請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43007完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宏銘 | |
| dc.contributor.author | Yu-Ching Lin | en |
| dc.contributor.author | 林佑璟 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:32:32Z | - |
| dc.date.available | 2011-07-23 | |
| dc.date.copyright | 2009-07-23 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-20 | |
| dc.identifier.citation | [1] A. Agresti. Categorical data analysis. John Wiley and Sons Publications, 2002.
[2] M. Ames and M. Naaman. Why we tag: motivations for annotation in mobile and online media. In Proc. SIGCHI Conf. Human Factors in Computing Systems, pages 971–980, 2007. [3] J.-J. Aucouturier, F. Pachet, R. Roy, and A. Beurive. Signal + context = better classification. In Proc. Int. Conf. Music Information Retrieval, pages 425–430, 2007. [4] C. Baccigalupo, E. Plaza, and J. Donaldson. Uncovering affinity of artists to multiple genres from social behaviour data. In Proc. Int. Conf. Music Information Retrieval, pages 131–136, 2008. [5] L. Barrington, D. Turnbull, M. Yazdani, and G. Lanckriet. Combining audio content and social context for semantic music discovery. In Proc. ACM Conf. Special Interest Group on Information Retrieval, 2009. [6] T. Bertin-Mahieux, D. Eck, F. Maillet, and P. Lamere. Autotagger: a model for predicting social tags from acoustic features on large music databases. Journal of New Music Research, 37(2):115–135, 2008. [7] M. A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney. Content-based music information retrieval: Current directions and future challenges. Proceedings of the IEEE, 96(4):668–696, 2008. [8] L. Chen, P. Wright, and W. Nejdl. Improving music genre classification using collaborative tagging data. In Proc. ACM Int. Conf. Web Search and Data Mining, pages 84–93, 2009. [9] H.-T. Cheng, Y.-H. Yang, Y.-C. Lin, I.-B. Liao, and H.-H. Chen. Automatic chord recognition for music classification and retrieval. In Proc. IEEE Int. Conf. Multimedia and Expo, pages 1505–1508, 2008. [10] B. Y. Chua and G. Lu. Perceptual rhythm determination of music signal for emotion-based classification. In Proc. Multimedia Modeling, 2006. [11] N. Corthaut, S. Govaerts, K. Verbert, and E. Duval. Connecting the dots: music metadata generation, schemas and applications. In Proc. Int. Conf. Music Information Retrieval, pages 249–254, 2008. [12] C. V. Damme, M. Hepp, and K. Siorpaes. Folksontology: An integrated approach for turning folksonomies into ontologies. In Proc. Bridging the Gep between Semantic Web and Web 2.0, pages 57–70, 2007. [13] R.-E. Fan and C.-J. Lin. A study on threshold selection for multi-label classification. Technical report, 2007. [14] X. Geng, T.-Y. Liu, T. Qin, A. Arnold, H. Li, and H.-Y. Shum. Query dependent ranking using k-nearest neighbor. In Proc. ACM Int. Special Interest Group on Information Retrieval, pages 115–122, 2008. [15] M. Goto. A chorus section detection methodd for musical audio signals and its application to a music listening station. IEEE Trans. Audio, Speech, and Language Processing, 14(5):1783–1794, 2006. [16] X. Hu and J. S. Downie. Exploring mood metadata: Relationships with genre, artist and usage metadata. In Proc. Int. Conf. Music Information Retrieval, pages 67–72, 2007. [17] X. Hu, J. S. Downie, C. Laurier, M. Bay, and A. F. Ehmann. The 2007 MIREX audio mood classification task: Lessons learned. In Proc. Int. Conf. Music Information Retrieval, pages 462–467, 2008. [18] D. Huron. Perceptual and cognitive applications in music information retrieval. In Proc. Int. Conf. Music Information Retrieval, 2000. [19] L. S. Kennedy, A. Natsev, and S.-F. Chang. Automatic discovery of query-class dependent models for multimodal search. In Proc. ACM Int. Conf. Multimedia, pages 882–891, 2005. [20] P. Lamere. Social tagging and music information retrieval. Journal of New Music Research, 37(2):101–114, 2008. [21] M. Levy and M. Sandler. A semantic space for music derived from social tags. In Proc. Int. Conf. Music Information Retrieval, pages 411–416, 2007. [22] L. Lu, D. Liu, and H. Zhang. Automatic mood detection and tracking of music audio signals. IEEE Trans. Audio, Speech and Language Processing, 14(1):5–18, 2006. [23] C. Marlow, M. Naaman, D. Boyd, and M. Davis. Ht06, tagging paper, taxonomy, flickr, academic article, to read. In Proc. Hypertext and Hypermedia, pages 31–40, 2006. [24] K. McDonald and A. F. Smeaton. A comparison of score, rank and probability-based fusion methods for video shot retrieval. In Proc. Int. Conf. Image and Video Retrieval, pages 61–70, 2005. [25] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: analysis and an algorithm. In Proc. Int. Conf. Neural Information Processing Systems, pages 849–856, 2001. [26] F. Pachet and J.-J. Aucouturier. Improving timbre similarity: how high is the sky? Jounal of Negative Results Speech Audio Sciences, 1(1), 2004. [27] R. W. Picard. Affective Computing. the MIT Press, 1997. [28] Y.-Y. Shi, X. Zhu, H.-G. Kim, and K.-W. Eom. A tempo feature via modulation spectrum analysis and its application to music emotion classification. In Proc. IEEE Int. Conf. Multimedia and Expo, pages 1085–1088, 2006. [29] C. Shirky. Ontology is overrated: categories, links and tags. http://www.shirky.com/writings/ontology_overrated.html. [30] L. Specia and E. Motta. Integraing folksonomies with the semantic web. In Proc. European Semantic Web Conference, pages 624–639, 2007. [31] P.