請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43015
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳文方(Wen-Fang Wu) | |
dc.contributor.author | Ping-Hsien Tsai | en |
dc.contributor.author | 蔡秉憲 | zh_TW |
dc.date.accessioned | 2021-06-15T01:32:54Z | - |
dc.date.available | 2012-07-22 | |
dc.date.copyright | 2009-07-22 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-20 | |
dc.identifier.citation | 參考文獻
1. Institute, N. E. (2008). 'US Electricity Production Costs.' from http://www.nei.org/. 2. V. S. Korolyuk, S. M. B., A. F. Turbin (1975). 'Semi-Markov Processes and Their Applications.' Journal of Mathematical Sciences 4(3): 244-280. 3. N. Limnios (1997). 'Dependability Analysis of Semi-Markov Systems.' Reliability Engineering & System Safety 55(3): 203. 4. N. Limnios (2001). Semi-Markov Processes and Reliability. Boston, Birkhäuser. 5. G. Corradi, J. J., R Manca (2004). 'Numerical Treatment of Homogeneous Semi-Markov Processes in Transient Case-A Straightforward Approach.' Methodology and Computing in Applied Probability 6(2): 233. 6. J. Janssen, R. M. (2007). Semi-Markov Risk Models for Finance, Insurance and Reliability Springer Science Business Media. 7. M. d. C. Moura, Droguett, E. López (2009). 'Mathematical formulation and numerical treatment based on transition frequency densities and quadrature methods for non-homogeneous semi-Markov processes.' Reliability Engineering & System Safety 94(2): 342-349. 8. I. Uahskov (1999). 'The Method of Generalized Generating Sequences.' European Journal of Operational Research. 9. G. Levitin, A. L. (1999). 'Importance and Sensitivity Analysis of Multi-State Systems Using the Universal Generating Function Method.' Reliability Engineering and System Safety. 10. A. Lisnianski (2003). Multi-State System Reliability. New Jersey, World Scientific. 11. B. Ouhbi, N. L. (2002). 'The Rate of Occurrence of Failures for Semi-Markov Processes and Estimation.' Statistics and Probability Letters 59(3): 245. 12. B. Ouhbi, N. L. (2003). 'Nonparametric Reliability Estimation of Semi-Markov Processes.' Journal of Statistical Planning and Inference 109(1-2): 155-165. 13. Y. Cao, H. S., K. S. Trivedi, J.J. Han (2002). 'System Availability With Non-Exponentially Distributed Outages.' IEEE Transaction on Reliability. 14. J. Soszynska (2006). 'Reliability Evaluation of a Port Oil Transportation System in Variable Operation Conditions.' International Journal of Pressure Vessels and Piping. 15. F. Grabski (2003). 'The Reliability of an Object with Semi-Markov Failure Rate.' Applied Mathematics and Computation 135(1): 1. 16. D. V. Raje (2000). 'Availability Assessment of a Two-Unit Stand-by Pumping System.' Reliability Engineering and System Safety 68(3): 269. 17. A. Pievatolo, E. T., I. Valade (2004). 'Semi-Markov Processes for Power System Reliability Assessment With Application to Uninterruptible Power Supply.' IEEE Transactions on Power Systems,. 18. K.N. Fleming (2004). 'Markov Models for Evaluating Risk-Informed in-Service Inspection Strategies for Nuclear Power Plant Piping Systems.' Reliability Engineering & System Safety 83(1): 27. 19. S. M. Ross (2007). Introduction to Probability Models. Boston, Academic Press. 20. F. Grabski (2007). 'Application of Semi-Markov Processes in Reliability.' Electronic Journal Reliability: Theory & Applications 2, No.3-4(7): 60-75. 21. C. H. Edwards (2004). Elementary Differential Equations with Boundary Value Problems. Upper Saddle River, NJ, Prentice Hall. 22. G. K. Smyth (1998). 'Numerical Integration ' Encyclopedia of Biostatistics 23. (2002). Numerical recipes example book (C++). New York, Cambridge University Press. 24. 趙浡霖 (1989),可靠度工程導論。 25. Maryland, U. S. 'Reliability Engineering.' from http://www.enre.umd.edu/index.htm. 26. MIL-STD 721C. Definition of Terms for Reliability and Maintainability - Revision C 27. C. E. Ebeling (1997). An Introduction to Reliability and Maintainability Engineering. New York, McGraw Hill. 28. I. Miller (2000). Miller & Freund's probability and statistics for engineers. Upper Saddle River, NJ, Prentice Hall. 29. M. Modarres (2006). Risk Analysis in Engineering. Boca Raton, Taylor & Francis. 30. C. S. Park (2002). Contemporary Engineering Economics 3rd edition, prentice hall. 31. G. Strang (2003). Introduction to Linear Algebra. Wellesly, MA, Wellesley-Cambridge. 32. 台灣電力公司 (2008),年產銷概況,from http://www.taipower.com.tw/left_bar/jing_ying_ji_xiao/year_production.htm。 33. 台灣電力公司,核能發電透明化資訊系統,from http://wapp4.taipower.com.tw/nsis/Introduction.asp。 34. 何偉,核能電廠大修工期縮短探討,台電核能月刊。 35. 范兆光,林,張,美國核能電廠維護法規介紹,安全文化專欄。 36. 張啟濱 (2008),核能電廠維護法規建制及實施,from http://chns.org/upload/2008/1-7.ppt。 37. Commission, U. S. N. R. U.S. Nuclear Regulatory Commission Regulations: Title 10, Code of Federal Regulations. 38. 蕭海南,美國核能電廠除役工作之法規作業,台電核能月刊。 39. 高英傑 (2006),發電機並聯運轉之可靠度分析 電機工程系 國立臺灣科技大學。 40. 張毓青 (1996),生產系統最佳維護決策模式之研究,機械工程研究所 國立台灣大學。 41. 李顯宏 (2006), Matlab 7.X 程式開發與應用技巧,文魁資訊。 42. 黃文璋 (1995),隨機過程,華泰書局。 43. 重慶水泵有限公司,from http://www.cqpumps.com。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43015 | - |
dc.description.abstract | 目前國內的核能電廠已屆使用年限,因此衍生出來與「可靠度」及「風險」有關的議題受到重視。過去有諸多學者利用馬可夫過程進行電廠的可靠度相關研究,但是往往侷限在失效率為常數的案例當中,忽略了實際的物理現象。因此本研究將以電廠中的水泵為例,利用半馬可夫過程建構出符合實際物理現象的數學模式,以求精確地描述水泵的實際表現。除此之外,針對水泵所生出的風險議題,包括「預防維護排程」與「水泵延役」的問題,本文利用風險管理的手法,利用生命週期成本與層級分析法建立完整的數學分析模式,試圖得到管理上的意涵,提供電廠人員做參考。研究結果顯示水泵的可用度會隨著時間逐漸衰退至穩定的狀態。除此之外,經過計算後我們得到水泵最適合的維護週期,並且發現可用度經過預防維護後確實有顯著的改善作用,因此有施行預防維護的必要性。最後針對水泵延役的問題,我們建議更換某些原有的水泵,藉此提升系統的運轉績效。 | zh_TW |
dc.description.abstract | ‘Safety’ and ‘reliability’ have long been important issues related to nuclear power plants. In the past, several researchers have applied Markov process to assess the reliability of nuclear power plants or their components, but often restricted to cases of constant failure rate. Many of them did not take real practices into consideration either. In the present thesis, a Semi-Markov process is proposed to study the reliability of nuclear power plant components. The real data taken from the maintenance record of a few water pumps in a nuclear power plant are used as demonstrative examples. Other safety related issues of pumps such as ‘preventive maintenance scheduling’ and ‘life extension problem’ are also studied by employing risk management tools such as ‘life cycle cost’ and ‘analytical hierarchy process’ in the analyses. It is found that availability of the studied pumps declines dramatically in a transient manner in their earlier usages, and tends to be steady-state in some time. It is also found that the implement of preventive maintenance is necessary. And an optimal periodic maintenance time-cycle is obtained. With regard to the life extension of pumps, it is suggested that some pumps should be replaced rather than maintained continuously after a certain time of usage in order to improve the overall system performance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:32:54Z (GMT). No. of bitstreams: 1 ntu-98-R96546012-1.pdf: 1530080 bytes, checksum: 0ee6771b9d7739578e6be8128a60bd11 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 I 誌謝 II 摘要 III Abstract IV 目錄 V 表目錄 IX 圖目錄 XI 符號說明 XV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究目的 5 1.4 研究內容與本文架構 5 第二章 半馬可夫過程 7 2.1 馬可夫過程簡介 7 2.1.1 馬可夫鏈 7 2.1.2 連續時間馬可夫鏈 9 2.2 馬可夫更新過程 12 2.3 半馬可夫過程 14 2.4 連續時間馬可夫鏈與半馬可夫過程之關係 16 2.5 馬可夫更新方程式 17 2.6 求解馬可夫更新方程式 18 2.6.1 Laplace-Stieltjes法 19 2.6.2 數值方法 20 2.7 求解穩態機率 23 第三章 可靠度理論 24 3.1 可靠度 24 3.1.1 可靠度簡介 24 3.1.2 不可維修產品之可靠度數學模式 25 3.1.3 可維修產品之可靠度數學模式 31 3.2 維護與維護度 31 3.2.1 主動維護 33 3.2.2 被動維護 36 3.3 可用度 39 3.4 決策分析工具 41 3.4.1 生命週期成本 41 3.4.2 層級分析法 44 第四章 案例探討 47 4.1 案例說明 47 4.2 模型建構 50 4.2.1 半馬可夫過程 50 4.2.2 利用Laplace-Stieltjes法求解可用度曲線 52 4.2.3 利用數值方法求解可用度曲線 53 4.2.4 求解穩態機率 55 4.2.5 生命週期成本分析 56 4.2.6 層級分析法 56 4.3 統計分析 60 4.3.1 利用指數分佈嵌合水泵數據 60 4.3.2 利用韋伯分佈嵌合水泵數據 65 4.4 半馬可夫過程之數值結果 73 4.4.1 指數案例 73 4.4.2 韋伯案例 79 4.5 預防維護排程與生命週期成本分析 85 4.5.1 指數案例 85 4.5.2 韋伯案例 99 4.6 水泵延役之生命週期成本分析 112 4.6.1 指數案例 112 4.7.2 韋伯案例 116 第五章 結論與後續工作 120 5.1 研究結論 120 5.2 具體建議 122 5.3 後續工作 123 參考文獻 124 | |
dc.language.iso | zh-TW | |
dc.title | 應用半馬可夫過程於可靠度之研究-以電廠水泵為例 | zh_TW |
dc.title | Semi-Markov process for reliability assessment with application to the pump system of a power plant | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳政鴻(Cheng-Hung Wu),洪ㄧ薰(Yi-Hsun Hung) | |
dc.subject.keyword | 可靠度,風險管理,半馬可夫過程,預防維護, | zh_TW |
dc.subject.keyword | reliability,risk management,Semi-Markov process,preventive maintenance, | en |
dc.relation.page | 128 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 1.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。