請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43017
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃美嬌 | |
dc.contributor.author | Chien-Chou Weng | en |
dc.contributor.author | 翁健洲 | zh_TW |
dc.date.accessioned | 2021-06-15T01:33:00Z | - |
dc.date.available | 2009-07-27 | |
dc.date.copyright | 2009-07-27 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-20 | |
dc.identifier.citation | [1] S. Wisniewski, B. Staniszewski, R. Szymanik (1976), “Thermodynamics of nonequilibrium processes”, PWN-Polish Scientific Publishers.
[2] G. S. Nola et al. (1998), “The next generation of thermoelectric materials”, in 17th International Conference on Thermoelectrics”, Nagoya, Japan:IEEE. [3] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wzng, Z. Ren, J. Fleurial, and P. Gogna (2007), “New direction for low-dimensional thermoelectric materials”, Advanced Materials 19,1043-1053. [4] L. D. Hicks and M. S. Dresselhaus (1993), “Thermoelectric figure of merit of a one-dimensional conductor”, Physical Review B 47, 16631-16634. [5] L. D. Hicks, M. S. Dresselhaus (1993), “Effect of quantum-well structures on the thermoelectric figure of merit”, Physical Review B 47, 12727–12731. [6] R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn (2001), “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature 413, 597-602. [7] D. G. Cahill, K. Goodson, A. Majumdar (2002), “Thermometry and thermal transport in micro/nanoscale solid-state devices and structures”, Journal of Heat Transfer 124, 223-241. [8] M. J. Huang, T. M. Chang, W. Y. Chong, C. K. Liu, C. K. Yu(2007), “A new lattice thermal conductivity model of a thin film semiconductor”, International Journal of Heat and Mass Transfer 50 67-74. [9] M. J. Huang, W. Y. Chong, T. M. Chang (2006), “The lattice thermal conductivity of a semiconductor nanowire”, Journal of Applied Physics 99 (11) 114318. [10] P. Heino (2007), “Dispersion and thermal resistivity in silicon nanofilms by molecular dynamics” , The European Physical Journal B 60, 171-179. [11] A. S. Barker, Jr., J. L. Merz, and A. C. Gossard (1978), “Study of zone-folding effects on phonons in alternating monolayers of GaAs-AlAs”, Physical Review B 17(8),3181-3196. [12] S. Tamura, Y. Tanaka, and H. J. Maris(1999), “Phonon group velocity and thermal conduction in superlattices”, Physical Review B 60 , 2627. [13] T. Yao (1987), “Thermal properties of AlAs/GaAs superlattices”, Applied Physics Letters 51, 1798-1800. [14] S. M. Lee, D. G. Cahill, and R. Venkatasubramanian (1997), “Thermal conductivity of Si-Ge superlattices”, Applied Physics Letters 70, 2957-2959. [15] R. Venkatasubramanian (2000), “Lattice thermal conductivity reduction and phonon localization like behavior in superlattice structure”, Physical Review B 61, 3091-3097. [16] T. C. Harman, M. P. Walsh, B. E. Laforge, and G. W. Turner (2005), “Nanostructured thermoelectric materials”, Journal of Electronic Materials 34, L19-L22. [17] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis (2004), “Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit”, Science 303, 818-821. [18] J. L. Mi, T. J. Zhu, and X. B. Zhao (2007), “Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3”, Journal of Applied Physics 101, 054314. [19] W. Kim, S. Singer, A. Majumdar, J.M. Zide, A.C. Gossard, and A. Shakouri (2005), “Role of nanostructures in reducing thermal conductivity below alloy limit in crystalline solids,” 2005 International Conference on Thermoelectrics, Clemson, South Carolina, USA. [20] W. Kim, L. S.L. Singer, A. Majumdar, D. Vashaee, Z. Bian, A. Shakouri, G. Zeng, J.E. Bowers, J.M. Zide and A.C. Gossard (2006), “Cross-plane lattice and electronic thermal conductivities of ErAs:InGaAs/InGaAlAs superlattices”, Applied Physics Letters 88, 242107. [21] J. M. Ziman (2001), “Electrons and phonons”, Oxford University Press, Clarendon. [22] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar and P. Yang (2008), “Enhanced thermoelectric performance of rough silicon nanowires”, Nature 451(10),163-167. [23] P. K. Schelling, S. R. Phillpo, and P. Keblinski (2002), “Comparison of atomic-level simulation methods for computing thermal conductivity”, Physical Review B 65, 144306-1~144306-12. [24] M. P. Allen, D. J. Tildesley (1987), “Computer simulation of liquids”, Oxford. [25] S.G. Volz, J.B. Saulnier, and M. Lallemand (1996), “Transient Fourier-law deviation by molecular dynamics in solid argon”, Physical Review B 54, 340-347. [26] J. R. Lukes, D. T. Li, X.-G. Liang, C.-L. Tien (2000), “Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity”, Transaction of the ASME 122,536-543. [27] Y. Chen, D. Li, J. R. Lukes, Z. Ni, M. Chen (2005), “Minimum superlattice thermal conductivity from molecular dynamics”, Physical Review B 72,174302. [28] X. G. Liang, B. Yue (2006), “The interface roughness effect on the in-plane thermal conductivity in nanoscale”, Journal of Engineering Thermophysics 27(3). [29] R. J. Stevens, L. V. Zhigilei, and P. M. Norris (2007), “Effect of temperature and disorder on thermal boundary conductance at solid-solid interface: Nonequilibrium molecular dynamics simulations”, International Journal of Heat and Mass Transfer 50, 3977-3989. [30] F. H. Stillinger, T. A. Weber (1985), “Computer simulation of local order in condensed phases of silicon”, Physical Review B 31, 5262-5271. [31] C. J. Gomes, M. Madrid, J. V. Goicochea, C.H. Amon (2006), “In-plane and out-of-plane thermal conductivity of silicon thin films predicted by molecular dynamics”, Journal of Heat Transfer 128, 1114-1121. [32] C. J. Gomes, M. Madrid, C. H. Amon (2004), “Thin film in-plane silicon thermal conductivity dependence on molecular dynamics surface boundary conditions”, 2004 ASME International Mechanical Engineering Congress and Exposition 345-351. [33] T. M. Chang, C. C. Weng, M. J. Hang (2008), “A NEMD study of surface roughness of silicon thin film”, Proceedings of MicroNano08 ,70331. [34] K. Miyazaki, D. Nagai (2008), “Molecular dynamics simulations of heat conduction in thin film with nano-holes”, Proceedings of MicroNano08 ,70327. [35] L. J. Porter , J. F. Justo , S. Yip (1997), “The importance of Gruneisen parameters in developing interatomic potentials”, Journal of Applied Physics 82(11),5378. [36] Zeng-hui Wang, Zhixin Li (2006), “Research on the out-of-plane thermal conductivity of nanometer silicon film” , Thin Solid Films 515 2203-2206. [37] S. Plimpton (1995), “Fast Parallel Algorithms for Short-Range Molecular Dynamics”, Journal of Computational Physics 117, 1-19. [38] Kejian Ding, Hans C. Anderson (1986). 