Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43016
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張培仁(Pei-Zen Chang)
dc.contributor.authorChi-Ming Fangen
dc.contributor.author方啟銘zh_TW
dc.date.accessioned2021-06-15T01:32:57Z-
dc.date.available2014-07-28
dc.date.copyright2009-07-28
dc.date.issued2009
dc.date.submitted2009-07-20
dc.identifier.citation1. Matthaei G L, Young L and Jones E M T 1980 Microwave filters, Impedance- matching networks, and coupling structures, (Norwood, MA: Artech House)
2. Nishihara T, Yokoyama T, Miyashita T and Satoh Y 2002 High Performance and Miniature Thin Film Bulk Acoustic Wave Filters for 5 GHz IEEE Ultrason. Symp. 1 969–972
3. Shirakawa A A, Pham J M, Jarry P and Kerhervé E 2006 Design of FBAR filters at high frequency bands Int. J. RF Microwave Comput. Aided Eng. 17 115–122.
4. Ruby R C, Bradley P, Oshmyansky Y, Chien A and Larson J D III 2001 Thin film bulk wave acoustic resonators (FBAR) for wireless applications IEEE Ultrason. Symp. 1 813–821.
5. Dubois M A, Carpentier J F, Vincent P, Billard C, Parat G., Muller C, Ancey P and Conti P 2006 Monolithic above-IC resonator technology for integrated architectures in mobile and wireless communication IEEE J. Solid-State Circuits 41 7–16
6. Chiu K H, Chen H R and Huang S R S 2007 High-Performance Film Bulk Acoustic Wave Pressure and Temperature Sensors Jpn. J. Appl. Phys. 46 1392–1397
7. Zhang H and Kim E S 2005 Micromachined Acoustic Resonant Mass Sensor J. Microelectromech. Syst. 14 699–706
8. Bjurström J, Wingqvist G, Yantchev V and Katardjiev I 2007 Temperature compensation of liquid FBAR sensors J. Micromech. Microeng. 17 651–658
9. Weber J, Link M, Primig R, Pitzer D and Schreiter M, 2006 High frequency viscosity sensing with FBARs Proc. IEEE Int. Freq. Cont. Symp. and Exposition 117–122
10. Gabl R, Feucht H D, Zeininger H, Eckstein G, Schreiter M, Primig R, Pitzer D and Wersing W 2004 First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology Biosens. Bioelectron. 19 615–620
11. Weber J, Albers W M, Tuppurainen J, Link M, Gabl R, Wersing W and Schreiter M 2006 Shear mode FBARs as highly sensitive liquid biosensors Sens. Actuators A Phys. 128 84–88
12. Lanz R and Muralt P 2005 Bandpass filters for 8 GHz using solidly mounted bulk acoustic wave resonators IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 938–948
13. Bradley P, Ruby R, Larson J D III, Oshmyansky Y and Figueredo D 2001 A film bulk acoustic resonator (FBAR) duplexer for USPCS handset applications IEEE MTTS Int. Microw. Symp. 1 367–370
14. Mourot L, Bar P, Parat G., Ancey P, Bila S and Carpentier J F 2008 Stopband filters built in the BAW technology [Application Notes] IEEE Microwave Mag. 9 104–116
15. Otis B P and Rabaey J M 2003 A 300μW 1.9GHz CMOS Oscillator Utilizing Micromachined Resonators IEEE J. Solid-State Circuits 38 1271–1274
16. Wei P, Ruby R C, Parker R, Fisher P W, Unkrich M A, and Larson J D 2008_A Temperature-Stable Film Bulk Acoustic Wave Oscillator IEEE Electron Device Lett. 29 315-318
17. Lakin K M and Wang J S 1981 Acoustic bulk wave composite resonators Appl. Phys. Lett. 38 125–7
18. Lakin K M 1992 Modeling of thin film resonators and filters IEEE MTTS Int. Microw. Symp. 1 149–152
19. Yim M, Kim D H, Chai D and Yoon G. 2003 Significant resonance characteristic improvements by combined use of thermal annealing and Co electrode in ZnO-based FBARs Electron. Lett. 39 1638-1639
