請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43019完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管中閔(Chung-Ming Kuan) | |
| dc.contributor.author | Tzu-Chi Lin | en |
| dc.contributor.author | 林子期 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:33:05Z | - |
| dc.date.available | 2009-07-31 | |
| dc.date.copyright | 2009-07-31 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-20 | |
| dc.identifier.citation | Ash, R.B. and Garner, M.F. (1975), Topics in Stochastic Processes, New
York: Academic Press. Bai, J. (2003), “Testing parametric conditional distributions of dynamic models”, Review of Economics and Statistics, 85, 531–549. Barton, D.E. (1953), “The probability distribution function of a sum of squares”, Trabajos de Estadistica, 4, 199–207. Barton, D.E. (1956), “Neyman’s ψ2 test of goodness of fit when the null hypothesis is composite”, Skandinaviske Aktuarietidskrift, 39, 216–245. Behboodian, J. (1990), “Examples of uncorrelated dependent random variables using a bivariate mixture”, The American Statistician, 44, 218. Bissantz, N., Claeskens, G., Holzmann, H., and Munk, A. (2009), “Testing for lack of fit in inverse regression – with applications to biophotonic imaging”, Journal of Royal Statistical Society, 71, 25–48. Blum, J.R., Kiefer, J., and Rosenblatt, M. (1961), “Distribution free tests of independence based on the sample distribution function”, Annals of Mathematical Statistics, 32, 485–498. Casella, G. and Berger, R.L. (2002), Statistical Inference, New York: Duxbury Press. Deheuvels, P. (1981), “An asymptotic decomposition for multivariate distribution-free tests of independence”, Journal of Multivariate Analysis, 11, 102–113. Deheuvels, P. and Martynov, G. (2002), “Karhunen-Lo′eve expansions for weighted Wiener processes and Brownian bridges via Bessel functions”, in J. Hoffmann-Jørgensen, M.B. Marcus, and J.A. Wellner (eds.), High Dimensional Probability III, 57–93, Basel: Birkh‥auser Verlag. Deheuvels, P., Peccati, G., and Yor, M. (2006), “On quardratic functionals of the Brownian sheet and related processes”, Stochastic Processes and their Applications, 116, 493–538. del Barrio, E., Deheuvels, P., and van de Geer, S. (2007), Lectures on Empirical Processes, Zurich: European Mathematical Society. Delgado, M.A. (1996), “Testing serial independence using the sample distribution function”, Journal of Time Series Analysis, 17, 271–285. Delgado, M.A., Hidalgo, J., and Velasco, C. (2005), “Distribution free goodness-of-fit tests for linear processes”, Annals of Statistics, 33, 2568– 2609. Delgado, M.A. and Stute, W. (2008), “Distribution-free specification tests of conditional models”, Journal of Econometrics, 143, 37 – 55. D’este, G.M. (1981), “A Morgenstern-type bivariate gamma distribution”, Biometrika, 68, 339–340. Durbin, J. (1973), “Weak convergence of sample distribution functions when parameter are estimated”, The Annals of Statistics, 1, 279–290. Durbin, J. and Knott, M. (1972), “Components of Cram′er-von Mises statisitcs I”, Journal of Royal Statistical Society, 34, 290–307. Durbin, J., Knott, M., and Taylor, C.C. (1975), “Components of Cram′er-von Mises statisitcs II”, Journal of Royal Statistical Society, 37, 216–237. Escanciano, J.C. (2009), “On the lack of power of omnibus specification tests”, Econometric Theory, 25, 162–194. Escanciano, J.C. and Lobato, I.N. (2009), “An automatic portmanteau test for serial correlation”, Journal of Econometrics, In Press, Corrected Proof. Escanciano, J.C. and Mayoral, S. (2007), “Data-driven smooth tests for the martingale difference hypothesis”, University of Navarra, School of Economics and Business Administration, Working Paper No.01/07. Eubank, R.L. (2000), “Testing of no effect by cosine series methods”, Scandinavian Journal of Statistics, 27, 747–763. Eubank, R.L. and LaRiccia, V.N. (1992), “Asymptotic comparison of Cra ′mer-von Mises and nonparametric function estimation techniques for testing goodness-of-fit”, Annals of Statistics, 20, 2071–2086. Fan, J. (1996), “Test