'Molecular-dynamics simulation of amorphous germanium.' Physical Review B 34, 6987-6991. [39] Yim, W.M., R.J. Paff (1974), “Thermal expansion of AlN, sapphire, and silicon.” Journal of Applied Physics 45, 1456-1457. [40] P. Jund, R. Jullien (1999), “Molecular-dynamics calculation of the thermal conductivity of vitreous silica”, Physical Review B 59, 13707-13711. [41] M. Aono, Y. Hou, C. Oshima, Y. Ishizawa (1982), “Low-Energy Ion Scattering From the Si(001) Surface” , Physical Review Letters 49, 567–570. [42] V. Yu. Trubitsyn, E. B. Dolgusheva (2007), “Molecular Dynamics Calculations of Anharmonic Properties of the Vibrational Spectrum of BCC Zirconium under Pressure”, Physics of the Solid State, Vol. 49, No. 7, pp. 1345–1352. [43] J. M. Dickey , A. Paskin (1969), “Computer simulation of the lattice dynamics of solids”, Physical Review 188,3. [44] N.I. Papanicolaou a, I.E. Lagaris b, G.A. Evangelakis (1995), “Modification of phonon spectral densities of the (001) copper surface due to copper adatoms by molecular dynamics simulation”, Surface Science 337, L819-L824. [45] W. Weber (1977), “Adiabatic bond charge model for the phonon in diamond, Si, Ge and (alpha)-Sn”, Physical Review B 15, 4789-4803. [46] Dolling, G.(1963), “Inelastic Scattering Neutrons in Solids and Liquids”, Chalk River, IAEA, Vienna, vol. 2, p. 37. [47] Zi Jian , Zhang Kaiming , Xie Xide (1990) , “Modification of Stillinger-Weber potentials for Si and Ge”, Physical Review B 41, No 18. [48] J. Q. Broughton, X. P. Li (1987), “Phase diagram of silicon by molecular dynamics”, Physical Review B 35 , 9120-9127. [49] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/ | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43017 | - |
dc.description.abstract | 本論文採用平衡分子動力學數值工具來研究矽/鍺塊材、薄膜、奈米線以及超晶格薄膜之聲子色散關係及態密度,並使用非平衡分子動力學研究矽薄膜平面方向與矽奈米線軸向之熱傳現象。模擬中,原子作用力採用兼具有二體及三體勢能的Stillinger-Weber勢能函數。
在聲子色散關係研究中發現,薄膜/奈米線等結構之色散曲線與塊材最大的不同在於離散模式的產生,超晶格薄膜在平行薄膜平面方向也是,但在垂直薄膜平面方向則是產生了迷你布里淵區。在態密度方面,薄膜與奈米線隨尺寸變化的趨勢相同,但奈米線之變化較劇烈,都是尺寸愈小,分佈愈往低頻移動。超晶格薄膜之週期厚度對其態密度的影響不大,且矽鍺層之態密度與其本身材料之塊材相似,但多出許多峰值,對應色散曲線中之菱形結構。 在熱傳導係數的模擬中我們以奈米結構之態密度做量子修正,並以外插法消除數值的尺寸效應。薄膜與奈米線隨著溫度的增加,熱傳導係數先因聲子被激發的模式增多而增加,之後因為倒逆散射的機制增強而漸漸減小;尺寸愈大時,上述趨勢形成之峰值愈明顯。在薄膜量子修正方面,發現應以奈米結構下的聲子態密度進行量子修正為佳,其熱傳導係數隨溫度的變化趨勢與理論在固定鏡射率下的計算曲線相符。最後本論文亦嘗試以調整表面位能來控制薄膜表面粗糙度,但由於統計誤差的影響,在模擬的表面粗糙度範圍內並沒有觀測出熱傳導係數隨表面粗糙度增加而降低的趨勢。 | zh_TW |
dc.description.abstract | This thesis employs the equilibrium molecular dynamics (EMD) simulation to calculate the phonon dispersion relations and density of states of Si/Ge bulk materials, thin films, nanowires as well as superlattice thin films. It also applies the non-equilibrium molecular dynamics (NEMD) simulation to a calculation of the in-plane thermal conductivity of silicon thin films and the axial thermal conductivity of silicon nanowires. In the simulations, the Stillinger-Weber (SW) potential, including both the two-body and the three-body interactions, is adopted.