20. Tay K W, Huang C L,Wu L and Lin M S 2004 Performance characterization of thin AlN films deposited on Mo electrode for thin-film bulk acoustic-wave resonators Jpn. J. Appl. Phys. 43 5510-5515
21. Gribaldo S, Chay C, Tournier E and Llopis O 2006 Experimental study of phase noise in FBAR resonators Ultrasonics IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 1982–1987
22. Larson J D III, Bradley P D, Wartenberg S and Ruby R C 2000 Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system IEEE Ultrason. Symp. 1 863–868
23. Zhang H and Kim E S 2002 Air-backed Al/ZnO/Al film bulk acoustic resonator without any support layer IEEE Int. Freq. Cont. Symp. PDA Exhib. 20–26
24. Pang W, Zhang H, Yu H, Lee C Y and Kim E S 2007 Electrical frequency tuning of film bulk acoustic resonator J. Microelectromech. Syst. 16 1303–1313
25. Pan W, Soussan P, Nauwelaers B and Tilmans H A C 2005 Design and Fabrication of a Surface Micromachined Frequency Tunable Film Bulk Acoustic Resonator with an Extended Electrostatic Tuning Range IEEE Ultrason. Symp. 3 1840–1843
26. Humberto C, Francisco H R, Albert R R, Josep M, Arantxa U, Nuria B and Jaume E 2007 Focused-ion-beam-assisted tuning of thin-film bulk acoustic wave resonators (FBARs) J. Micromech. Microeng. 17 2380–2389
27. Gribaldo S, Chay C, Tournier E and Llopis O 2006 Experimental study of phase noise in FBAR resonators IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 1982–1987
28. Chen P Y, Chin Y C, Hou C L and Liu Y N 2007 Analysis Method for Two-Port Film Bulk Acoustic Resonator Using S-Parameter Measurement Jpn. J. Appl. Phys. 46 7892–7897
29. Lin C H, Lu J M and Fang W 2005 Encapsulation of film bulk acoustic resonator filters using a wafer-level microcap array J. Micromech. Microeng. 15 1433–1438
30. Kang Y R, Kanga S C, Paek K K, Kima Y K, Kim S W and Ju B K 2005 Air-gap type film bulk acoustic resonator using flexible thin substrate Sens. Actuators A. Phys. 117 62–70
31. Lakin K M, Kline G. R and McCarron K T 1992 Thin film bulk acoustic wave filters for GPS IEEE Proc. Ultrason. Symp. 1 471–476
32. Ueda M, Iwaki M, Nishihara T, Satoh Y and Hashimoto K Y 2008 A circuit model for nonlinear simulation of radio-frequency filters using bulk acoustic wave resonators IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 849–856
33. Ramos R R, Otero J A and R. P A 1997 Wave propagation in a piezoelectric layer J. Appl. Phys. 81, 7242–7247
34. Nowotny H and Benes E 1987 General one-dimensional treatment of the layered piezoelectric resonator with two electrodes J. Acoust. Soc. Am. 82 513–521
35. Akcakaya E, Adler E L and Farnell G W 1989 Apodization of multilayer bulk-wave transducers IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36 628–637
36. Mansfeld G. D and Alekseev S G. 1997 Theory and numerical analysis of bulk acoustic wave multilayer composite resonator structure Proc. IEEE Ultrason. Symp. 2 891–894
37. Mason W P 1948 Electromechanical Transducers and Wave Filters (New York: Princeton, Van Nostrand)
38. Granstaff V E and Martin S J 1994 Characterization of a thickness-shear mode quartz resonator with multiple nonpiezoelectric layers J. Appl. Phys. 75 1319–1329
39. Ballantine D S, Martin S J, Ricco A J, Frye G C, Wohltjen H, White R M and Zellers E T 1997 Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications (San Diego: Academic press)
