請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43074完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱樺 | |
| dc.contributor.author | Shih-Cheng Kang | en |
| dc.contributor.author | 康仕承 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:35:40Z | - |
| dc.date.available | 2009-07-20 | |
| dc.date.copyright | 2009-07-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-16 | |
| dc.identifier.citation | [1] S. S. Abhyankar and B. Kravitz, Two counterexamples in normalization, Porc. Amer. Soc. 135 (2007), 3521-3523.
[2] C. Chevally, Intersections of algebraic and algebroid varieties, Trans. Am. Math. Sec. 57 (1945), 1-85. [3] J. T. Knight, Commutative algebra, Cambridge [Eng.] University Press, 1942. [4] E. Kunz, Introduction to commutative algebra and algebraic geometry, Boston Birkhauser, 1980. [5] M. Nagata, Local rings, New York Interscience Publishers, 1962. [6] M. Nagata, Some remarks on local rings, Nagoya Math. J. 6 (1953), 53-58. [7] M. Nagata, Some remarks on local rings, II, Mem. Coll. Sci., Univ. Kyoyo 28 (1953-54), 109-120. [8] M. Nagata, A general theory of algebraic geometry over Dedekind domains, I, Am. J. Math. 78 (1956), 78-116. [9] M. Nagata, A general theory of algebraic geometry over Dedekind domains, II, Am. J. Math. 80 (1958), 382-420. [10] E. Noether, Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik p, Nachr. Ges. Wiss. Gottin, 1926, 28-35. [11] O. Zariski, Foundations of a general theory off birational correspondences, Trans. Am. Math. Soc. 53 (1943), 490-542. [12] O. Zariski and P. Samuel, Commutative algebra, Volume I, Graduate Texts in Mathematics 28, New York Springer-Verlag, 1958. [13] O. Zariski and P. Samuel, Commutative algebra, Volume II, Graduate Texts in Mathematics 28, New York Springer-Verlag, 1958 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43074 | - |
| dc.description.abstract | 在第一節,我們給了一些正規化定理的應用和它的幾何意義。另外,我們敘述了這篇論文各章節所有主要的結果。從第二節到第五節,我們討論基本的正規化定理和一些特殊版本。在第六節,我們給了冪級數環上的正規化定理。在第七節中,我們先給了三種 Weierstrass Proposition Theorem 的證明。其中一個為我們可操作的長除法證明;而另兩個可以得到更強的結果。最後,我們使用 Weierstrass Proposition Theorem 去重新證明第六節的正規化定理,並更進一步的,我們可以證明在收斂冪級數環上的正規化定理。 | zh_TW |
| dc.description.abstract | In Section 1, we give some applications of the normalization theorem and the geometric significance of the normalization theorem. Moreover, we state all main results among this paper. From Section 2 to Section 5, we discuss the basic normalization theorem and more special versions. In Section 6, we give the classical normalization theorem for power series rings. In Section 7, we give three proofs for Weierstrass Preparation Theorem. One of them is the long division algorithm and the others give us the stronger result. At last, we use the Weierstrass Preparation Theorem to reprove the normalization theorem for power series rings and for convergent power series rings. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:35:40Z (GMT). No. of bitstreams: 1 ntu-98-R96221034-1.pdf: 681703 bytes, checksum: cb05ab4d191735e8b48a2c4c57f84ee4 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書 (i)
誌謝 (ii) 中文摘要 (iii) 英文摘要 (iv) 1 Introduction (p1) 2 Normalization Theorem for Affine Domains (p4) 3 Normalization Theorem for Homogeneous Rings (9) 4 Finitely Generated Algebras over an Integral Domain (15) 5 Normalization Theorem for Finitely Separably Generated Algebras over Integral Domains (17) 6 Normalization Theorem for Power Series Rings (23) 7 Weierstrass Preparation Theorem (26) References (37) | |
| dc.language.iso | en | |
| dc.subject | 仿射環 | zh_TW |
| dc.subject | 維爾斯特拉斯預備定理 | zh_TW |
| dc.subject | 正規化引理 | zh_TW |
| dc.subject | 正規化定理 | zh_TW |
| dc.subject | 冪級數環 | zh_TW |
| dc.subject | 可離環 | zh_TW |
| dc.subject | power series ring | en |
| dc.subject | affine ring | en |
| dc.subject | Weierstrass Preparation Theorem | en |
| dc.subject | normalization lemma | en |
| dc.subject | normalization theorem | en |
| dc.subject | separable ring | en |
| dc.title | 仿射環與冪級數環上的正規化定理 | zh_TW |
| dc.title | On the Normalization Theorem for Affine Rings and Power Series Rings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡守仁,陳燕美 | |
| dc.subject.keyword | 正規化定理,正規化引理,維爾斯特拉斯預備定理,仿射環,冪級數環,可離環, | zh_TW |
| dc.subject.keyword | normalization theorem,normalization lemma,Weierstrass Preparation Theorem,affine ring,power series ring,separable ring, | en |
| dc.relation.page | 37 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 665.73 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