-N. Tan, M. Steinbach, and V. Kumer. Introduction to Data Mining. Addison-Wiley, 2005. [32] D. Torres, D. Turnbull, L. Barrington, and G. Lanckriet. Identifying words that are musically meaningful. In Proc. Int. Conf. Music Information Retrieval, pages 405–410, 2007. [33] G. Tsoumakas and I. Katakis. Multi-label classification: an overview. Int. Journal of Data Warehousing and Mining, 3(3):1–13, 2007. [34] G. Tzanetakis and P. Cook. Marsyas: a framework for audio analysis. Organized Sound, 4(3):169–175, 2000. [35] G. Tzanetakis and P. Cook. Musical genre classification of audio signals. IEEE Trans. Speech Audio Processing, 10(5):293–302, 2002. [36] T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates for multi-class classification by pairwise coupling. Int. Journal of Machine Learning Research, 5:975–1005, 2004. [37] R. Yan, J. Yang, and A. G. Hauptmann. Learning query-class dependent weights in automatic video retrieval. In Proc. ACM Int. Conf. Multimedia, pages 548–555, 2004. [38] Y.-H. Yang, Y.-C. Lin, H.-T. Cheng, and H. H. Chen. Mr.Emo: Music retrieval in the emotion plane. In Proc. ACM Int. Conf. Multimedia, pages 1003–1004, 2008. [39] Y.-H. Yang, Y.-C. Lin, Y.-F. Su, and H. H. Chen. A regression approach to music emotion recognition. IEEE Trans. Audio, Speech and Language Processing, 16(2):448–457, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43007 | - |
| dc.description.abstract | 隨著社群標注系統與音樂網路服務的快速增長,獲取大量音樂詮釋資料變得相當容易。由於此類詮釋資料往往與人類對音樂的感知有關,因此可用於幫助基於音樂內容的自動化分類。現有的自動化音樂分類往往受制於音樂訊號特徵與人類感知之間的巨大隔閡,將詮釋資料納入系統,勢必可對分類校能有一定的提昇。在此篇論文中,我們先檢驗情緒與音樂詮釋資料的相關性,接著運用此相關性來幫助音樂情緒的分類。我們提出使用詮釋資料劃分歌曲,並建立特定詮釋資料的分類模型以專注於分類各群內的歌曲情緒。由於一首歌可同時被標上不同型態的音樂詮釋資料,我們再提出了一個新穎的可適性融合的架構,可將各種詮釋資料合併使用。相較於現有方法往往受制於詮釋資料的混亂與稀少,我們提出的方法克服了這些困難並大幅提昇音樂情緒分類的準確度。 | zh_TW |
| dc.description.abstract | Along with the explosive growth of the social tagging systems and musical web services, abundant musical metadata are readily obtainable from the Internet. Since most metadata are related to the human perception of music, they can be utilized to bridge the so-called semantic gap between audio signals and high-level semantics for content-based music classification. In this thesis, we first examine the correlation between emotion and the musical metadta by a statistical association test, and then exploit such correlation for emotion classification. We propose to divide songs according to the metadata and build a metadata-specific model to concentrate on the classification in each group. Since a song can be associated with different types of metadata, such as genre and style, we further propose a novel adaptive fusion scheme to utilize all types of metadata. While the existing methods of exploiting metadata are hampered by the noise and sparseness inherent to metadata, the proposed scheme overcomes these difficulties and significantly improves the accuracy of emotion classification. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:32:32Z (GMT). No. of bitstreams: 1 ntu-98-R96942052-1.pdf: 1618073 bytes, checksum: 6746fa1dc5d509fa10dc5cf0f19c6aa2 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii CHAPTER I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Music Emotion Classification . . . . . . . . . . . . . . . . . . . 1 1.2 Metadata Exploitation for Music Classification . . . . . . . . . 2 1.3 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 4 II. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Metadata and Tag Analysis . . . . . . . . . . . . . . . . . . . . 5 2.2 Metadata Exploitation for Music Classification . . . . . . . . . 7 2.3 Fusion Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 9 III. Data Collection and Analysis . . . . . . . . . . . . . . . . . . . . . 10 3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Statistical Association Analysis . . . . . . . . . . . . . . . . . . 11 3.3 Metadata Reduction . . . . . . . . . . . . . . . . . . . . . . . . 13 IV. Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 Metadata Exploitation . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Local Semantic Coherence . . . . . . . . . . . . . . . . . . . . . 19 4.3 Adaptive Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 21 V. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3 Metadata Exploitation . . . . . . . . . . . . . . . . . . . . . . . 23 5.4 Adaptive Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.5 Issues About Converting Metadata Based On The Clusters in Section 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 VI. Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . 41 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 | |
| dc.language.iso | en | |
| dc.subject | 音樂情緒分類 | zh_TW |
| dc.subject | 可適性融合 | zh_TW |
| dc.subject | 利用詮釋資料 | zh_TW |
| dc.subject | adaptive fusion | en |
| dc.subject | music emotion classification | en |
| dc.subject | metadata exploitation | en |
| dc.title | 利用詮釋資料分類音樂情緒 | zh_TW |
| dc.title | Exploiting Metadata for Music Emotion Classification | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭士康,徐宏民,蔡偉和 | |
| dc.subject.keyword | 音樂情緒分類,利用詮釋資料,可適性融合, | zh_TW |
| dc.subject.keyword | music emotion classification,metadata exploitation,adaptive fusion, | en |
| dc.relation.page | 44 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