40. Royer D and Dieulesaint E 1996 Elastic Waves in SolidsⅠ (Berlin: Springer Verlag) 154–158
41. Royer D and Dieulesaint E 1996 Elastic Waves in SolidsⅠ (Berlin: Springer Verlag) 127–128
42. Royer D and Dieulesaint E 1996 Elastic Waves in SolidsⅠ (Berlin: Springer Verlag) 130–131
43. Royer D and Dieulesaint E 1996 Elastic Waves in SolidsⅠ (Berlin: Springer Verlag) 119–166
44. Rosenbaum J F 1988 Bulk Acoustic Wave Theory and Device (Norwood, MA: Artech House) 167–183
45. Royer D and Dieulesaint E 1999 Elastic Waves in SolidsⅡ (Berlin: Springer Verlag) 46–47
46. Chen Q, Shun T and Wang Q M 2004 Materials property dependence of the effective electromechanical coupling coefficient of thin film bulk acoustic resonators Proc. IEEE Intl. Ultrason. Ferroelectr. Freq. Cont. 11–17
47. Royer D and Dieulesaint E 1999 Elastic Waves in SolidsⅡ (Berlin: Springer Verlag) 12–14
48. Yu H, Pang W, Zhang H and Kim E S 2005 Film bulk acoustic resonator at 4.4 GHz with ultra low temperature coefficient of resonant frequency Proc. IEEE Intl. MEMS Conf. 28–31
49. Williams K R and Muller R S 1996 Etch Rate for Micromachining Processing J. Microelectromech. Syst. 5 256–268
50. Williams K R, Gupta K and Wasilik M 2003 Etch Rate for Micromachining Processing Ⅱ J. Microelectromech. Syst. 12 761–778
51. Lee J B, Jung J P, Lee M H and Park J S 2003 Effect of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs Thin Solid Films 610–614
52. Akiyama M, Nagaob K, Uenoa N, Tateyamaa H and Yamadab T 2004 Influence of metal electrodes on crystal orientation of aluminum nitride thin films Vacuum 74 699–703
53. Satoh Y, Nishihara T, Yokoyama T, Ueda M, Miyashita T 2005 Development of Piezoelectric Thin Film Resonator and Its Impact on Future Wireless Communication Systems Jpn. J. Appl. Phys. 44 2883–2894
54. Dubois M A and Muralt P 2001 Stress and Piezoelectric Properties of Aluminum Nitride Thin Films Deposited onto Metal Electrodes by Pulsed Direct Current Reactive Sputtering J. Appl. Phys. 89 6389–6395
55. Cho D H, Kim D Y, Kim B H, Jun J P, Park J S and Lee J B 2004 Properties of AlN Films Grown by Two-step Deposition and Characteristics of AlN-FBAR Devices Proc. IEEE Intl. Ultrason. Ferroelectr. Freq. Cont. 1702–1705.
56. Lee H C, Park J Y, Lee K H and Bu J U 2004 Preparation of Highly Textured Mo and AlN Films Using A Ti Seed Layer for Integrated High-Q Film Bulk Acoustic Resonators J. Vac. Sci. Technol., B 22 1127–1133
57. Vandepol F C M, Blom F R and Popma T J A 1991 RF. Planar magnetron sputtered ZnO films. I: Structural properties Thin Solid Films 204 349–364
58. Lee Y E, Lee J B, Kim Y J, Yang H K, Park J C and Kim H J 1996 Microstructural evolution and preferred orientation change of radio-frequency magnetron sputtered ZnO thin films J. Vac. Sci. Technol., A 14 1943–1948
59. Park S H, Seo B C, Yoon G and Park H D 2000 Two-step deposition process of piezoelectric ZnO film and its application for film bulk acoustic resonators J. Vac. Sci. Technol., A 18 2432–2436
60. Yoshino Y, Inoue K, Takeuchi M, Makino T, Katayama Y and Hata T 2000 Effect of substrate surface morphology and interface microstructure in ZnO thin films formed on various substrates,' Vacuum 59 403–410
61. Vossen J L and Kern W 1978 Thin Film ProcessesⅠ (New York: Academic Press) 457
62. Lakin K M, Kline G R and McCarron K T 1993 High-Q Microwave Acoustic Resonators and Filters IEEE Trans. Microwave Theory Tech. 41 2139–2145