of Significance Based on Wavelet Thresholding and Neyman’s Truncation”, Journal of the American Statistical Association, 91, 674–688. Fan, J. and Huang, L.S. (2001), “Goodness-of-fit tests for parametric regression models”, Journal of the American Statistical Association, 96, 640–652. Fan, J. and Lin, S.K. (1998), “Test of significance when data are curves”, Journal of the American Statistical Association, 93, 1007–1021. Feuerverger, A. (1993), “A consistent test for bivariate dependence”, International Statistical Review, 61, 419–433. Ghosh, A. and Bera, A. (2001), “Neyman’s Smooth Test and Its Application”, in A. Ullah, A. Wan, and A. Chaturvedi (eds.), Handbook of Applied Econometrics and Statistical Inference, chapter 10, 170–230, New York: Marcel Dekker. Hart, J.D. (1997), Nonparametric Smoothing and Lack of Fit Tests, New York: Spring-Verlag. Hoeffding, W. (1948), “A non-parametric test of independence”, Annals of Mathematical Statistics, 19, 546–557. Hong, Y. (1998), “Testing for pairwise serial independence via the empirical distribution function”, Journal of Royal Statistical Society, 60, 429–453. Hong, Y. (2000), “Generalized spectral tests for serial dependence”, Journal of Royal Statistical Society, 62, 557–574. Inglot, T. and Ledwina, T. (1996), “Asymptotic optimality of data-driven Neyman’s tests for uniformity”, The Annals of Statistics, 24, 1982–2019. Inglot, T. and Ledwina, T. (2006a), “Towards data-driven selection of a penalty function for data-driven of Neyman smooth tests”, Linear Algebra and its Application, 417, 124–133. Inglot, T. and Ledwina, T. (2006b), “Data-driven score tests for homoscedastic linear regression model : asymptotic results”, Probability And Mathematical Statistics, 26, 41–61. Janssen, A. (2000), “Global power functions of goodness of fit tests”, The Annals of Statistics, 28, 239–253. Kac, M. and Siegert, A.J.F. (1947a), “An explicit representation of a stationary gaussian process”, Annals of Mathematical Statistics, 18, 438–442. Kac, M. and Siegert, A.J.F. (1947b), “On the theory of noise in radio receivers with square law detectors”, Journal of Applied Physics, 18, 383–397. Kallenberg, W.C.M. and Ledwina, T. (1997), “Data-driven smooth tests when the hypothesis is composite”, Journal of the American Statistical Association, 92, 1094–1104. Kallenberg, W.C.M. and Ledwina, T. (1999), “Data-driven rank tests for independence”, Journal of the American Statistical Association, 94, 285– 301. Kallenberg, W.C.M., Oosterhoff, J., and Shriever, B.F. (1985), “The number of classes in chi-squared goodness of fit tests”, Journal of the American Statistical Association, 80, 959–968. Karhunen, K. (1946), “Zur spektraltheorie stochastischer prozess”, Annals of Academic Science Fennicae Series, 34, 1–7. Khmaladze, E. and Koul, H.L. (2004), “Martingale transforms goodness-offit tests in regression models”, The Annals of Statistics, 32, 995–1034. Kiefer, N.M. (1985), “Specification diagnostic based on Laguerre alternatives for econometric models of duration”, Journal of Econometrics, 28, 135– 154. Koenker, R. and Xiao, Z. (2006), “Quantile autoregression”, Journal of the American Statistical Association, 101, 980–990. Kojadinovic, I. and Holmes, M. (2009), “Tests of independence among continuous random vectors based on Cram′er-von Mises functionals of the empirical copula process”, Journal of Multivariate Analysis, 100, 1137–1154. Koziol, J.A. (1987), “An alternative formulation of Neyman’s smooth goodness of fit tests under composite hypothesis”, Metrika, 34, 17–24. Kraus, D. (2009), “Adaptive neyman’s smooth tests of homogeneity of two samples of survival data”, Journal of Statistical Planning and Inference, In Press, Corrected Proof. Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., and Shin, Y. (1992), “Testing the null hypothesis of stationarity against the alternative of a unit root”, Journal of Econometric, 54, 159–178. Ledwina, T. (1994), “Data-driven version of Neyman’s smooth test of fit”, Journal of the American Statistical Association, 89, 1000–1005. Loeve, M. (1955), Probability Theory, New Jersey: Princeton. MacNeill, I.B. (1978), “Properties of sequences of partial sums of polynomial regression residuals with applications to tests for change of regression at unknown times”, The Annals of Statistics, 6, 422–433. Makdia, K.V. (1967), “Some contributions to contingency-type bivariate distributions”, Biometrika, 54, 235–249. McNeil, A.J., Frey, R., and Embrechts, P. (2005), Quantitative Risk Management: Concepts, Techniques, and Tools, New Jersey: Princeton University Press. Mudholkar, G.S. and Wilding, G.E. (2003), “On the conventional wisdom regarding two consistent tests of bivariate independence”, The Statistician, 52, 41–57. Nelsen, R.B. (2006), An Introduction to Copulas, New York: Springer-Verlag. Newman, A.J. (1996), “Model reduction via the Karhunen-Lo′eve expansion part I: An exposition”, University of Maryland, Institute for Systems Research and Electrical Engineering Department, Technical Research Report. Neyman, J. (1937), “Smooth test for goodness of fit”, Skandinaviske Aktuarietidskrift, 20, 150–199. Pena, E.A. (1998), “Smooth goodness-of-fit tests for composite hypothesis in hazard based models”, The Annals of Statistics, 26, 1935–1971. Phillips, P.C.B. and Perron, P. (1988), “Testing for a unit root in time series regression”, Biometrika, 75, 335–346. Phoon, K.K., Huang, S.P., and Quek, S.T. (2002), “Simulation of secondorder processes using Karhunen-Lo′eve expansion”, Computers & Structures, 80, 1049–1060. Plackett, R.L. (1965), “A class of bivariate distributions”, Journal of the American Statistical Association, 60, 516–522. Ploberger, W. and Kramer, W. (1992), “The cusum test with ols residuals”, Econometrica, 60, 271–285. Rao, C.R. (1948), “Test of significance in multivariate analysis”, Biometrika, 35, 58–79. Rao, C.R. (1973), Linear Statistical Inference and its Application, New York: John Wiley. Rayner, J.C.W. and Best, D.J. (1989), Smooth Tests of Goodness of Fit, New York: Oxford University Press. Rayner, J.C.W. and Best, D.J. (1990), “Smooth tests of goodness of fit: An overview”, International Statistical Review, 58, 9–17. Skaug, H.J. and Tjøstheim, D. (1993), “A nonparametric test of serial independence based on the empirical distribution function”, Biometrika, 80, 591–602. Szekely, G.J., Rizzo, M.L., and Bakirov, N.K. (2007), “Measuring and testing dependence by correlation of distances”, The Annals of Statistics, 35, 2769–2794. Taskinen, S., Oja, H., and Randles, R.H. (2005), “Multivariate nonparametric tests of independence”, Journal of the American Statistical Association, 100(471), 916–925. Thomas, D.R. and Pierce, D.A. (1979), “Neyman’s smooth goodness of fit test when the hypothesis is composite”, Journal of the American Statistical Association, 74, 441–445. Van Der Vaart, A.W. (1998), Asymptotic Statistics, Cambridge: Cambridge University Press. Van Der Vaart, A.W. and Wellner, J.A. (1996), Weak Convergence and Empirical Processes, New York: Springer-Verlag. Wang, L. and Qu, A. (2009), “Consistent model selection and data-driven smooth tests for longitudinal data in the estimating equations approach”, Journal of Royal Statistical Society, 71, 177–190. Wooldridge, J.M. (2002), Econometric Analysis of Cross Section and Panel Data, Cambridge Massachusetts: The MIT Press. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43019 | - |
| dc.description.abstract | New data-driven smooth tests are proposed in this thesis. The new tests
are proposed to eschew the downward weighting problem of the traditional omnibus tests, and the new tests are constructed based on the components of Karhunen-Lo′eve expansion of limiting process. As examples, we construct tests for the null hypothesis of stationarity, coefficient stability, symmetric dynamics of quantile autoregressive model, and bivariate independence. Simulation results show that, new tests have moderate size control and nice power performance for a wide range of alternatives. In contrast to traditional omnibus tests, new tests are more robust to complex models and perform well under high-frequency alternatives. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:33:05Z (GMT). No. of bitstreams: 1 ntu-98-R96323032-1.pdf: 356902 bytes, checksum: 936aad7a7a4ed8afa28f7e2a6f513d7f (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Contents
