請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43040完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃耀輝 | |
| dc.contributor.author | Huey-Wen Liang | en |
| dc.contributor.author | 梁蕙雯 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:34:04Z | - |
| dc.date.available | 2011-09-16 | |
| dc.date.copyright | 2009-09-16 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-20 | |
| dc.identifier.citation | 1. Aaras, A., Fostervold, K.I., Ro, O., Thoresen, M., and Larsen, S. (1997). Postural load during VDU work: a comparison between various work postures. Ergonomics 40, 1255-1268.
2. Anson, D., George, S., Galup, R., Shea, B., and Vetter, R. (2001). Efficiency of the Chubon versus the QWERTY keyboard. Assistive Technology 13, 40-45. 3. Arndt, R. (1983). Working posture and musculoskeletal problems of video display terminal operators--review and reappraisal. American Industrial Hygiene Association Journal 44, 437-446. 4. Balci, R., and Aghazadeh, F. (2003). The effect of work-rest schedules and type of task on the discomfort and performance of VDT users. Ergonomics 46, 455-465. 5. Bauer, W., and Wittig, T. (1998). Influence of screen and copy holder positions on head posture, muscle activity and user judgments. Applied Ergonomics 29, 185-192. 6. Berger, R.D., Akselrod, S., Gordon, D., and Cohen, R.J. (1986). An efficient algorithm for spectral analysis of heart rate variability. IEEE transactions on bio-medical engineering 33, 900-904. 7. Bergqvist, U., Wolgast, E., Nilsson, B., and Voss, M. (1995). Musculoskeletal disorders among visual display terminal workers: individual, ergonomic, and work organizational factors. Ergonomics 38, 763-776. 8. Bergqvist, U.O., Knave, B.G., Bergqvist, U.O., and Knave, B.G. (1994). Eye discomfort and work with visual display terminals. Scandinavian Journal of Work, Environment and Health 20, 27-33. 9. Bernard, B., Sauter, S., Fine, L., Petersen, M., and Hales, T. (1994). Job task and psychosocial risk factors for work-related musculoskeletal disorders among newspaper employees. Scandinavian Journal of Work, Environment and Health 20, 417-426. 10. Bernardi, L., Porta, C., and Sleight, P. (2006). Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: the importance of silence. Heart 92, 445-452. 11. Birch, L., Juul-Kristensen, B., Jensen, C., Finsen, L., and Christensen, H. (2000). Acute response to precision, time pressure and mental demand during simulated computer work. Scandinavian Journal of Work, Environment and Health 26, 299-305. 12. Bosman, E.A. (1993). Age-related differences in the motoric aspects of transcription typing skill. Psychology and Aging 8, 87-102. 13. Boucsein, W., and Thum, M. (1997). Design of work/rest schedules for computer work based on psychophysiological recovery measures. International Journal of Industrial Ergonomics 20, 51-57. 14. Brewer, S., Van Eerd, D., Amick, B.C., 3rd, Irvin, E., Daum, K.M., Gerr, F., Moore, J.S., Cullen, K., and Rempel, D. (2006). Workplace interventions to prevent musculoskeletal and visual symptoms and disorders among computer users: a systematic review. Journal of Occupational Rehabilitation 16, 325-358. 15. Burns, J.L., Labbe, E., Arke, B., Capeless, K., Cooksey, B., Steadman, A., and Gonzales, C. (2002). The effects of different types of music on perceived and physiological measures of stress. Journal of Music Therapy 39, 110-116. 16. Chang, C.H., Wang, J.D., Luh, J.J., and Hwang, Y.H. (2004). Development of a monitoring system for keyboard users' performance. Ergonomics 47, 1571-1581. 17. Chee, M.W., Weekes, B., Lee, K.M., Soon, C.S., Schreiber, A., Hoon, J.J., and Chee, M. (2000). Overlap and dissociation of semantic processing of Chinese characters, English words, and pictures: evidence from fMRI. Neuroimage 12, 392-403. 18. Cockerton, T., Moore, S., and Norman, D. (1997). Cognitive test performance and background music. Perceptual and Motor Skills 85, 1435-1438. 19. Demure, B., R.S., L., Bigelow, C., Ali, D., Mundt, K.A., and Liese, B. (2000). Video display terminal workstation improvement program: I. Baseline associations between musculoskeletal discomfort and ergonomic features of workstations. Journal of occupational and environmental medicine 42, 783-791. 