63. Drozd J M and Joines W T 1996 Determining Q using S-parameter data IEEE Trans. Microwave Theory Tech. 44 2123–2127
64. Lakin K M 1981 Equivalent Circuit Modeling of Stacked Crystal Filters Proc. 35th Annu. Freq. Cont. Sym. 257–262
65. Chen Q, Shun T and Wang Q M 2004 Materials property dependence of the effective electromechanical coupling coefficient of thin film bulk acoustic resonators IEEE Ultrason. Symp. 11–17
66. 1988 IEEE Standard on piezoelectriciy ANSI/IEEE Std 176–1987
67. Sherrit S, Wiedericky H D, Mukherjeey B K and Sayerz M 1997 An accurate equivalent circuit for the unloaded piezoelectric vibrator in the thickness mode J. Phys. D: Appl. Phys. 30 2354–2363
68. J. F. Rosenbaum 1998 Bulk Acoustic Wave Theory and Devices (Norwood, MA: Artech House) 392–395
69. http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm, retrieved 2009/06/02
70. http://en.wikipedia.org/wiki/802.11 retrieved 2009/06/02
71. http://en.wikipedia.org/wiki/List_of_WLAN_channels retrieved 2009/06/02
72. http://wimax.tw/post/2007/11/30/whats-WiMAX-technology.aspx retrieved 2009/06/02
73. http://en.wikipedia.org/wiki/WiMAX retrieved 2009/06/02
74. Lee T C 2005 Receiver Architectures in Modern Wireless Communication Electrical Engineering/GIEE, National Taiwan Universtiy 3–6
75. Razavi B 1998 RF Microelectronics (Upper Saddle River, NJ: Prentice Hall) 154–158
76. Y. T. Lin and S. S. Lu 2005 A 0.5V 3.1mW fully monolithic OOK receiver for wireless local area sensor network Proc. IEEE Intel. Asian Solid-State Circuit Conf. 373–376
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43016-
dc.description.abstract隨著無線通訊的蓬勃發展,其已成為人類生活中不可或缺的一部份,但由於人的需求隨著科技日新月異而不斷提高,優良的通訊品質與多媒體的大量傳輸支援變成顧客之首選,其取決於系統中的關鍵零組件。在新一代無線射頻前端模組中,薄膜體聲波濾波器將會是最具優勢之帶通濾波器組件,因為其具有高操作頻率、高品質因子、高負載功率,且可與積體電路整合等優點。基於此緣故,本論文以薄膜體聲波濾波器應用於無線射頻為研究主軸,文中完整涵蓋薄膜體聲波濾波器之設計、製作與量測分析。
薄膜體聲波濾波器係由數個薄膜體聲波共振器串並聯而成,故論文一開始推導出薄膜體聲共振器之電性阻抗特徵,接著將前者應用在傳統階梯式濾波器之理論中,作為薄膜體聲波濾波器之設計架構,此過程中提出一套完整清晰的標準設計流程。為提供與積體電路設計之共同模擬平台,本研究將薄膜體聲波元件之等效電路模型建立於電子設計自動化之模擬軟體中,以提供研究者準確且迅速的設計參考。經過實驗結果與模擬相互驗證,證明此模型不論是在元件本身特性或與積體電路整合之模擬及製程變化所造成元件特性影響之推估,皆具有極佳的精準度與可信度。同時,為了追求高良率之薄膜體聲波濾波器製作,本論文中先描述出利用微機電製程製作元件時之關鍵要素與結構中各層薄膜製程,最後以實際圖例說明來展示薄膜體聲波濾波器之製作流程。
優異的薄膜體聲波濾波器仰賴於具備高品質因子與充足機電耦合係數的共振器單元,本論文先以薄膜體聲波共振器研發為基礎,量測相關特徵參數作為薄膜體聲波濾波器設計模擬時之參考。接下來,論文中依據前述設計製作方法研發適用於目前無線通訊頻段之薄膜體聲波濾波器,考量目前無線通訊頻段需求之潛力後,研究中選用2.4-GHz及5.4-GHz之無線通訊標準作為目標,並依據規格需求研製出2.4-GHz及5.4-GHz頻段之薄膜體聲波濾波器,主要可應用於802.11b/g/n、藍芽、4G-WiMAX 無線通訊系統中。
最後,本論文將研究專注在關於薄膜體聲波濾波器與積體電路整合之課題,其中包含薄膜體聲波濾波器與低雜訊放大器電路整合之研究與薄膜體聲波濾波器整合於高阻抗開關鍵移式射頻接受器之研究。研究過程中,利用前述之共同模擬平台,將所設計的薄膜體聲波濾波器與電路同時模擬,並利用0.18微米CMOS標準製程進行電路製作,最後由後製程來實現薄膜體聲波濾波器。研究中已研製出薄膜體聲波濾波器整合低雜訊放大器之元件,同時,研製出匹配此接受器之薄膜體聲波濾波器。本研究成果證實了薄膜體聲波濾波器與積體電路於單晶片整合之可行性。
zh_TW
dc.description.abstractWith the rapid development of wireless communication field, the potential advantages of Film bulk acoustic wave resonator (FBAR) are attractive to microelectronics researchers for bandpass filters. The advantages of FBAR include microminiaturization, high quality (Q) factor, high frequency operation, great power handling, and compatibility of complementary metal oxide semiconductor (CMOS) etc. Based on the trend, this research proposes to develop film bulk acoustic wave (FBAW) filters for radio frequency (RF) front-end modules. This thesis completely includes design, simulation, fabrication, measurement, and analysis of the FBAW filters.