As far as the dispersion relations are concerned, remarkable differences between bulk materials and thin films/nanowires are observed. In particular, the latter possesses many discrete vibration modes. These modes are also observed in the in-plane spectrum of the superlattice thin films; mini-Brillouin zones are generated in the cross-plane spectrum on the other hand. As the film/wire thickness decreases, the phonon DOS tends to shift to the lower frequencies. The lower dimension, the more the shift is. The superlattice period shows little effect on the DOS of superlattice thin films and the DOS of each layer is similar to its bulk counterpart, in spite of numerous additional peaks corresponding to the rhombus structures appearing in the cross-plane spectrum. In obtaining the thermal conductivity, both the quantum correction based on the measured DOS of the associated nanostructure and the elimination of the finite-size error by an extrapolation technique are performed. It is found as the temperature increases, the thermal conductivities of thin films and nanowires increase first because of the increased excited phonon modes and then decrease due to the enhanced Umklapp scattering. A peak value is thus observed at some temperature. Finally, an attempt is made to control the surface roughness of thin films by adjusting the model parameters associated with the surface potential. However, the computed thermal conductivity does not as expected decrease with the increasing surface roughness, which is attributed to the non-negligible statistic error. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:33:00Z (GMT). No. of bitstreams: 1 ntu-98-R96522106-1.pdf: 3095188 bytes, checksum: adde6cdca15939ef1c1544675e225f6a (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III 英文摘要 IV 目錄 VI 表目錄 IX 圖目錄 X 符號說明 XIII 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機及目的 5 1-3 論文架構 6 第二章 分子動力學理論與數值方法 7 2-1 分子動力學基本理論模型 7 2-1-1 基本理論 7 2-1-2 初始條件 9 2-1-3溫度控制 10 2-1-4 邊界條件 10 2-2 數值方法 12 2-2-1 原子位置及速度計算 12 2-2-2 原子間作用力計算 12 2-3 非平衡分子動力學 15 2-3-1 加(移)熱方法 15 2-3-2 熱傳導係數求法 16 2-3-3 量子修正 17 2-3-4 消除有限尺寸的影響 17 第三章 不同矽鍺奈米結構之聲子色散關係及態密度 19 3-1 分析方法 19 3-1-1 聲子色散關係 19 3-1-2 聲子態密度 20 3-2 模擬模型與方式 21 3-3 模擬步數分析 22 3-4 結果與討論 23 3-4-1 聲子色散曲線 23 3-4-2 聲子態密度 26 3-4-3 不同溫度之影響 27 第四章 矽薄膜及矽奈米線之熱傳導係數 28 4-1 NEMD資料處理 28 4-1-1 穩態判斷 28 4-1-2 量子修正 29 4-1-3 熱傳導係數計算 30 4-1-4 表面粗糙度 31 4-2 不同尺寸與溫度下之熱傳導係數 32 4-3 薄膜表面粗糙度與熱傳導係數之關係 33 4-3-1 表面位能參數與表面粗糙度 34 4-3-2 表面粗糙度與熱傳導係數 35 4-4 奈米線之彎曲度 36 第五章 結論與未來展望 37 5-1 結論 37 5-2 未來展望 38 參考文獻 39 圖表 42 | |
dc.language.iso | zh-TW | |
dc.title | 以分子動力學模擬研究矽鍺材料在奈米尺度下之熱傳相關性質 | zh_TW |
dc.title | An Investigation of the Heat-Transfer Related Properties of Silicon and Germanium at Nanoscale via Molecular Dynamics Simulations | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李石頓,顏瑞和,楊照彥 | |
dc.subject.keyword | 分子動力學,奈米結構,聲子色散關係,量子修正,熱傳導係數,表面粗糙度, | zh_TW |
dc.subject.keyword | Molecular Dynamics,Nanostructure,Phonon Dispersion Relation,Quantum Correction,Lattice Thermal Conductivity,Surface roughness, | en |
dc.relation.page | 77 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 3.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。