20. Dennerlein, J.T., Diao, E., Mote, C.D., Jr., and Rempel, D.M. (1999). In vivo finger flexor tendon force while tapping on a keyswitch. Journal of Orthopaedic Research 17, 178-184. 21. Dennerlein, J.T., Mote, C.D., Jr., and Rempel, D.M. (1998). Control strategies for finger movement during touch-typing. The role of the extrinsic muscles during a keystroke. Experimental Brain Research 121, 1-6. 22. Dooley, A. (1981). NIOSH issues CRT guidelines. Computer world 15, 1-8. 23. Dowler, E., Kappes, B., Fenaughty, A., and Pemberton, G. (2001). Effects of neutral posture on muscle tension during computer use. International Journal of Occupational Safety and Ergonomics 7, 61-78. 24. Edworthy, J., and Waring, H. (2006). The effects of music tempo and loudness level on treadmill exercise. Ergonomics 49, 1597-1610. 25. Eliakim, M., Meckel, Y., Nemet, D., and Eliakim, A. (2007). The effect of music during warm-up on consecutive anaerobic performance in elite adolescent volleyball players. International Journal of Sports Medicine 28, 321-325. 26. Faucett, J., and Rempel, D. (1996). Musculoskeletal symptoms related to video display terminal use. An analysis of objective and subjective exposure estimates. American Association of Occupational Health Nurses Journal 44, 33-49. 27. Fenety, A., and Walker, J.M. (2002). Short-term effects of workstation exercise on musculoskeletal discomfort and posture in seated video display unit workers. Physical Therapy 82, 578-579. 28. Fernström, E., Ericson, M.O., and Malker, H. (1994). Electromyographic activity during typewriter and keyboard use. Ergonomics 37, 477-484. 29. Finsen, L., Sogaard, K., Jensen, C., Borg, V., and Christensen, H. (2001). Muscle activity and cardiovascular response during computer-mouse work with and without memory demands. Ergonomics 44, 1312-1329. 30. Flanders, M., and Soechting, J.F. (1992). Kinematics of typing: parallel control of the two hands. Journal of Neurophysiology 67, 1264-1274. 31. Floru, R., Cail, F., and Elias, R. (1985). Psychophysiological changes during a VDU repetitive task. Ergonomics 28, 1455-1468. 32. Fontaine, C.W., and Schwalm, N.D. (1979). Effects of familiarity of music on vigilant performance. Perceptual and Motor Skills 49, 71-74. 33. Galinsky, T.L., Swaen, G.M., Sauter, S.L., Hurrell, J.J., and Schleifer, L.M. (2000). A field study of supplementary rest breaks for data-entry operators. Ergonomics 43, 622-638. 34. Gao, C., Lu, D., and She, Q. (1990). The effects of VDT data entry work on operators. Ergonomics 33, 917-924. 35. Genaidy, A.M., and al-Rayes, S. (1993). A psychophysical approach to determine the frequency and duration of work-rest schedules for manual handling operations. Ergonomics 36, 509-518. 36. Gerard, M.J., Armstrong, T.J., Foulke, J.A., and Martin, B.J. (1996). Effects of key stiffness on force and the development of fatigue while typing. American Industrial Hygiene Association Journal 57, 849-854. 37. Gerard, M.J., Armstrong, T.J., Franzblau, A., Martin, B.J., and Rempel, D.M. (1999). The effects of keyswitch stiffness on typing force, finger electromyography, and subjective discomfort. American Industrial Hygiene Association Journal 60, 762-769. 38. Gerard, M.J., Armstrong, T.J., Martin, B.J., and Rampel, D.A. (2002). The effects of work pace on within-participant and between-participant keying force, electromyography, and fatigue. Human Factors 44, 51-61. 39. Gobba, F.M., Broglia, A., Sarti, R., Luberto, F., Cavalleri, A., Gobba, F.M., Broglia, A., Sarti, R., Luberto, F., and Cavalleri, A. (1988). Visual fatigue in video display terminal operators: objective measure and relation to environmental conditions. International Archives of Occupational and Environmental Health 60, 81-87. 40. Gordon, A.M., and Soechting, J.F. (1995). Use of tactile afferent information in sequential finger movements. Experimental Brain Research 107, 281-292. 