A FBAW filter cnsists of several FBAR components. Therefore, the electrical impedance characteristic of the FBAR is derived first. Then, a complete design methed of FBAW filters utilizing traditional ladder type filters concept is proposed in this study. Furthermore, this research demonstrates the equivalent circuit model of FBAW devices in electronic design automation (EDA) simulation software to rapidly design and simulate the FBAW device with circuitry on a single platform. This simulation model is verified through comparison with experiments. It can be used of simulating accurately the characteristics of FBAW devices with/without circuit components and predicting the influence of process variation on the devices. Meanwhile, to enhance the yield of FBAW devices, the fabricated process and key factor of the FBAW devices are described clearly through micro-electro-mechanical systems (MEMS) technique.
An excellent FBAW filter is dependent on the high quality factor and electromechanical coupling coefficient of the FBAR components. First, FBAR are designed and fabricated to investigate the significant parameters of the various FBARs. Next, the FBAW filters for wireless communications are developed, which includes the 2.4-GHz and 5.4-GHz FBAW filters, individually. The above FBAW filters can be applied to 802.11b/g/n, Bluetooth, and 4G-WiMAX wireless communication systems. These studies confirm FBAW filters are a great potential solution for providing the high performance bandpass filters.
Finally, the integration of FBAW filters with circuitry using 0.18μm CMOS technology and post-COMS MEMS process are investigated in the thesis. The study of the FBAW filter integrated with low noise amplifier is achieved. In addition, the specific FBAW filters based on an on-off keying RF receiver are accomplished. These studies are promising that FBAW devices integrated with the RF front-end system on a chip (SOC) are feasible.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:32:57Z (GMT). No. of bitstreams: 1
ntu-98-D94543010-1.pdf: 7908686 bytes, checksum: 56c805bdb9de090338ea20df907001fe (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents謝 誌 i
摘 要 iii
Abstract v
Contents vii
List of Figures xi
List of Tables xvii
Chapter 1 Introduction 1
1.1 Introduction of Film Bulk Acoustic Wave Device 2
1.1.1 Architectures of Film Bulk Acoustic Wave Devices 2
1.1.2 Advantages of Film Bulk Acoustic Wave Device 4
1.1.3 Applications of Film Bulk Acoustic Wave Device 5
1.2 Literature Review 6
1.2.1 Survey of Film Bulk acoustic Wave Resonator 6
1.2.2 Survey of Film Bulk Acoustic Wave Filter 8
1.3 Motivation 11
1.4 Thesis Overview 12
Chapter 2 Theory, Design, and Simulation Method 15
2.1 Resonator Theoretical Introduction 16
2.2 Constitutive Equation of Piezoelectric Material 20
2.3 Wave Propagation of Elastic Solid 24
2.3.1 One-dimensional wave propagation of elastic material 24
2.3.2 One-dimensional wave propagation of piezoelectric material 26
2.4 Impedance Characteristics of Film Bulk Acoustic Wave Resonator 29
2.4.1 Impedance characteristic of one-dimensional elastic plate 29
2.4.2 Impedance characteristic of one-dimensional piezoelectric plate 33
2.4.3 Impedance characteristic of film bulk acoustic wave resonator multilayer structure 38
2.5 Theory of Film Bulk Acoustic Wave Filter 42
2.6 Simulation Modeling 46
Chapter 3 Microfabrication of FBAW Device 50
3.1 Process Consideration of Manufactured Film Bulk Acoustic Wave Device 51
3.1.1 General Consideration 51
3.1.2 Additional Consideration of On-chip Post-IC Process 52
