNA repair enzymes in a population with aflatoxin exposure and hepatitis B virus endemicity. Cancer Epidemiol Biomarkers Prev 2005;14(2):373-9. 29. Long XD, Ma Y, Wei YP, Deng ZL. The polymorphisms of GSTM1, GSTT1, HYL1*2, and XRCC1, and aflatoxin B1-related hepatocellular carcinoma in Guangxi population, China. Hepatol Res 2006;36(1):48-55. 30. Yu MW, Yang SY, Pan IJ, Lin CL, Liu CJ, Liaw YF, et al. Polymorphisms in XRCC1 and glutathione S-transferase genes and hepatitis B-related hepatocellular carcinoma. J Natl Cancer Inst 2003;95(19):1485-8. 31. Chen CC, Yang SY, Liu CJ, Lin CL, Liaw YF, Lin SM, et al. Association of cytokine and DNA repair gene polymorphisms with hepatitis B-related hepatocellular carcinoma. Int J Epidemiol 2005;34(6):1310-8. 32. Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 2002;3(5):391-7. 33. Kamatani Y, Wattanapokayakit S, Ochi H, Kawaguchi T, Takahashi A, Hosono N, et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet 2009;41(5):591-5. 34. Yuan X, Waterworth D, Perry JR, Lim N, Song K, Chambers JC, et al. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am J Hum Genet 2008;83(4):520-8. 35. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008;40(12):1461-5. 36. Pritchard JK. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 2001;69(1):124-37. 37. Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 2008;40(6):695-701. 38. Fearnhead NS, Wilding JL, Winney B, Tonks S, Bartlett S, Bicknell DC, et al. Multiple rare variants in different genes account for multifactorial inherited susceptibility to colorectal adenomas. Proc Natl Acad Sci U S A 2004;101(45):15992-7. 39. Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 2004;305(5685):869-72. 40. Meijers-Heijboer H, van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, Oldenburg R, et al. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 2002;31(1):55-9. 41. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008;320(5875):539-43. 42. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996;13(4):399-408. 43. Cauza E, Peck-Radosavljevic M, Ulrich-Pur H, Datz C, Gschwantler M, Schoniger-Hekele M, et al. Mutations of the HFE gene in patients with hepatocellular carcinoma. Am J Gastroenterol 2003;98(2):442-7. 44. Hellerbrand C, Poppl A, Hartmann A, Scholmerich J, Lock G. HFE C282Y heterozygosity in hepatocellular carcinoma: evidence for an increased prevalence. Clin Gastroenterol Hepatol 2003;1(4):279-84. 45. Willis G, Bardsley V, Fellows IW, Lonsdale R, Wimperis JZ, Jennings BA. Hepatocellular carcinoma and the penetrance of HFE C282Y mutations: a cross sectional study. BMC Gastroenterol 2005;5:17. 46. de la Chapelle A. Genetic predisposition to colorectal cancer. Nat Rev Cancer 2004;4(10):769-80. 47. Honrado E, Benitez J, Palacios J. The molecular pathology of hereditary breast cancer: genetic testing and therapeutic implications. Mod Pathol 2005;18(10):1305-20. 48. Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet 2008;40(1):17-22. 49. Knudson AG, Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 1971;68(4):820-3. 50. Shih WL, Yu MW, Chen PJ, Yeh SH, Lo MT, Chang HC, et al. Localization of a susceptibility locus for hepatocellular carcinoma to chromosome 4q in a hepatitis B hyperendemic area. Oncogene 2006;25(22):3219-24. 51. Shih WL, Yu MW, Chen PJ, Wu TW, Lin CL, Liu CJ, et al. Evidence for association with hepatocellular carcinoma at the PAPSS1 locus on chromosome 4q25 in a family-based study. Eur J Hum Genet 2009. 52. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006;6(9):674-87. 53. Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F, et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 2001;120(7):1763-73. 54. Nagai H, Pineau P, Tiollais P, Buendia MA, Dejean A. Comprehensive allelotyping of human hepatocellular carcinoma. Oncogene 1997;14(24):2927-33. 55. Takita K, Sato T, Miyagi M, Watatani M, Akiyama F, Sakamoto G, et al. Correlation of loss of alleles on the short arms of chromosomes 11 and 17 with metastasis of primary breast cancer to lymph nodes. Cancer Res 1992;52(14):3914-7. 56. O'Connell JR, Weeks DE. PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998;63(1):259-66. 