41. Grandjean, E., Hunting, W., and Pidermann, M. (1983). VDT workstation design: preferred settings and their effects. Human Factors 25, 161-175. 42. Hansen, A.L., Johnsen, B.H., and Thayer, J.F. (2003). Vagal influence on working memory and attention. International journal of psychophysiology 48. 43. Hayakawa, Y., Miki, H., Takada, K., and Tanaka, K. (2000). Effects of music on mood during bench stepping exercise. Perceptual and Motor Skills 90, 307-314. 44. Heath, R.A., and Willcox, C.H. (1990). A stochastic model for inter-keypress times in a typing task. Acta Psychologica 75, 13-39. 45. Henning, R.A., Jacques, P., Kissel, G.V., Sullivan, A.B., and Alteras-Webb, S.M. (1997). Frequent short rest breaks from computer work: effects on productivity and well-being at two field sites. Ergonomics 40, 78-91. 46. Higuchi, S., Motohashi, Y., Liu, Y., Ahara, M., and Kaneko, Y. (2003). Effects of VDT tasks with a bright display at night on melatonin, core temperature, heart rate, and sleepiness. Journal of Applied Physiology 94, 1773-1776. 47. Hirokawa, E. (2004). Effects of music listening and relaxation instructions on arousal changes and the working memory task in older adults. Journal of Music Therapy 41, 107-127. 48. Homan, M.M., and Armstrong, T.J. (2003). Evaluation of three methodologies for assessing work activity during computer use. AIHA Journal: a Journal for the Science of Occupational and Environmental Health and Safety 64, 48-55. 49. Hwang, Y.H., Wang, C.H., Liang, H.W., and Luh, J.J. (2009). Validation of a recording system for computer pointing device activity. International Journal of Industrial Ergonomics. 50. Iwanaga, M., Kobayashi, A., and Kawasaki, C. (2005). Heart rate variability with repetitive exposure to music. Biological Psychology 70, 61-66. 51. Iwanaga, M., and Tsukamoto, M. (1997). Effects of excitative and sedative music on subjective and physiological relaxation. Perceptual and Motor Skills 85, 287-296. 52. Jensen, C., Borg, V., Finsen, L., Hansen, K., Juul-Kristensen, B., and Christensen, H. (1998). Job demands, muscle activity and musculoskeletal symptoms in relation to work with the computer mouse. Scandinavian Journal of Work, Environment and Health 24, 418-424. 53. Kaida, K., Akerstedt, T., Kecklund, G., Nilsson, J.P., and Axelsson, J. (2007). Use of subjective and physiological indicators of sleepiness to predict performance during a vigilance task. Industrial Health 45, 520-526. 54. Karageorghis, C.L., and Terry, P.C. (1997). The psychophysiological effect of music in sport and exercise: a review. Journal of Sport Behavior 20, 54-68. 55. Karlqvist, L.K., Bernmark, E., Ekenvall, L., Hagberg, M., Isaksson, A., and Rosto, T. (1998). Computer mouse position as a determinant of posture, muscular load and perceived exertion. Scandinavian Journal of Work, Environment and Health 24, 62-73. 56. Kimura, M., Sato, H., Ochi, M., Hosoya, S., and Sadoyama, T. (2007). Electromyogram and perceived fatigue changes in the trapezius muscle during typewriting and recovery. European Journal of Applied Physiology 100, 89-96. 57. Kleine, B.U., Schumann, N.P., Bradl, I., Grieshaber, R., and Scholle, H.C. (1999). Surface EMG of shoulder and back muscles and posture analysis in secretaries typing at visual display units. International Archives of Occupational and Environmental Health 72, 387-394. 58. Kohler, M., Pavy, A., and van den Heuvel, C. (2006). The effects of chewing versus caffeine on alertness, cognitive performance and cardiac autonomic activity during sleep deprivation. Journal of Sleep Research 15, 385-368. 59. Kohlisch, O., and Schaefer, F. (1996). Physiological changes during computer tasks: responses to mental load or to motor demands? Ergonomics 39, 213-224. 60. Kopardekar, P., and Mital, A. (1994). The effect of different work-rest schedules on fatigue and performance of a simulated directory assistance operator's task. Ergonomics 37, 1697-1707. 61. Kurimoto, S., Iwasaki, T., Nomura, T., Noro, K., Yamamoto, S., Kurimoto, S., Iwasaki, T., Nomura, T., Noro, K., and Yamamoto, S. (1983). Influence of VDT (visual display terminals) work on eye accommodation. Journal of UOEH 5, 101-110. 62. Lassen, C.F., Mikkelsen, S., Kryger, A.I., Brandt, L.P., Overgaard, E., Thomsen, J.F., Vilstrup, I., and Andersen, J.H. (2004). Elbow and wrist/hand symptoms among 6,943 computer operators: a 1-year follow-up study (the NUDATA study). American Journal of Industrial Medicine 46, 521-533. 63. Laursen, B., Jensen, B.R., Garde, A.H., and Jorgensen, A.H. (2002). Effect of mental and physical demands on muscular activity during the use of a computer mouse and a keyboard. Scandinavian Journal of Work, Environment and Health 28, 215-221. 64. Liang, H.W., Hwang, Y.H., and Chang, F.H. (2008). Temporal change in bimanual interkeypress intervals and self-reported symptoms during continuous typing. Journal of Occupational Rehabilitation 18, 319-325. 65. Lin, M.I., Liang, H.W., Lin, K.H., and Hwang, Y.H. (2004). Electromyographical assessment on muscular fatigue--an elaboration upon repetitive typing activity. Journal Article] Journal of Electromyography and Kinesiology 14, 661-669. 66. Liu, I.M., Zhu, Y., and Wu, J.T. (1992). The long-term modality effect: in search of differences in processing logographs and alphabetic words. Cognition 43, 31-66. 67. Long, C., Nimmo-Smith, I., and Whitefiled, A. (1983). Skilled typing: a characterization based on the distribution of times between responses. In Cognitive aspects of skilled typewriting, W.E. Cooper, ed. (New York, Springer-Verlag), pp. 145-195. 68. Lundberg, U., Kadefors, R., Meline, B., Palmerud, G., Hassmén, P., Engström, M., and Elfsberg Dohns, I. (1994). Psychophysiological stress and EMG activity of the trapezius muscle. International journal of behavioral medicine 1, 354-370. 69. Lundberg, U., Melin, B., Evans, G.W., and Holmberg, L. (1993). Physiological deactivation after two contrasting tasks at a video display terminal: learning vs repetitive data entry. Ergonomics 36, 601-611. 70. Macone, D., Baldari, C., Zelli, A., and Guidetti, L. (2006). Music and physical activity in psychological well-being. Perceptual and Motor Skills 103, 285-295. 71. McLean, L., Tingley, M., Scott, R.N., and Richards, J. (2001). Computer terminal work and the benefit of microbreaks. Applied Ergonomics 32, 225-237. 72. Moffet, H., Hagberg, M., Hansson-Risberg, E., and Karlqvist, L. (2002). Influence of laptop computer design and working position on physical exposure variables. Clinical Biomechanics 17, 368-375. 73. Murata, K., Araki, S., Okajima, F., and Saito, Y. (1996). Subclinical impairment in the median nerve across the carpal tunnel among female VDT operators. International Archives of Occupational and Environmental Health 68, 75-79. 74. Nakazawa, T., Okubo, Y., Suwazono, Y., Kobayashi, E., Komine, S., Kato, N., and Nogawa, K. (2002). Association between duration of daily VDT use and subjective symptoms. American Journal of Industrial Medicine 42, 421-426. 75. National Institute for Occupational Safety and Health (1997). Musculoskeletal disorders and workplace factors; A critical review of epidemiologic evidence for work-related musculoskeletal disorders of the neck, upper extremity, and low back (Cincinnati, USA, U.S. Department of Health and Human Services). 76. Norman, D.A., and Rumethart, D.E. (1983). Studies of typing from the LNR research group. In Cognitive aspects of skilled typewriting, W.E. Cooper, ed. (New York, Springer-Verlag), pp. 45-65. 77. Nussbaum, M.A., Clark, L.L., Lanza, M.A., and Rice, K.M. (2001). Fatigue and endurance limits during intermittent overhead work. AIHAJ 62, 446-456. 78. Nyman, K.G., Knave, B.G., Voss, M., Nyman, K.G., Knave, B.G., and Voss, M. (1985). Work with video display terminals among office employees. IV. Refraction, accommodation, convergence and binocular vision. Scandinavian Journal of Work, Environment and Health 11, 483-487. 79. Östbert, O., ed. (1980). Accommodations and visual fatigue in display work (London, Taylor & Francis). 80. Rempel, D., Dennerlein, J.T., Mote, C.D., Jr., and Armstrong, T. (1994). A method of measuring fingertip loading during keyboard use. Journal of biomechanics 27, 1101-1104. 81. Rosa, R.R., Bonnet, M.H., and Cole, L.L. (1998). Work schedule and task factors in upper-extremity fatigue. Human Factors 40, 150-158. 82. Saito, S., Miyao, M., Kondo, T., Sakakibara, H., and Toyoshima, H. (1997). Ergonomic evaluation of working posture of VDT operation using personal computer with flat panel display. Industrial Health 35, 264-270. 83. Salthouse, T.A. (1986). Perceptual, cognitive, and motoric aspects of transcription typing. Psychological Bulletin 99, 303-319. 84. Sammler, D., Grigutsch, M., Fritz, T., and Koelsch, S. (2007). Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 44, 293-304. 85. Sauter, S.L., Schleifer, L.M., and Knutson, S.J. (1991). Work posture, workstation design, and musculoskeletal discomfort in a VDT data entry task. Human Factors 33, 151-167. 86. Schleifer, L.M., and Okogbaa, O.G. (1990). System response time and method of pay: cardiovascular stress effects in computer-based tasks. Ergonomics 33, 1495-1509. 87. Seghers, J., Jochem, A., and Spaepen, A. (2003). Posture, muscle activity and muscle fatigue in prolonged VDT work at different screen height settings. Ergonomics 46, 714-730. 88. Simoneau, G.G., Marklin, R.W., and Berman, J.E. (2003). Effect of computer keyboard slope on wrist position and forearm electromyography of typists without musculoskeletal disorders. Physical Therapy 83, 816-830. 89. Sundelin, G. (1989). The effects of different pause types on neck and shoulder EMG activity during VDU work. Ergonomics 32, 527-537. 90. Tan, L.H., Liu, H.L., Perfetti, C.A., Spinks, J.A., Fox, P.T., Gao, J.H., Tan, L.H., Liu, H.L., Perfetti, C.A., Spinks, J.A., et al. (2001). The neural system underlying Chinese logograph reading. Neuroimage 13, 836-846. 91. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043-1065. 92. Thomson, W.D. (1998). Eye problems and visual display terminals--the facts and the fallacies. Ophthalmic and Physiological Optics 18, 111-119. 93. Turville, K.L., Psihogios, J.P., Ulmer, T.R., and Mirka, G.A. (1998). The effects of video display terminal height on the operator: a comparison of the 15 degree and 40 degree recommendations. Applied Ergonomics 29, 239-246. 94. Uchino, M., Schaumberg, D.A., Dogru, M., Uchino, Y., Fukagawa, K., Shimmura, S., Satoh, T., Takebayashi, T., Tsubota, K., Uchino, M., et al. (2008). Prevalence of dry eye disease among Japanese visual display terminal users. Ophthalmology 115, 1982-1988. 95. van den Heuvel, S.G., de Looze, M.P., Hildebrandt, V.H., and The, K.H. (2003). Effects of software programs stimulating regular breaks and exercises on work-related neck and upper-limb disorders. Scandinavian Journal of Work, Environment and Health 29, 106-116. 96. van den Heuvel, S.G., Ijmker, S., Blatter, B.M., and de Korte, E.M. (2007). Loss of productivity due to neck/shoulder symptoms and hand/arm symptoms: results from the PROMO-study. Journal of Occupational Rehabilitation 17, 370-382. 97. Vanderark, S.D., and Ely, D. (1994). University biology and music majors' emotional ratings of musical stimuli and their physiological correlates of heart rate, finger temperature, and blood pressure. Perceptual and Motor Skills 79, 1391-1397. 98. Villanueva, M.B., Jonai, H., and Saito, S. (1998). Ergonomic aspects of portable personal computers with flat panel displays (PC-FPDs): evaluation of posture, muscle activities, discomfort and performance. Industrial Health 363, 282-289. 99. Villanueva, M.B., Jonai, H., Sotoyama, M., Hisanaga, N., Takeuchi, Y., and Saito, S. (1997). Sitting posture and neck and shoulder muscle activities at different screen height settings of the visual display terminal. Industrial Health 35, 330-336. 100. Vincent, A., Craik, F.I.M., and Furedy, J.J. (1996). Relations among memory performance, mental workload and cardiovascular responses. International journal of psychophysiology 23, 181-198. 101. Visser, B., De Looze, M., De Graaff, M., and Van Dieen, J. (2004). Effects of precision demands and mental pressure on muscle activation and hand forces in computer mouse tasks. Ergonomics 47, 202-217. 102. Waersted, M., Bjorklund, R.A., and Westgaard, R.H. (1991). Shoulder muscle tension induced by two VDU-based tasks of different complexity. Ergonomics 34, 137-150. 103. Wahlström, J., Hagberg, M., Johnson, P.W., Svensson, J., and Rempel, D. (2002). Influence of time pressure and verbal provocation on physiological and psychological reactions during work with a computer mouse. European Journal of Applied Physiology 87, 257-263. 104. Weber, A., Fussler, C., O'Hanlon, J.F., Gierer, R., and Grandjean, E. (1980). Psychophysiological effects of repetitive tasks. Ergonomics 23, 1033-1046. 105. Welch, P.D. (1967). The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics 15, 70-73. 106. Wu, C., and Liu, Y. (2008). Queuing Network Modeling of Transcription Typing. ACM Transactions on Computer Human Interaction 15, 6:1-45. 107. Yamamoto, T., Ohkuwa, T., Itoh, H., Kitoh, M., Terasawa, J., Tsuda, T., Kitagawa, S., and Sato, Y. (2003). Effects of pre-exercise listening to slow and fast rhythm music on supramaximal cycle performance and selected metabolic variables. Archives of Physiology and Biochemistry 111, 211-214. 108. Yamashita, S., Iwai, K., Akimoto, T., Sugawara, J., and Kono, I. (2006). Effects of music during exercise on RPE, heart rate and the autonomic nervous system. Journal of Sports Medicine and Physical Fitness 46, 425-430. 109. Ye, Z., Honda, S., Abe, Y., Kusano, Y., Takamura, N., Imamura, Y., Eida, K., Takemoto, T., Aoyagi, K., Ye, Z., et al. (2007). Influence of work duration or physical symptoms on mental health among Japanese visual display terminal users. Industrial Health 45, 328-333. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43040 | - |
| dc.description.abstract | 電腦是現代人工作與生活中不可或缺的工具,在電腦應用普遍的同時,長時間使用是否會造成健康危害更加值得重視。打字是使用電腦時重要的活動之一,過去針對繕打(transcription typing)的研究顯示,它牽涉到視覺接收、大腦訊息處理、動作計畫、以及轉換成快速的兩側手指活動等複雜過程,如此高重複性、且常常持續數小時的活動,很可能造成相當的生理心理負荷。
針對從事電腦作業的生理負荷,過去的研究包括使用表面肌電圖,測量上肢與斜方肌的疲勞狀況;而壓力或情緒方面的負荷,則有部分研究使用心跳、心跳變異率( heart rate variability, HRV)、腦波、尿液中的腎上腺素、或者electrodermal activity (EDA)等方法來了解受試者的壓力或疲勞狀況。這些關於重複性活動或資料輸入的研究結果並不一致,部分研究認為這些活動可能引起心理疲勞、大腦皮質覺醒減少,而使資料輸入時的工作表現隨時間而降低;另一些研究則認為為了能夠維持專注,反而可能由心跳變異率的改變反映出心理壓力。上述的生理心理變化,可能直接或間接造成打字者的健康效應。綜觀過去研究,少有針對使用電討鍵盤連續繕打之報告,若能利用不同評估工具,探討電腦作業時疲勞發生的時序性與影響因子,將有助於建立以實證為基礎的安全衛生指引,給予電腦工作者適切的建議。 本研究之目的在於探討觀察使用電腦鍵盤連續繕打過程中,以電子活動監測軟體所測得之擊鍵間隔變化能否反映打字者工作表現變化或疲勞之發生,並與其他工具之評估結果相互比對,包括:自覺症狀、打字表現(打字軟體測得之字數)、心跳以及心跳變異率。此外,並探討電腦使用者常見的習慣¬--聆聽音樂—對於打字中生理反應與打字表現之影響。 第一個子研究中,24位受試者進行連續三段30分鐘的英文打字,利用電子活動監測軟體紀錄其過程中雙手擊鍵間隔的變化,並探討其影響因子。研究結果發現,左右手之擊鍵間隔在過程中有不同的變化趨勢,左手的擊鍵間隔隨時間逐漸延長,在每次三十分鐘的初始的第三個十分鐘有較長的擊鍵間隔 (β=3.4, p<0.0001),且右手的擊鍵間隔在最後的十分鐘有明顯縮短 (β=-3.7, p<0.01),顯示左右手在打字過程中可能有不同的疲勞傾向。 第二個子研究比較使用不同中文打輸入法打字的差異,以方便取樣法選取十六位自願者,九位使用微軟新注音輸入中文,七位使用嘸蝦米輸入中文,兩組英文打字速度相近,以重複測量方式,分別觀察使用英文及中文連續繕打三十分鐘之手部動作表現,分析使用的鍵分布頻率,以及雙手與各手指的使用頻率,並且利用GEE統計模式分析重覆測量之數據,了解不同打字法以及中英文打字等因素對於擊鍵間隔的影響。結果發現,兩種中文輸入法的左右手使用頻率較英文打字法平均,微軟新注音使用較多的數字排(number row);GEE分析結果顯示,使用嘸蝦米打字法,擊鍵間隔最短 (β=-26.3, p<0.0001),英文打字則較中文打字有較長的擊鍵間隔 (β=16.5, p<0.0001)。 第三個子研究觀察連續英文繕打九十分鐘時,四十三位受試者心跳與心跳變異率隨時間的變化,並隨機分配受試者於打字時聽音樂與否,比較兩組之打字表現、自覺疲勞、心跳以及心跳變異率的差異;結果顯示,聽音樂與否並不影響整體打字速度或自覺疲勞;心跳變異率(lnHF與SDNN)分別在打字活動前40與20分鐘減少,而心跳在前六十分鐘高於後三十分鐘。此外,聽音樂組的心跳變異率(lnHF與SDNN)也顯著較低,不過若是原有聽音樂習慣,則聽音樂不影響心跳變異率。此結果顯示,打字為一智能活動,會造成心理壓力、且表現在心跳變異率的降低,與過去研究相符,然而,受試者在持續40分鐘以上的打字活動,疲勞產生,心跳變異率回昇、心跳變慢。本研究顯示聽音樂並不影響打字表現與自覺症狀,但減少心跳變異率,暗示可能的覺醒或壓力效應,然而,習慣聽音樂者並不受影響。 總結,連續九十分鐘的電腦鍵盤繕打可能造成心理與生理的負荷,擊鍵間隔的分析顯示左右手變化的明顯差異;而不同的中英文輸入法影響受試者的擊鍵間隔以及各個位置或不同手指的擊鍵頻率;心跳變異率與心跳的改變顯示連續打字為一智能活動,但超過四十分鐘就可能產生疲勞;聽音樂可能減低心跳變異率,對受試者產生警醒或壓力效果,但在習慣聽音樂者則無此效應。上述研究結果有助於研究者更清楚不同打字狀況下的生理反應以及影響因子,對於探討電腦工作者的健康危害與制定安全衛生指引,提供重要的科學證據。 | zh_TW |
| dc.description.abstract | Computers are widely used for working and recreation in modern life and the related health hazards are of concerns since a great number of population are exposed to long-term computer operation in workplaces and daily living. Transcription typing is one of the important parts of computer tasks and involves complex visual perception, information processing, motor planning and fast motor execution by fingers. Sustained typing should therefore attribute to psychophysiological loading to the individuals.