1 Introduction 1 2 Literature Review 3 2.1 The Smooth Test of Neyman (1937) . . . . . . . . . . . . . . . 4 2.2 Relationship Between Neyman’s Smooth Test and Rao’s Score Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Applications of Neyman’s Test . . . . . . . . . . . . . . . . . . 9 2.3.1 Orthogonal Polynomials and Smooth Test in Regression 9 2.3.2 Rank Tests for Independence . . . . . . . . . . . . . . 12 3 Karhunen-Lo′eve Expansion and the Deficiency of the CvM Norm 14 4 New Tests 20 4.1 Testing Stationarity . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 Testing Coefficient Stability . . . . . . . . . . . . . . . . . . . 22 4.3 Testing Symmetric Dynamics of Quantile Autoregressive Model 24 4.4 Testing Bivariate Independence . . . . . . . . . . . . . . . . . 26 5 Monte Carlo Simulation 30 5.1 Block 1: Benchmark . . . . . . . . . . . . . . . . . . . . . . . 32 5.2 Block 2: Uncorrelated but Dependent Random Variables . . . 34 6 Conclusion 35 Appendix: Mathematical Proof 36 References 41 List of Figures 1 Block1.BN: blue - smooth; pink - Hoeff; red - TOR ; green - SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . . 48 2 Block1.Morgen: blue - smooth; pink - Hoeff; red - TOR ; green - SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . 48 3 Block1.Plack: blue - smooth; pink - Hoeff; red - TOR ; green - SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . 49 4 Block1.Gunbel: blue - smooth; pink - Hoeff; red - TOR ; green - SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . 49 5 Block1.Clay: blue - smooth; pink - Hoeff; red - TOR ; green - SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . . 50 6 Block2.Linear: blue - smooth; pink - Hoeff; red - TOR ,green - SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . 50 7 Block2.Exp: blue - smooth; pink - Hoeff; red - TOR ; green - SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . . 51 8 Block2.Tan: blue - smooth; pink - Hoeff; red - TOR ; green - SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . . 51 9 Block2.SIRV: blue - smooth; pink - Hoeff; red - TOR ; green - SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . 52 10 Block2.IRV: blue - smooth; pink - Hoeff; red - TOR ; green - SRB; yellow - CvM . . . . . . . . . . . . . . . . . . . . . . . . 52 | |
| dc.language.iso | zh-TW | |
| dc.subject | 尼曼平滑檢定 | zh_TW |
| dc.subject | 定態; | zh_TW |
| dc.subject | 結構轉變 | zh_TW |
| dc.subject | Karhunen-Loeve 展開式 | zh_TW |
| dc.subject | structural change | en |
| dc.subject | Cramer-von Mises test | en |
| dc.subject | stationarity | en |
| dc.subject | integral equation | en |
| dc.subject | Neyman smooth test | en |
| dc.subject | orthonormal polynomial | en |
| dc.subject | Karhunen-Loeve Expansion | en |
| dc.subject | bivariate independence | en |
| dc.subject | quantile autoregressive | en |
| dc.title | 運用 Karhunen-Loeve展開式
建構資料驅動的尼曼平滑檢定 | zh_TW |
| dc.title | Data-Driven Smooth Tests
Based on Karhunen-Loeve Expansion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 銀慶剛(Ching-Kang Ing),陳宜廷(Yi-Ting Chen),陳旭昇(Shiu-Sheng Chen) | |
| dc.subject.keyword | 尼曼平滑檢定,Karhunen-Loeve 展開式,結構轉變,定態;, | zh_TW |
| dc.subject.keyword | Cramer-von Mises test,Karhunen-Loeve Expansion,Neyman smooth test,orthonormal polynomial,integral equation,stationarity,structural change,quantile autoregressive,bivariate independence, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-20 | |
| dc.contributor.author-college | 社會科學院 | zh_TW |
| dc.contributor.author-dept | 經濟學研究所 | zh_TW |
| 顯示於系所單位: | 經濟學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 348.54 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