57. Tavtigian SV, Simard J, Teng DH, Abtin V, Baumgard M, Beck A, et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 2001;27(2):172-80. 58. Chen YC, Giovannucci E, Kraft P, D JH. Sequence variants of elaC homolog 2 (Escherichia coli) (ELAC2) gene and susceptibility to prostate cancer in the Health Professionals Follow-Up Study. Carcinogenesis 2008;29(5):999-1004. 59. Fujiwara H, Emi M, Nagai H, Nishimura T, Konishi N, Kubota Y, et al. Association of common missense changes in ELAC2 ( HPC2) with prostate cancer in a Japanese case-control series. J Hum Genet 2002;47(12):641-8. 60. Noonan-Wheeler FC, Wu W, Roehl KA, Klim A, Haugen J, Suarez BK, et al. Association of hereditary prostate cancer gene polymorphic variants with sporadic aggressive prostate carcinoma. Prostate 2006;66(1):49-56. 61. Robbins CM, Hernandez W, Ahaghotu C, Bennett J, Hoke G, Mason T, et al. Association of HPC2/ELAC2 and RNASEL non-synonymous variants with prostate cancer risk in African American familial and sporadic cases. Prostate 2008;68(16):1790-7. 62. Takahashi H, Lu W, Watanabe M, Katoh T, Furusato M, Tsukino H, et al. Ser217Leu polymorphism of the HPC2/ELAC2 gene associated with prostatic cancer risk in Japanese men. Int J Cancer 2003;107(2):224-8. 63. National Center for Biotechnology Information (NCBI) Web site http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=4792311 64. Strauch K. Parametric linkage analysis with automatic optimization of the disease model parameters. Am J Hum Genet 2003;73(Suppl1):A2624. 65. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996;58(6):1347-63. 66. Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin--rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002;30(1):97-101. 67. Clayton D. A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet 1999;65(4):1170-7. 68. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993;52(3):506-16. 69. Martin ER, Monks SA, Warren LL, Kaplan NL. A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 2000;67(1):146-54. 70. Laird NM, Horvath S, Xu X. Implementing a unified approach to family-based tests of association. Genet Epidemiol 2000;19 Suppl 1:S36-42. 71. Rabinowitz D, Laird N. A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 2000;50(4):211-23. 72. Martin ER, Bass MP, Kaplan NL. Correcting for a potential bias in the pedigree disequilibrium test. Am J Hum Genet 2001;68(4):1065-7. 73. Lake SL, Blacker D, Laird NM. Family-based tests of association in the presence of linkage. Am J Hum Genet 2000;67(6):1515-25. 74. Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 2005;21(9):2128-9. 75. Gauderman WJ. Sample size requirements for association studies of gene-gene interaction. Am J Epidemiol 2002;155(5):478-84. 76. Bonilla Guerrero R, Roberts LR. The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J Hepatol 2005;42(5):760-77. 77. Bressac B, Galvin KM, Liang TJ, Isselbacher KJ, Wands JR, Ozturk M. Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci U S A 1990;87(5):1973-7. 78. Bressac B, Kew M, Wands J, Ozturk M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 1991;350(6317):429-31. 79. Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 1991;350(6317):427-8. 80. Qin WX, Wan F, Sun FY, Zhang PP, Han LW, Huang Y, et al. Cloning and characterization of a novel gene (C17orf25) from the deletion region on chromosome 17p13.3 in hepatocelular carcinoma. Cell Res 2001;11(3):209-16. 81. Teramoto T, Satonaka K, Kitazawa S, Fujimori T, Hayashi K, Maeda S. p53 gene abnormalities are closely related to hepatoviral infections and occur at a late stage of hepatocarcinogenesis. Cancer Res 1994;54(1):231-5. 82. Zhao X, Li J, He Y, Lan F, Fu L, Guo J, et al. A novel growth suppressor gene on chromosome 17p13.3 with a high frequency of mutation in human hepatocellular carcinoma. Cancer Res 2001;61(20):7383-7. 83. Buetow KH, Sheffield VC, Zhu M, Zhou T, Shen FM, Hino O, et al. Low frequency of p53 mutations observed in a diverse collection of primary hepatocellular carcinomas. Proc Natl Acad Sci U S A 1992;89(20):9622-6. 84. Lunn RM, Zhang YJ, Wang LY, Chen CJ, Lee PH, Lee CS, et al. p53 mutations, chronic hepatitis B virus infection, and aflatoxin exposure in hepatocellular carcinoma in Taiwan. Cancer Res 1997;57(16):3471-7. 