請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43077完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳立仁 | |
| dc.contributor.author | Yu-Hsin Lin | en |
| dc.contributor.author | 林雨欣 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:35:48Z | - |
| dc.date.available | 2014-07-17 | |
| dc.date.copyright | 2009-07-17 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-16 | |
| dc.identifier.citation | 1. J. G. Wagner, and M. Pernarowski, (1971). Biopharmaceutics and relevant pharmacokinetics.
Drug intelligence pub. Hamilton, IL, U.S.A. 2. Prescott, L. F. and Nimmo, W. S. (1979). Drug absorption, ADIS Press. New York, U. S. A. 3. A. D. Abhijit, and V. B. Patravale, (2004). Current strategies for engineering drug nanoparticles. Current Opinion in Colloid and Interface Science 9, 222-235. 4. H. Eerikainen, W. Watanabe, E. Kauppinen, and P. Ahonen, (2003) Aerosol flow reactor method for the synthesis of drug nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 55, 357– 360. 5. P. Chattopadhyay, and R.B. Gupta, (2001) Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer, Industrial and Engineering Chemistry Research 40, 3530– 3539. 6. F. M. Helga, N. Garti, and A. Kamyshny, (1999). Crystallization from microemulsions - a novel method for the preparation of new crystal forms of aspartame. Journal of Crystal Growth 198/199, 1365-1370. 7. A. Kogan, I. Popov, V. Uvarov, S. Cohen, A. Aserin, and N. Garti, (2008). Crystallization of carbamazepine pseudopolymorphs from nonionic microemulsions. Langmuir 24, 722-733. 8.Y. Feldman, N. Kozlovich, I.Nir, N. Garti, V. Archipov, Z. Idiyatullin, Y. Zuev, V. Fedotov, (1996) Mechanism of transport of charge carriers in the sodium bis(2-ethylhexyl) sulfosuccinate-water-decane microemulsion near the percolation temperature threshold. Journal of Physical Chemistry 100, 3745-3748. 9. F. Debuigne, J. Cuisenaire, L. Jeunieau, B. Masereel, and J. B. Nagy,(2001) Synthesis of nimesulide nanoparticles in the microemulsion epikuron170 / isopropyl myristate / water / n-butanol (or isopropanol). Journal of Colloid and Interface Science 243, 90-101. 10. M. Trotta, M. Gallarate, F. Pattarino, and S. Morel, (2003) Preparation of griseofulvin nanoparticles from water - dilutable microemulsion. International Journal of Pharmaceutics 254, 235-242. 11. C. Destree, and J. B. Nagy, (2006) Mechanism of formation of inorganic and organic nanoparticles from microemulsions. Advances in Colloid and Interface Science 123-126, 353-367. 12. R. Guo, L. Tianqing, and Y. Weili, (1999) Phase behavior and structure of the sodium dodecyl sulfate / benzyl alcohol / water system. Langmuir 15, 624-630. 13. P. Costa, J. Manuel, and S. Lobo, (2001) Modelling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences 13, 123-133. 14. H. Loth, and E. Hemgesberg, (1986) Properties and dissolution of drugs micronized by crystallization from supercritical gases. International Journal of Pharmaceutics 32, 265-267. 15. J. Kerc, S. Srcic, Z. Knez, and P. Sencar-Bozic, (1999) Micronization of drugs using supercritical carbon dioxide. International Journal of Pharmaceutics 182, 33-39. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43077 | - |
| dc.description.abstract | 針對難溶於水或生體利用率低的有機藥物而言,可以藉由微粒化這個直接又安全的方式,來增加藥物的表面積,以提高其在人體中的溶解速率,並達到提升生體利用率的功效。故本研究擬利用微乳液系統-改變溫度製程與溶劑擴散製程,來做有機藥物Mitotane、Glybenclamide (GBM)及Warfarin的微粒化作業。並進一步研究,在不同系統中,藉由系統組成的改變、操作條件與手法的改變或添加劑的加入等等,對於再結晶藥物晶貌與大小上的影響。
對於Mitotane而言,研究發現藉由water / butyl lactate / lecithin-ethanol / taurodeoxycholic acid sodium salt hydrate (TDC),oil in water (O/W)微乳液-溶劑擴散製程使藥物再結晶時,可以得到大小在1*0.4-3*2微米之間的產物(原藥大小50*30-200*80微米),經由溶解速率測試發現,在第五分鐘時,溶離比率比起原始藥物提升了4.81倍,同時溶解速率常數kW值也提高了7.54倍。此外也完成了water / benzyl alcohol / sodium dodecyl sulfate (SDS)三成分系統在不同溫度下(10oC-60oC)的三相圖,並同時發現利用此(O/W)微乳液-改變溫度製程或溶劑擴散製程使藥物再結晶時,可以藉由改變微乳液組成,提高界面活性劑SDS的濃度來使再結晶藥物的晶貌從柱狀轉變為塊狀。 對於Glybenclamide (GBM)而言,研究發現藉由cyclohexane / dimethyl sulfoxide (DMSO) / dioctyl sulfosuccinate sodium salt (AOT),water in oil (W/O)逆微乳液-改變溫度製程使藥物再結晶時,可以得到0.3*0.2-1*1微米之間的產物(其中300nm-500nm的佔大多數)(原藥大小15*10-100*70微米),經由溶解速率測試發現,在第五分鐘時,溶離比率比起原始藥物提升了6.51倍,同時溶解速率常數kW值也提高了10.01倍。此外也發現,在反溶劑製程中,藉由添加劑Tw80的加入,可以明顯提高微粒化的效果。 對於Warfarin而言,研究發現藉由water / benzyl alcohol / sodium dodecyl sulfate (SDS),(O/W)微乳液-改變溫度製程使藥物再結晶時,可以得到大部分為0.8*0.7-4*3微米之間的塊狀產物(有少部分較大柱狀存在) (原藥大小20*5-100*30微米),經由溶解速率測試發現,在第五分鐘時,溶離比率比起原始藥物提升了1.78倍,同時溶解速率常數kW值也提高了13.29倍。 | zh_TW |
| dc.description.abstract | For poor solubility in water or lower bioavailability organic drugs, micronization is one of the most direct and safe way to increase the surface area in order to enhance the dissolution rate and bioavailability of the drugs in body. So in this research, we want to us microemulsion system-temperature changing process and solvent diffusion process to micronize organic drugs of mitotane、Glybenclamide (GBM) and warfarin. Further, we want to research the effects of recrystalized drugs’ shape and size by changing system composition, operating conditions and adding extra addition.
For mitotane, we can get 1*0.4-3*2micrometer products by water / butyl lactate / lecithin-ethanol / taurodeoxycholic acid sodium salt hydrate (TDC), oil in water (O/W) microemulsion-solvent diffusion process (original drug:50*30-200*80 micrometer). By dissolution rate test, we find the dissolution rate of products increase 4.81 times at 5 mins and the dissolution rate coefficient (kW) increase 7.54 times. In addition, we finish the phase diagram of water / benzyl alcohol / sodium dodecyl sulfate (SDS) system at 10oC-60oC. And we find that when we use this (O/W) microemulsion-temperature changing process or solvent diffusion process to recrystalize the drugs, we can make the products’ shape change from needlelike to lump by changing system composition-increasing the concentration of surfactant SDS. For Glybenclamide (GBM), we can get 0.3*0.2-1*1 micrometer products (mostly in 300-500nm) by cyclohexane / dimethyl sulfoxide (DMSO) / dioctyl sulfosuccinate sodium salt (AOT), water in oil (W/O) microemulsion-temperature changing process(original drug:15*10-100*70 micrometer). By dissolution rate test, we find the dissolution rate of products increase 6.51 times at 5 mins and the dissolution rate coefficient (kW) increase 10.01 times. Furthermore, we find that in antisolvent process we can effectively decrease the particle size by adding extra material-Tw80. For warfarin, we can get mostly 0.8*0.7-4*3 micrometer products by water / benzyl alcohol / sodium dodecyl sulfate (SDS), (O/W) microemulsion-temperature changing process (original drug:20*5-100*30 micrometer). By dissolution rate test, we find the dissolution rate of products increase 1.78 times at 5 mins and the dissolution rate coefficient (kW) increase 13.29 times. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:35:48Z (GMT). No. of bitstreams: 1 ntu-98-R96524029-1.pdf: 12512654 bytes, checksum: 301f287bdb94ffb7252c571bab9552e9 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 致謝 II
摘要 III Abstract V 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 第二章 文獻回顧 4 2-1有機藥物微粒化之目的與重要性 4 2-2有機藥物微粒化之技術 4 2-3微乳液系統之再結晶技術 5 2-3-1藉由改變溫度的方式使藥物再結晶 6 2-3-2藉由溶劑擴散的方式使藥物再結晶 6 2-4利用微乳液系統合成奈米微粒的機制 7 2-5 water / benzyl alcohol / SDS 三相圖 8 2-6溶解速率測試 8 第三章 實驗設備及方法 13 3-1實驗藥品 13 3-1-1目標藥物 13 3-1-2其他藥品 14 3-2實驗方法與操作步驟 16 3-2-1不同溫度下water / benzyl alcohol / SDS三相圖量測 16 3-2-2藉由微乳液-改變溫度的製程使藥物再結晶 16 3-2-3藉由微乳液-溶劑擴散的製程使藥物再結晶 18 3-2-4藉由反溶劑製程使藥物再結晶 19 3-3實驗分析方法 20 3-3-1 SEM 20 3-3-2 XRD 20 3-3-3 DSC 21 3-3-4 Zetasizer Nano-ZS 21 3-3-5溶解速率測試 22 第四章 結果與討論 26 4-1不同溫度下water / benzyl alcohol / SDS三相圖量測 26 4-2 Mitotane的再結晶實驗 26 4-2-1藉由water / benzyl alcohol / SDS微乳液-改變溫度的製程使藥物再結晶 26 (a)微乳液組成的效應 27 (b)溫度的效應 27 4-2-2藉由water / benzyl alcohol / SDS微乳液-溶劑擴散的製程使藥物再結晶 28 (a)混和速度的效應 28 (b)微乳液組成的效應 28 (c)加水方式或添加水量的效應 29 (d)添加劑的效應 29 4-2-3藉由water / butyl lactate / lecithin-ethanol / TDC微乳液-溶劑擴散的製程使藥 29 4-2-4藉由反溶劑製程使藥物再結晶 30 (a)混和速度的效應 30 (b)添加劑的效應 30 4-2-5再結晶藥物之分析測試 31 4-3 GBM的再結晶實驗 32 4-3-1藉由cyclohexane / DMSO / AOT微乳液-改變溫度的製程使藥物再結晶 32 4-3-2藉由反溶劑製程使藥物再結晶 33 (a)反溶劑種類的效應 33 (b)藥物濃度的效應 34 (c)添加劑的效應 34 4-3-3再結晶藥物之分析測試 34 4-4 Wafarin的再結晶實驗 36 4-4-1藉由cyclohexane / DMSO / AOT微乳液-改變溫度的製程使藥物再結晶 36 4-4-2藉由water / benzyl alcohol / SDS微乳液-改變溫度的製程使藥物再結晶 36 4-4-3藉由反溶劑製程使藥物再結晶 36 4-4-4再結晶藥物之分析測試 36 第五章 結論 76 參考文獻 78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 溶劑擴散製程 | zh_TW |
| dc.subject | 微粒化 | zh_TW |
| dc.subject | 微乳液 | zh_TW |
| dc.subject | 反溶劑 | zh_TW |
| dc.subject | Mitotane | zh_TW |
| dc.subject | Glybenclamide | zh_TW |
| dc.subject | Warfarin | zh_TW |
| dc.subject | 改變溫度製程 | zh_TW |
| dc.subject | microemulsion | en |
| dc.subject | antisolvent | en |
| dc.subject | micronization | en |
| dc.subject | 溶劑擴散製程 | en |
| dc.subject | 改變溫度製程 | en |
| dc.subject | Warfarin | en |
| dc.subject | Glybenclamide | en |
| dc.subject | Mitotane | en |
| dc.title | 利用微乳液與反溶劑系統研究有機藥物之微粒化並探討系統組成對晶貌的影響 | zh_TW |
| dc.title | Micronization of Organic Drugs and Discussion of Shape Changes by Microemulsion and Antisolvent System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林析右,蔡瑞瑩,陳昱劭 | |
| dc.subject.keyword | 微粒化,微乳液,反溶劑,Mitotane,Glybenclamide,Warfarin,改變溫度製程,溶劑擴散製程, | zh_TW |
| dc.subject.keyword | micronization,microemulsion,antisolvent,Mitotane,Glybenclamide,Warfarin,改變溫度製程,溶劑擴散製程, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 12.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