For the physical loading during continuous working with computers, many researches applied surface electromyography to investigate the muscular fatigue of trapezius and other muscles at upper limbs. Meanwhile, for the psychological or mental response, several measures have been used for repetitive or data entry tasks, including heart rate, heart rate variability, electroencephalography (EEG), urinary adrenaline and electrodermal activity. Nevertheless, these aforementioned studies showed inconsistent results. Some studies demonstrated deteriorated work performance with time, suggesting accumulating mental fatigue and reduced cerebral arousal after prolonged data entry tasks. In contrast, other studies found that computer tasks required sustained attention and were associated psychological stress as other mental-demanding tasks. The psychophysiological response was reflected by the increased heart rate and reduced heart rate variability. The above findings implied that sustained computer work would combine the characteristics of vigilance tasks and repetitive ones, and the psychophysiological changes over time should reveal both decrement in the arousal level and compensatory adjustment to the job demands. Moreover, the above psychophysiological response could cause health hazards. It is therefore important to describe the temporal change and investigate the determinants, in order to provide evidence-based strategies for health promotion for the computer users. The goal of the current research was to explore whether the parameters recorded by the electronic activity monitoring software are applicable to reflect the temporal change of work productivity or development of fatigue during continuous transcription typing with computer keyboards. The relationship between these parameters and other measurements, such as self-reported symptoms, typing words, heart rate and heart rate variability, were also investigated. Besides, we investigated the effect of a common habit, music listening, on typing performance and the psychophyioslogical measures. In the first study, 24 subjects typed English for 90 minutes with one-minute break between every two consecutive 30-minute sessions. IKIs were computed and analyzed for each hand and the influence of personal and typing-related factors was explored. The results showed a different trend of IKIs for both hands, that is, IKIs of left hand would prolong as the task continued and IKIs in the third 10-minute period of every 30-minute session was prolonged (β=3.4, p<0.0001). Besides, a significant shortening of right-hand IKIs in the last 10-minute period (β=-3.7, p<0.01) was consistent with the rebound phenomenon found by previous studies. Different motor loading and dexterity of two hands would likely contribute to the different trend of change. The utility and typing characteristics of two Chinese-input methods by keyboards were investigated in the second study. A convenient sample of 16 subjects with similar English-typing speed was enrolled. They used either Boshiamy (7 subjects) or Microsoft New Phonetic method (9 subjects) for typing Chinese. All the subjects typed English and Chinese for 30 minutes respectively in two occasions of tests. IKIs and key frequency according to fingers and keyboard positions were analyzed by generalized estimating equations (GEE) method. The results showed that Chinese-typing with either method had a more equalized hand loading than English-typing which presented a higher left-hand loading. Microsoft New Phonetic used more keys at number row than Boshiamy and English-typing. GEE analysis showed that transcription typing with English are associated with longer IKIs than Chinese typing (β=16.5, p<0.0001), and typing with Boshiamy had significantly shorter IKIs than the other two methods (β=-26.3, p<0.0001). The third study observed the change of heart rate and heart rate variability (HRV) during a continuous English-typing for 90 minutes. 43 conveniently sampled participants were randomized into two groups with music listening or none during typing. The results showed that music and no-music groups had similar overall typing speed and self-perceived fatigue. LnHF (natural logarism of high frequency) and standard deviation of heart rate (SDNN) were reduced in the first 40 and 20 minutes of typing and heart rate in the first one hour was significantly higher than that at the late 30 minutes. Music listening was also associated with a reduced HRV (lnHF and SDNN). Nevertheless, there was no reduction of HRV when the subjects had the habit of music-listening in music group. The results support that typing is a mental task and associated with psychophysiological stress, which is reflected by reduced heart rate variability and increased heart rate. However, after 40-minute typing task, heart rate variability increases and heart rate slows down, which implies the effect of mental fatigue. Music-listening do not influence typing performance and self-perceived fatigue, but might still impose an arousal or strain effect, which is dependent on the habit of music-listening. In conclusion, sustained transcription typing with computer keyboards for 90 minutes may cause psychophysiological loading. The discriminating temporal change in typing performance of two hands is well documented by the analysis in IKIs. Different input methods also influence the hand loading and IKIs. The reduction in HRV and increase in heart rate supports that typing is a mental task, but mental fatigue develops after 40 minutes. Music listening is associated with reduced HRV and brings arousal or strain effect, but the effect is not seen among subjects with habit of music listening during typing. Our results clarify the psychophysiological change during transcription typing and the determinants of the above change. They provide important evidence for further research on the health effect and the development of preventive strategies for computer-related health hazards. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:34:04Z (GMT). No. of bitstreams: 1 ntu-98-D94841008-1.pdf: 2313850 bytes, checksum: aa9175d4606fe714366ad5cd2526c6b1 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員審定書 .......................................i
誌謝 ................................................ ii 摘要 ................................................ iii 目錄 .................................................ix 圖目錄 .............................................. xiii 表目錄 ...............................................xiv Chapter 1. Introduction ............................................ 1 1.1 Musculoskeletal disorders and computer tasks ........ 1 1.2 Eye symptoms in computer users ...................... 2 1.3 Ergonomic risk factors related to computer operation ............................................... 4 1.3.1 Posture ........................................... 4 1.3.2 Duration .......................................... 5 1.3.3 Intensity or work pace ............................ 5 1.3.4 Force ............................................. 6 1.3.5 Precision ......................................... 6 1.3.6 Mental demand ..................................... 6 1.4 Perceptive, cognitive and motoric aspects of transcription typing .................................... 8 1.4.1 Basic phenomena of transcription typing ........... 8 1.4.2 Kinematics and kinetics of keystrokes ............ 13 1.5 Psychophysiological stress and fatigue during computer works .................................................. 16 1.6 Heart rate variability ............................. 28 1.7 Music, heart rate variability and typing ........... 32 1.8 Electronic activity monitoring as exposure assessment tool for VDT tasks ..................................... 36 1.9 Chinese Input Methods .............................. 43 Chapter 2. Study Goals and Hypothesis .................. 46 2.1 Hypothesis of the study ............................ 46 2.2 Study Goals ........................................ 46 Chapter 3. Subjects and Methods ........................ 48 3.1 Temporal change in bimanual interkeypress intervals and self-reported symptoms during continuous typing .... 48 3.1.1 Subjects ......................................... 48 3.1.2 Workstation ...................................... 50 3.1.3 Typing task ...................................... 51 3.1.4 Outcome .......................................... 52 3.1.5 Statistical analysis ............................. 53 3.2 Comparison of utility and users’ typing performance of different input methods ............................. 55 3.2.1 Subjects ......................................... 55 3.2.2 Workstation ...................................... 57 3.2.3 Typing task ...................................... 57 3.2.4 Outcome .......................................... 57 3.2.5 Statistical analysis ............................. 57 3.3 Influence of background music on heart rate variability during continuous typing, a randomized study ....................................... 59 3.3.1 Subjects ......................................... 59 3.3.2 Workstation ...................................... 61 3.3.3 Typing task ...................................... 61 3.3.4 Continuous Holter monitoring ..................... 61 3.3.5 Other Outcomes ................................... 62 3.3.6 Statistical analysis ............................. 63 Chapter 4. Results and Discussion ...................... 64 4.1 Temporal change in bimanual interkeypress intervals and self-reported symptoms during continuous typing ............................... 64 4.1.1 Results .......................................... 64 4.1.1.1 Keystroke parameters ........................... 64 4.1.1.2 The changes of self-reporting symptoms and typing parameters ............................................. 68 4.1.2 Discussion ....................................... 74 4.1.2.1 Major findings ................................. 74 4.1.2.2 Discussion ..................................... 74 4.1.2.3 Limitations .................................... 77 4.1.2.4 Implications and perspective ................... 78 4.2 Comparison of utility and users’ typing performance of different input methods ............................. 79 4.2.1 Results .......................................... 79 4.2.1.1 Distribution of keystroke frequency ............ 79 4.2.1.2 Comparison of IKIs ..............................82 4.2.1.3 The determinants of IKIs ....................... 83 4.2.2 Discussion ....................................... 85 4.2.2.1 Major findings ................................. 85 4.2.2.2 Evaluation of utility for different input methods ................................................ 85 4.2.2.3 Comparison of Chinese- and English-typing ...... 87 4.2.2.4 Comparison of Chinese-typing with Microsoft New Phonetic and Boshiamy....................................88 4.2.2.5 Other determinants of IKIs ..................... 90 4.2.2.6 Limitations of the study ....................... 90 4.2.2.7 Ergonomic implication and future research ...... 91 4.3 Influence of background music on heart rate variability during continuous typing, a randomized study ....................................... 92 4.3.1 Results .......................................... 92 4.3.1.1 Self-reported symptoms and typing performance .. 92 4.3.1.2 Changes of heart rate and heart variability ............................................ 95 4.3.2 Discussion ...................................... 100 4.3.2.1 Major findings ................................ 100 4.3.2.2 Fluctuations of heart rate and heart rate variability during typing ............................. 100 4.2.3.3 Typing performance and heart variability ...... 101 4.3.2.4 Music listening, self-reported symptoms and heart rate variability ...................................... 102 4.3.2.5 Study limitation .............................. 103 4.3.2.6 Implication and perspective ....................104 Chapter 5. Conclusion and Future Implication .......... 105 Reference ............................................. 108 Appendix 1. Liang Huey-Wen, Hwang Yaw-Huei*, Chang Fu-Han. Temporal change in bimanual interkeypress intervals and self-reported symptoms during continuous typing. Journal of Occupational Rehabilitation.2008;18(4): 319-25. 2. Liang Huey-Wen, Hwang Yaw-Huei*, Chang Fu-Han. Comparison of utility and users’ typing performance of different input methods. Ergonomics. (Accepted) 3. Liang Huey-Wen, Hwang Yaw-Huei*, Lin Lian-Yu, Su Ta-Chen. Influence of background music on heart rate variability during continuous typing: a randomized study. (Under review by Ergonomics) | |
| dc.language.iso | en | |
| dc.subject | 職業醫學 | zh_TW |
| dc.subject | 打字 | zh_TW |
| dc.subject | 電腦 | zh_TW |
| dc.subject | 暴露評估 | zh_TW |
| dc.subject | 音樂 | zh_TW |
| dc.subject | 疲勞 | zh_TW |
| dc.subject | 心跳變異率 | zh_TW |
| dc.subject | occupational medicine | en |
| dc.subject | heart rate variability | en |
| dc.subject | music | en |
| dc.subject | computer | en |
| dc.subject | typing | en |
| dc.subject | fatigue | en |
| dc.subject | exposure assessment | en |
| dc.title | 以打字擊鍵特性與心跳變異率探討影響打字表現之因子 | zh_TW |
| dc.title | Exploring the Determinants of Typing Performance by Interkeypress Properties and Heart Rate Variability | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳保中,賴金鑫,李永輝,王茂駿,陸哲駒 | |
| dc.subject.keyword | 電腦,打字,疲勞,職業醫學,暴露評估,音樂,心跳變異率, | zh_TW |
| dc.subject.keyword | computer,typing,fatigue,occupational medicine,exposure assessment,music,heart rate variability, | en |
| dc.relation.page | 121 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-20 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
| 顯示於系所單位: | 職業醫學與工業衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