85. Yang P, Buetow KH, Lustbader ED, Lanier AP, McMahon BJ, Alberts S. Evidence for a major locus modifying risk for primary hepatocellular carcinoma. Am J Hum Genet 1990;47(Suppl):A25. 86. Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell 1992;70(4):523-6. 87. Okabe H, Ikai I, Matsuo K, Satoh S, Momoi H, Kamikawa T, et al. Comprehensive allelotype study of hepatocellular carcinoma: potential differences in pathways to hepatocellular carcinoma between hepatitis B virus-positive and -negative tumors. Hepatology 2000;31(5):1073-9. 88. Cornelis RS, van Vliet M, Vos CB, Cleton-Jansen AM, van de Vijver MJ, Peterse JL, et al. Evidence for a gene on 17p13.3, distal to TP53, as a target for allele loss in breast tumors without p53 mutations. Cancer Res 1994;54(15):4200-6. 89. Guan XY, Sham JS, Tai LS, Fang Y, Li H, Liang Q. Evidence for another tumor suppressor gene at 17p13.3 distal to TP53 in hepatocellular carcinoma. Cancer Genet Cytogenet 2003;140(1):45-8. 90. Yumoto Y, Hanafusa T, Hada H, Morita T, Ooguchi S, Shinji N, et al. Loss of heterozygosity and analysis of mutation of p53 in hepatocellular carcinoma. J Gastroenterol Hepatol 1995;10(2):179-85. 91. Li SP, Wang HY, Li JQ, Zhang CQ, Feng QS, Huang P, et al. Genome-wide analyses on loss of heterozygosity in hepatocellular carcinoma in Southern China. J Hepatol 2001;34(6):840-9. 92. Wang G, Zhao Y, Liu X, Wang L, Wu C, Zhang W, et al. Allelic loss and gain, but not genomic instability, as the major somatic mutation in primary hepatocellular carcinoma. Genes Chromosomes Cancer 2001;31(3):221-7. 93. Champine PJ, Michaelson J, Weimer BC, Welch DR, DeWald DB. Microarray analysis reveals potential mechanisms of BRMS1-mediated metastasis suppression. Clin Exp Metastasis 2007;24(7):551-65. 94. Shworak NW, Liu J, Petros LM, Zhang L, Kobayashi M, Copeland NG, et al. Multiple isoforms of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. Isolation, characterization, and expression of human cdnas and identification of distinct genomic loci. J Biol Chem 1999;274(8):5170-84. 95. Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000;103(2):295-309. 96. Noda D, Itoh S, Watanabe Y, Inamitsu M, Dennler S, Itoh F, et al. ELAC2, a putative prostate cancer susceptibility gene product, potentiates TGF-beta/Smad-induced growth arrest of prostate cells. Oncogene 2006;25(41):5591-600. 97. Sugano Y, Matsuzaki K, Tahashi Y, Furukawa F, Mori S, Yamagata H, et al. Distortion of autocrine transforming growth factor beta signal accelerates malignant potential by enhancing cell growth as well as PAI-1 and VEGF production in human hepatocellular carcinoma cells. Oncogene 2003;22(15):2309-21. 98. Leistner CM, Gruen-Bernhard S, Glebe D. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol 2008;10(1):122-33. 99. Slagle BL, Zhou YZ, Butel JS. Hepatitis B virus integration event in human chromosome 17p near the p53 gene identifies the region of the chromosome commonly deleted in virus-positive hepatocellular carcinomas. Cancer Res 1991;51(1):49-54. 100. Zhou YZ, Slagle BL, Donehower LA, vanTuinen P, Ledbetter DH, Butel JS. Structural analysis of a hepatitis B virus genome integrated into chromosome 17p of a human hepatocellular carcinoma. J Virol 1988;62(11):4224-31. 101. Cheung ST, Chen X, Guan XY, Wong SY, Tai LS, Ng IO, et al. Identify metastasis-associated genes in hepatocellular carcinoma through clonality delineation for multinodular tumor. Cancer Res 2002;62(16):4711-21. 102. Dronkert ML, de Wit J, Boeve M, Vasconcelos ML, van Steeg H, Tan TL, et al. Disruption of mouse SNM1 causes increased sensitivity to the DNA interstrand cross-linking agent mitomycin C. Mol Cell Biol 2000;20(13):4553-61. 103. Mandel CR, Kaneko S, Zhang H, Gebauer D, Vethantham V, Manley JL, et al. Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease. Nature 2006;444(7121):953-6. 104. Li C, Hong Y, Tan YX, Zhou H, Ai JH, Li SJ, et al. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics 2004;3(4):399-409. 105. Rebbeck TR, Walker AH, Zeigler-Johnson C, Weisburg S, Martin AM, Nathanson KL, et al. Association of HPC2/ELAC2 genotypes and prostate cancer. Am J Hum Genet 2000;67(4):1014-9. 106. Jorde LB. Linkage disequilibrium and the search for complex disease genes. Genome Res 2000;10(10):1435-44. 107. Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, et al. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Mol Cell Biol 2003;23(7):2425-37. 108. Milyavsky M, Shats I, Cholostoy A, Brosh R, Buganim Y, Weisz L, et al. Inactivation of myocardin and p16 during malignant transformation contributes to a differentiation defect. Cancer Cell 2007;11(2):133-46. 109. Shats I, Milyavsky M, Cholostoy A, Brosh R, Rotter V. Myocardin in tumor suppression and myofibroblast differentiation. Cell Cycle 2007;6(10):1141-6. 110. Richnau N, Aspenstrom P. Rich, a rho GTPase-activating protein domain-containing protein involved in signaling by Cdc42 and Rac1. J Biol Chem 2001;276(37):35060-70. 111. Takaku H, Minagawa A, Takagi M, Nashimoto M. A candidate prostate cancer susceptibility gene encodes tRNA 3' processing endoribonuclease. Nucleic Acids Res 2003;31(9):2272-8. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43081 | - |
dc.description.abstract | Background: Familial aggregation and segregation analyses of hepatocellular carcinoma (HCC) have revealed that genetic factors may be involved in familial clustering of HCC. Studies of loss-of-heterozygosity in HCCs have reported frequent allelic loss on chromosome 17p.
Materials and Methods: A hierarchical strategy has been performed for mapping HCC-susceptibility loci on 17p. Firstly, linkage analysis was conducted with 9 equally-spaced microsatellite markers spanning chromosome 17p among 72 multiplex families. After finding linkage signal, additional 10 markers were genotyped to further refine the linked region. Next, we performed recombinant mapping and family-based association analysis in the linked region. To examine further the roles of new loci, we performed a replication study for markers around candidate genes in the linked region using an independent case-control sample of 832 cases with HCC and 684 controls. Results: There are suggestive evidence for linkage of HCC to chromosome 17 p12 (maximum NPL=2.46 and maximum MOD=3.00) in 34 informative multiplex families. Using recombinant mapping, we identified an 870-kb minimum consensus haplotype-sharing region at 17p12. Family-based association analysis mapped the HCC-susceptibility locus in a 970-kb interval overlapping large parts of the 870-kb region defined by recombinant mapping. However, we failed to detect any association with HCC for markers on 17p12 in the case-control study overall or in subgroup analysis. Conclusion: A 1.19 Mb interval at chromosome 17p12, which is about 5.5 Mb apart from the p53 gene, may contain HCC-susceptibility loci. Future studies focusing on characterization of such loci in the linked region are warranted. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:35:59Z (GMT). No. of bitstreams: 1 ntu-98-R96842021-1.pdf: 417116 bytes, checksum: 5a5835e44d7bab875bfaf187356a8f9e (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Introduction…………………………………………………………………………..1
Materials and Methods………………………………………………………………6 Results……………………………………………………………………………….12 Discussion………………………………………………………………………...….17 References…………………………………………………………………………...22 Table 1…………………….………………………………………………………….35 Table 2…………………….……….………………...……………………………….36 Table 3…………………….………………………………………………………….37 Table 4…………………….………………………………………………………….38 Table 5…………………….………………………………………………………….40 Table 6…………………….………………………………………………………….41 Table 7…………………….………………………………………………………….42 Table 8…………………….………………………………………………………….43 Figure 1…………...………….………………………………………………………44 | |
dc.language.iso | en | |
dc.title | 肝細胞癌家族17號染色體短臂遺傳標記之連鎖及相關分析 | zh_TW |
dc.title | Linkage and Association Analysis of Chromosome 17p Genetic Markers in Familial Hepatocellular Carcinoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林明薇,鄭尊仁,盧勝男,簡國龍 | |
dc.subject.keyword | 肝細胞癌,家族聚集,連鎖分析,相關分析,17號染色體短臂, | zh_TW |
dc.subject.keyword | Hepatocellular carcinoma,Familial aggregation,Linkage analysis,Association analysis,Chromosome 17p, | en |
dc.relation.page | 45 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-17 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學研究所 | zh_TW |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 407.34 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。