3.2 Multilayer Film Process and Analysis of Film Bulk Acoustic Wave Structure 54
3.2.1 Isolation layer and supporting layer 54
3.2.2 Sacrificial Layer 56
3.2.3 Bottom electrode layer 60
3.2.4 Piezoelectric film layer 63
3.2.5 Top electrode layer 69
3.2.6 Tuning layer 72
3.2.7 Structure suspended process 74
3.3 Surface Micromachining Process of Film Bulk Acoustic Wave Device 75
3.3.1 Standard operating procedure of surface micromachining film bulk acoustic wave resonator 75
3.3.2 Demonstration of air-gap suspended film bulk acoustic wave filter 77
3.4 Bulk Micromachining Process of Film Bulk Acoustic Wave Device 87
3.4.1 Standard operating procedure of bulk micromachining film bulk acoustic wave resonator 87
3.4.2 Demonstration of bulk micromachining film bulk acoustic wave filter 89
Chapter 4 Film Bulk Acoustic Wave Resonator 97
4.1 Analysis Method Introduction of Characterizing Resonators 98
4.1.1 Key factor of characterizing resonators performance 98
4.1.2 Analytical Method of characterizing resonators 100
4.1.3 Butterworth Van-Dyke equivalent circuit model 102
4.1.4 Modified Butterworth Van-Dyke equivalent circuit model 103
4.2 AlN-based Film Bulk Acoustic Wave Resonator 107
4.2.1 Design and Simulation 107
4.2.2 Manufacturing Method 112
4.2.3 Measured Results and Discussions 115
4.2.4 Brief Summary 123
4.3 ZnO-based on Film Bulk Acoustic Wave Resonator 124
4.3.1 Design and Simulation 124
4.3.2 Manufacturing Method 129
4.3.3 Measured Results and Discussions 132
4.3.4 Brief Summary 138
Chapter 5 Film Bulk Acoustic Wave Filter 139
5.1 2.4-GHz Film Bulk Acoustic Wave Filter 140
5.1.1 2.4-GHz Wireless Communication Protocol 140
5.1.2 Design and Simulation 141
5.1.3 Manufacturing Method 146
5.1.5 Brief Summary 156
5.2 5.4-GHz Film Bulk Acoustic Wave Filter 157
5.2.1 5.4-GHz Wireless Communication Protocol 157
5.2.2 Design and Simulation 158
5.2.3 Manufacturing Method 163
5.2.4 Results and Discussions 168
5.2.5 Brief Summary 176
Chapter 6 Integration of Film Bulk Acoustic Wave Filter with Circuitry 178
6.1 Integration of Film Bulk Acoustic Wave Filter with Low Noise Amplifier 181
6.1.1 Research Background and Purpose 181
6.1.2 Design and Simulation 182
6.1.3 Manufacturing Method 190
6.1.4 Results and Discussions 196
6.1.5 Brief Summary 203
6.2 Specific Film Bulk Acoustic Wave Filter Based on On-off Keying Receiver 204
6.2.1 Research Background and Purpose 204
6.2.2 Design and Simulation 206
6.2.3 Manufacturing Method 212
6.2.4 Results and Discussions 219
6.2.5 Brief Summary 227
Chapter 7 Conclusion 228
7.1 Conclusions 228
7.2 Recommendations of Future Work 232
Reference 233
Appendix A Piezoelectric Material Constant 242
Appendix B Acoustic Material Constant 246
dc.language.isoen
dc.title薄膜體聲波濾波器於無線通訊應用之研發zh_TW
dc.titleStudy on Film Bulk Acoustic Wave Filter for Wireless Communicationen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳培元(Pei-Yen Chen),黃榮堂(Jung-Tang Huang),林佑昇(Yo-Sheng Lin),楊龍杰(Lung-Jieh Yang),戴慶良(Ching-Liang Dai),李其源(Chi-Yuan Lee)
dc.subject.keyword互補式金屬氧化層半導體,系統單晶片化,射頻元件,微機電系統,無線通訊,薄膜體聲波共振器,薄膜體聲波濾波器,zh_TW
dc.subject.keywordComplementary Metal Oxide Semiconductor (CMOS),Film Bulk Acoustic Wave Resonator (FBAR),Film Bulk Acoustic Wave Filter (FBAW filter),Micro Electro Mechanical Systems (MEMS),Radio Frequency (RF),System on a Chip (SOC),Wireless Communication,en
dc.relation.page246
dc.rights.note有償授權
dc.date.accepted2009-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
7.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved