Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43019
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管中閔(Chung-Ming Kuan)
dc.contributor.authorTzu-Chi Linen
dc.contributor.author林子期zh_TW
dc.date.accessioned2021-06-15T01:33:05Z-
dc.date.available2009-07-31
dc.date.copyright2009-07-31
dc.date.issued2009
dc.date.submitted2009-07-20
dc.identifier.citationAsh, R.B. and Garner, M.F. (1975), Topics in Stochastic Processes, New
York: Academic Press.
Bai, J. (2003), “Testing parametric conditional distributions of dynamic models”,
Review of Economics and Statistics, 85, 531–549.
Barton, D.E. (1953), “The probability distribution function of a sum of
squares”, Trabajos de Estadistica, 4, 199–207.
Barton, D.E. (1956), “Neyman’s ψ2 test of goodness of fit when the null
hypothesis is composite”, Skandinaviske Aktuarietidskrift, 39, 216–245.
Behboodian, J. (1990), “Examples of uncorrelated dependent random variables
using a bivariate mixture”, The American Statistician, 44, 218.
Bissantz, N., Claeskens, G., Holzmann, H., and Munk, A. (2009), “Testing for
lack of fit in inverse regression – with applications to biophotonic imaging”,
Journal of Royal Statistical Society, 71, 25–48.
Blum, J.R., Kiefer, J., and Rosenblatt, M. (1961), “Distribution free tests
of independence based on the sample distribution function”, Annals of
Mathematical Statistics, 32, 485–498.
Casella, G. and Berger, R.L. (2002), Statistical Inference, New York:
Duxbury Press.
Deheuvels, P. (1981), “An asymptotic decomposition for multivariate
distribution-free tests of independence”, Journal of Multivariate Analysis,
11, 102–113.
Deheuvels, P. and Martynov, G. (2002), “Karhunen-Lo′eve expansions for
weighted Wiener processes and Brownian bridges via Bessel functions”,
in J. Hoffmann-Jørgensen, M.B. Marcus, and J.A. Wellner (eds.), High
Dimensional Probability III, 57–93, Basel: Birkh‥auser Verlag.
Deheuvels, P., Peccati, G., and Yor, M. (2006), “On quardratic functionals of
the Brownian sheet and related processes”, Stochastic Processes and their
Applications, 116, 493–538.
del Barrio, E., Deheuvels, P., and van de Geer, S. (2007), Lectures on Empirical
Processes, Zurich: European Mathematical Society.
Delgado, M.A. (1996), “Testing serial independence using the sample distribution
function”, Journal of Time Series Analysis, 17, 271–285.
Delgado, M.A., Hidalgo, J., and Velasco, C. (2005), “Distribution free
goodness-of-fit tests for linear processes”, Annals of Statistics, 33, 2568–
2609.
Delgado, M.A. and Stute, W. (2008), “Distribution-free specification tests of
conditional models”, Journal of Econometrics, 143, 37 – 55.
D’este, G.M. (1981), “A Morgenstern-type bivariate gamma distribution”,
Biometrika, 68, 339–340.
Durbin, J. (1973), “Weak convergence of sample distribution functions when
parameter are estimated”, The Annals of Statistics, 1, 279–290.
Durbin, J. and Knott, M. (1972), “Components of Cram′er-von Mises
statisitcs I”, Journal of Royal Statistical Society, 34, 290–307.
Durbin, J., Knott, M., and Taylor, C.C. (1975), “Components of Cram′er-von
Mises statisitcs II”, Journal of Royal Statistical Society, 37, 216–237.
Escanciano, J.C. (2009), “On the lack of power of omnibus specification
tests”, Econometric Theory, 25, 162–194.
Escanciano, J.C. and Lobato, I.N. (2009), “An automatic portmanteau test
for serial correlation”, Journal of Econometrics, In Press, Corrected Proof.
Escanciano, J.C. and Mayoral, S. (2007), “Data-driven smooth tests for the
martingale difference hypothesis”, University of Navarra, School of Economics
and Business Administration, Working Paper No.01/07.
Eubank, R.L. (2000), “Testing of no effect by cosine series methods”, Scandinavian
Journal of Statistics, 27, 747–763.
Eubank, R.L. and LaRiccia, V.N. (1992), “Asymptotic comparison of
Cra ′mer-von Mises and nonparametric function estimation techniques for
testing goodness-of-fit”, Annals of Statistics, 20, 2071–2086.
Fan, J. (1996), “Test of Significance Based on Wavelet Thresholding and
Neyman’s Truncation”, Journal of the American Statistical Association,
91, 674–688.
Fan, J. and Huang, L.S. (2001), “Goodness-of-fit tests for parametric regression
models”, Journal of the American Statistical Association, 96, 640–652.
Fan, J. and Lin, S.K. (1998), “Test of significance when data are curves”,
Journal of the American Statistical Association, 93, 1007–1021.
Feuerverger, A. (1993), “A consistent test for bivariate dependence”, International
Statistical Review, 61, 419–433.
Ghosh, A. and Bera, A. (2001), “Neyman’s Smooth Test and Its Application”,
in A. Ullah, A. Wan, and A. Chaturvedi (eds.), Handbook of Applied
Econometrics and Statistical Inference, chapter 10, 170–230, New York:
Marcel Dekker.
Hart, J.D. (1997), Nonparametric Smoothing and Lack of Fit Tests, New
York: Spring-Verlag.
Hoeffding, W. (1948), “A non-parametric test of independence”, Annals of
Mathematical Statistics, 19, 546–557.
Hong, Y. (1998), “Testing for pairwise serial independence via the empirical
distribution function”, Journal of Royal Statistical Society, 60, 429–453.
Hong, Y. (2000), “Generalized spectral tests for serial dependence”, Journal
of Royal Statistical Society, 62, 557–574.
Inglot, T. and Ledwina, T. (1996), “Asymptotic optimality of data-driven
Neyman’s tests for uniformity”, The Annals of Statistics, 24, 1982–2019.
Inglot, T. and Ledwina, T. (2006a), “Towards data-driven selection of a
penalty function for data-driven of Neyman smooth tests”, Linear Algebra
and its Application, 417, 124–133.
Inglot, T. and Ledwina, T. (2006b), “Data-driven score tests for homoscedastic
linear regression model : asymptotic results”, Probability And Mathematical
Statistics, 26, 41–61.
Janssen, A. (2000), “Global power functions of goodness of fit tests”, The
Annals of Statistics, 28, 239–253.
Kac, M. and Siegert, A.J.F. (1947a), “An explicit representation of a stationary
gaussian process”, Annals of Mathematical Statistics, 18, 438–442.
Kac, M. and Siegert, A.J.F. (1947b), “On the theory of noise in radio receivers
with square law detectors”, Journal of Applied Physics, 18, 383–397.
Kallenberg, W.C.M. and Ledwina, T. (1997), “Data-driven smooth tests
when the hypothesis is composite”, Journal of the American Statistical
Association, 92, 1094–1104.
Kallenberg, W.C.M. and Ledwina, T. (1999), “Data-driven rank tests for
independence”, Journal of the American Statistical Association, 94, 285–
301.
Kallenberg, W.C.M., Oosterhoff, J., and Shriever, B.F. (1985), “The number
of classes in chi-squared goodness of fit tests”, Journal of the American
Statistical Association, 80, 959–968.
Karhunen, K. (1946), “Zur spektraltheorie stochastischer prozess”, Annals
of Academic Science Fennicae Series, 34, 1–7.
Khmaladze, E. and Koul, H.L. (2004), “Martingale transforms goodness-offit
tests in regression models”, The Annals of Statistics, 32, 995–1034.
Kiefer, N.M. (1985), “Specification diagnostic based on Laguerre alternatives
for econometric models of duration”, Journal of Econometrics, 28, 135–
154.
Koenker, R. and Xiao, Z. (2006), “Quantile autoregression”, Journal of the
American Statistical Association, 101, 980–990.
Kojadinovic, I. and Holmes, M. (2009), “Tests of independence among continuous
random vectors based on Cram′er-von Mises functionals of the empirical
copula process”, Journal of Multivariate Analysis, 100, 1137–1154.
Koziol, J.A. (1987), “An alternative formulation of Neyman’s smooth goodness
of fit tests under composite hypothesis”, Metrika, 34, 17–24.
Kraus, D. (2009), “Adaptive neyman’s smooth tests of homogeneity of two
samples of survival data”, Journal of Statistical Planning and Inference,
In Press, Corrected Proof.
Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., and Shin, Y. (1992), “Testing
the null hypothesis of stationarity against the alternative of a unit root”,
Journal of Econometric, 54, 159–178.
Ledwina, T. (1994), “Data-driven version of Neyman’s smooth test of fit”,
Journal of the American Statistical Association, 89, 1000–1005.
Loeve, M. (1955), Probability Theory, New Jersey: Princeton.
MacNeill, I.B. (1978), “Properties of sequences of partial sums of polynomial
regression residuals with applications to tests for change of regression at
unknown times”, The Annals of Statistics, 6, 422–433.
Makdia, K.V. (1967), “Some contributions to contingency-type bivariate distributions”,
Biometrika, 54, 235–249.
McNeil, A.J., Frey, R., and Embrechts, P. (2005), Quantitative Risk Management:
Concepts, Techniques, and Tools, New Jersey: Princeton University
Press.
Mudholkar, G.S. and Wilding, G.E. (2003), “On the conventional wisdom
regarding two consistent tests of bivariate independence”, The Statistician,
52, 41–57.
Nelsen, R.B. (2006), An Introduction to Copulas, New York: Springer-Verlag.
Newman, A.J. (1996), “Model reduction via the Karhunen-Lo′eve expansion
part I: An exposition”, University of Maryland, Institute for Systems Research
and Electrical Engineering Department, Technical Research Report.
Neyman, J. (1937), “Smooth test for goodness of fit”, Skandinaviske Aktuarietidskrift,
20, 150–199.
Pena, E.A. (1998), “Smooth goodness-of-fit tests for composite hypothesis in
hazard based models”, The Annals of Statistics, 26, 1935–1971.
Phillips, P.C.B. and Perron, P. (1988), “Testing for a unit root in time series
regression”, Biometrika, 75, 335–346.
Phoon, K.K., Huang, S.P., and Quek, S.T. (2002), “Simulation of secondorder
processes using Karhunen-Lo′eve expansion”, Computers & Structures,
80, 1049–1060.
Plackett, R.L. (1965), “A class of bivariate distributions”, Journal of the
American Statistical Association, 60, 516–522.
Ploberger, W. and Kramer, W. (1992), “The cusum test with ols residuals”,
Econometrica, 60, 271–285.
Rao, C.R. (1948), “Test of significance in multivariate analysis”, Biometrika,
35, 58–79.
Rao, C.R. (1973), Linear Statistical Inference and its Application, New York:
John Wiley.
Rayner, J.C.W. and Best, D.J. (1989), Smooth Tests of Goodness of Fit, New
York: Oxford University Press.
Rayner, J.C.W. and Best, D.J. (1990), “Smooth tests of goodness of fit: An
overview”, International Statistical Review, 58, 9–17.
Skaug, H.J. and Tjøstheim, D. (1993), “A nonparametric test of serial independence
based on the empirical distribution function”, Biometrika, 80,
591–602.
Szekely, G.J., Rizzo, M.L., and Bakirov, N.K. (2007), “Measuring and testing
dependence by correlation of distances”, The Annals of Statistics, 35,
2769–2794.
Taskinen, S., Oja, H., and Randles, R.H. (2005), “Multivariate nonparametric
tests of independence”, Journal of the American Statistical Association,
100(471), 916–925.
Thomas, D.R. and Pierce, D.A. (1979), “Neyman’s smooth goodness of fit
test when the hypothesis is composite”, Journal of the American Statistical
Association, 74, 441–445.
Van Der Vaart, A.W. (1998), Asymptotic Statistics, Cambridge: Cambridge
University Press.
Van Der Vaart, A.W. and Wellner, J.A. (1996), Weak Convergence and Empirical
Processes, New York: Springer-Verlag.
Wang, L. and Qu, A. (2009), “Consistent model selection and data-driven
smooth tests for longitudinal data in the estimating equations approach”,
Journal of Royal Statistical Society, 71, 177–190.
Wooldridge, J.M. (2002), Econometric Analysis of Cross Section and Panel
Data, Cambridge Massachusetts: The MIT Press.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43019-
dc.description.abstractNew data-driven smooth tests are proposed in this thesis. The new tests
are proposed to eschew the downward weighting problem of the traditional
omnibus tests, and the new tests are constructed based on the components
of Karhunen-Lo′eve expansion of limiting process. As examples, we construct
tests for the null hypothesis of stationarity, coefficient stability, symmetric
dynamics of quantile autoregressive model, and bivariate independence.
Simulation results show that, new tests have moderate size control and nice
power performance for a wide range of alternatives. In contrast to traditional
omnibus tests, new tests are more robust to complex models and perform well
under high-frequency alternatives.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:33:05Z (GMT). No. of bitstreams: 1
ntu-98-R96323032-1.pdf: 356902 bytes, checksum: 936aad7a7a4ed8afa28f7e2a6f513d7f (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
1 Introduction 1
2 Literature Review 3
2.1 The Smooth Test of Neyman (1937) . . . . . . . . . . . . . . . 4
2.2 Relationship Between Neyman’s Smooth Test and Rao’s Score
Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Applications of Neyman’s Test . . . . . . . . . . . . . . . . . . 9
2.3.1 Orthogonal Polynomials and Smooth Test in Regression 9
2.3.2 Rank Tests for Independence . . . . . . . . . . . . . . 12
3 Karhunen-Lo′eve Expansion and the Deficiency of the CvM
Norm 14
4 New Tests 20
4.1 Testing Stationarity . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Testing Coefficient Stability . . . . . . . . . . . . . . . . . . . 22
4.3 Testing Symmetric Dynamics of Quantile Autoregressive Model 24
4.4 Testing Bivariate Independence . . . . . . . . . . . . . . . . . 26
5 Monte Carlo Simulation 30
5.1 Block 1: Benchmark . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Block 2: Uncorrelated but Dependent Random Variables . . . 34
6 Conclusion 35
Appendix: Mathematical Proof 36
References 41
List of Figures
1 Block1.BN: blue - smooth; pink - Hoeff; red - TOR ; green -
SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . . 48
2 Block1.Morgen: blue - smooth; pink - Hoeff; red - TOR ; green
- SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . 48
3 Block1.Plack: blue - smooth; pink - Hoeff; red - TOR ; green
- SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . 49
4 Block1.Gunbel: blue - smooth; pink - Hoeff; red - TOR ; green
- SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . 49
5 Block1.Clay: blue - smooth; pink - Hoeff; red - TOR ; green -
SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . . 50
6 Block2.Linear: blue - smooth; pink - Hoeff; red - TOR ,green
- SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . 50
7 Block2.Exp: blue - smooth; pink - Hoeff; red - TOR ; green -
SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . . 51
8 Block2.Tan: blue - smooth; pink - Hoeff; red - TOR ; green -
SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . . 51
9 Block2.SIRV: blue - smooth; pink - Hoeff; red - TOR ; green
- SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . 52
10 Block2.IRV: blue - smooth; pink - Hoeff; red - TOR ; green -
SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . . 52
dc.language.isozh-TW
dc.subject尼曼平滑檢定zh_TW
dc.subject定態;zh_TW
dc.subject結構轉變zh_TW
dc.subjectKarhunen-Loeve 展開式zh_TW
dc.subjectstructural changeen
dc.subjectCramer-von Mises testen
dc.subjectstationarityen
dc.subjectintegral equationen
dc.subjectNeyman smooth testen
dc.subjectorthonormal polynomialen
dc.subjectKarhunen-Loeve Expansionen
dc.subjectbivariate independenceen
dc.subjectquantile autoregressiveen
dc.title運用 Karhunen-Loeve展開式
建構資料驅動的尼曼平滑檢定
zh_TW
dc.titleData-Driven Smooth Tests
Based on Karhunen-Loeve Expansion
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee銀慶剛(Ching-Kang Ing),陳宜廷(Yi-Ting Chen),陳旭昇(Shiu-Sheng Chen)
dc.subject.keyword尼曼平滑檢定,Karhunen-Loeve 展開式,結構轉變,定態;,zh_TW
dc.subject.keywordCramer-von Mises test,Karhunen-Loeve Expansion,Neyman smooth test,orthonormal polynomial,integral equation,stationarity,structural change,quantile autoregressive,bivariate independence,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2009-07-20
dc.contributor.author-college社會科學院zh_TW
dc.contributor.author-dept經濟學研究所zh_TW
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
348.54 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved