請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42991完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳誠亮 | |
| dc.contributor.author | Hung-Ting Lu | en |
| dc.contributor.author | 呂宏鼎 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:31:50Z | - |
| dc.date.available | 2009-07-24 | |
| dc.date.copyright | 2009-07-24 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-20 | |
| dc.identifier.citation | [1] T. Farkas, B. Czuczai, E. Rev, and Z. Lelkes. New minlp model and modified outer approximation algorithm for distillation column synthesis. Industrial Engineering
Chemical Research 47, 3088–3103 (2008). [2] Z. Olujic, F Fakhri, A de Rijke, J de Graauw and P. J. Jansens. Internal heat integration - the key to an energy-conserving distillation column. Journal of Chemical Technology and Biotechnology 78, 241–248 (2003). [3] J.D. Seader. Continuous distillation apparatus and method. U.S. Patent 4,234,391(1980). [4] T. Glenchur and R. Govind. Study on a continuous heat integrated distillation column. Separation Science and Technology 22, 2323–2338 (1987). [5] M. Nakaiwa, K. Huang, A. Endo, T. Ohmori, T. Akiya and T. Takamatsu. Internally heat-integrated distillation columns: A review. Trans IChemE 81, Part A, 162–177 (2003). [6] D.C. Freshwater. Thermal economy in distillation. Trans. Inst. Chem. Eng 29, 149–160 (1951). [7] D.C. Freshwater. The heat pump in multicomponent distillation. British Chemical Engineering 6, 388–391 (1961). [8] J.R. Flower and R. Jakson. Energy requirements in the separation of mixtures by distillation. Transactions of the Institution of Chemical Engineers 42, 249–258 (1964). [9] R. S. H. Mah, J. J. Nicholas, JR. and R. B. Wodnik. Distillation with secondary reflux and vaporization: A comparative evaluation. AIChE Journal 23, 651–657 (1977). [10] T. Takamatsu, V. Lueprasitsakul and M. Nakaiwa. Modeling and design method for internal heat-integrated packed distillation column. J. Chem. Eng. Jpn 21, 595–601 (1988). [11] V. Lueprasitsakul, S. Hasebe, I. Hashimoto and T. Takamatsu. Study of energy efficiency of a wetted-wall distillation column with internal heat integration. J. Chem. Eng. Jpn 23, 580–587 (1990). [12] T. Takamatsu, M. Nakaiwa, K. Huang, T. Akiya, H. Noda, T. Nakanishi and K. Aso. Simulation oriented development of a new heat integrated distillation column and its characteristics for energy saving.pdf. Computers Chem. Engng. 21, 243–247 (1997). [13] M. Nakaiwa, K. Huang, M. Owa, T. Akiya, T. Nakane, M. Sato and T. Takamatsu. Energy saving in heat-integrated distillation column. Energy 22, 621–625 (1997). [14] M. Nakaiwa, K. Huang, M. Owa, T. Akiya, T. Nakane, M. Sato, T. Takamatsu and H. Yoshitome. Potential energy savings in ideal heat-integrated distillation column. Applied Thermal Engineering 18, 1077–1087 (1998). [15] K. Huang, M. Nakaiwa, T. Akiya, M. Owa, K. Aso and T. Takamatsu. Dynamics of ideal heat integrated distillation columns. J. Chem. Eng. Jpn 29, 656–661 (1996). [16] K. Huang, M. Nakaiwa, T. Akiya, K. Aso and T. Takamatsu. A numerical consideration on dynamic modeling and control of ideal heat integrated distillation columns. J. Chem. Eng. Jpn 29, 344–351 (1996). [17] K. Huang, M. Nakaiwa, M. Owa, T. Akiya, K. Aso and T. Takamatsu. Determining appropriate configuration of ideal heat integrated distillation columns (hidic). J. Chem. Eng. Jpn 30, 575–579 (1997). [18] K. Huang, M. Nakaiwa, T. Akiya, M. Owa, K. Aso and T. Takamatsu. Performance evalution of ideal heat integrated distillation columns. J. Chem. Eng. Jpn 30, 108–115 (1997). [19] M. Nakaiwa, K. Huang, K. Naito, A. Endo, M. Owa, T. Akiya, T. Nakane and T. Takamatsu. A new configuration of ideal heat integrated distillation columns. Computers and Chemical Engineering 24, 239–245 (2000). [20] M. Nakaiwa, K. Huang, K. Naito, A. Endo, T. Akiya, T. Nakane and T. Takamatsu. Parameter analysis and optimization of ideal heat integrated distillation columns. Computers and Chemical Engineering 25, 737–744 (2001). [21] K. Naito,M. Nakaiwa, K. Huang, A. Endo, K. Aso and T. Nakanishi. Operation of a bench-scale ideal heat integrated distillation column (hidic) an experimental study. Computers and Chemical Engineering 24, 495–499 (2000). [22] K. Iwakabe, M. Nakaiwa, K. Huang and T. Nakanishi. Energy saving in multicomponent separation using an internally heat-integrated distillation column (hidic). Applied Thermal Engineering 26, 1362–1368 (2006). [23] K. Iwakabe, M. Nakaiwa, K. Huang, T. Nakanishi and A. Rosjorde. Performance of an internally heat-integrated distillation column (hidic) in separation of ternary mixtures. J. Chem. Eng. Jpn 39, 417–425 (2006). [24] K. Huang, K. Matsuda, K. Iwakabe, T. Takamatsu and M. Nakaiwa. Graphical synthesis of an internally heat-integrated distillation column. J. Chem. Eng. Jpn 39,703–708 (2006). [25] K. Huang, K. Matsuda, T. Takamatsu and M. Nakaiwa. The influences of pressure distribution on an ideal heat-integrated distillation column (hidic). J. Chem. Eng. Jpn 39, 652–660 (2006). [26] M. Gadalla, Z. Olujic, A. de Rijke and P. J. Jansens. Reducing co2 emissions of internally heat-integrated distillation columns for separation of close boiling mixtures. Energy 31, 2073–2081 (2006). [27] Z. Olujic, L. Sun, A. de Rijke and P. J. Jansens. Conceptual design of an internally heat integrated propylene-propane splitter. Energy 31, 3083–3096 (2006). [28] Z. Olujic, L. Sun, M. Gadalla, A. de Rijke, P. J. Jansens. Enhancing thermodynamic efficiency of energy intensive distillation columns via internal heat integration. Chem. Biochem. Eng. Q. 22, 383–392 (2008). [29] J. Viswanathan and I. E. Grossmann. An alternate minlp model for finding the number of trays required for a specified separation objective. Computers Chemical Engineering 17, 949–955 (1993). [30] A. Aggarwal, C.A. Floudas. Synthesis of heat integrated nonsharp distillation sequences. Computers and chemical Engineering 16, 89–108 (1992). [31] I. E. Grossmann, P. A. Aguirre, M. Barttfeld. Optimal synthesis of complex distillation columns using rigorous models. Computers and Chemical Engineering 29, 1203–1215 (2005). [32] A.R. Ciric, D.Y. Gu. Synthesis of nonequilibrium reactive distillation processes by minlp optimization. AICHE Journal 40, 1479–1487. [33] J.M. Smith, H.C. Van Ness, M.M. Abbott. Introduction to Chemical Engineering Thermodynamics (McGraw-Hill, 2005). [34] J. M. Douglas. Conceptual Design of Chemical Processes (McGraw-Hill, Inc., 1988). [35] W. L. Luyben. Plantwide Dynamic Simulators In Chemical Processing and Control (Marcel Dekker, 2002). [36] A. Brooke, D. Kendrick, A. Meeraus, R. Raman, and R. E. Rosenthal. GMAS : A User’s Guide (GAMS Development Corporation). [37] T. Fukushima, T.Tominari, M. Kano and S. Hasebe. A study of dynamics and control of heat integrated distillation column (HIDiC). PSE Asia 706–711 (2005). [38] J. Viswanathan and I. E. Grossmann. A combined penalty function and outer approximation method for minlp optimization. Comp. Chem. Eng. 14, 769 (1990). [39] C. J. Ho. Energy saving and reduction of co2 emission in chemical processesintroduction of heat integrated distillation column. Chemical monthly 18–28 (2006). [40] B. E. Poling. The properties of gases and liquids (McGraw-Hill Book Co., 2001). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42991 | - |
| dc.description.abstract | 蒸餾系統是目前應用在分離物質上最重要的技術,但其能量使用效率上的低落造成許多能源的浪費,因此對於蒸餾程序之改善國際上已有許多研究討論,本文將針對內熱整合之技術進行探討研究。
內熱整合蒸餾塔(Heat Integrated Distillation Column, HIDiC)為單一蒸餾塔的內部熱整合架構,是一整合蒸氣再壓縮與非絕熱蒸餾塔優點的蒸餾塔。在日本與荷蘭的研究已行之有年,其高能源使用效率已多方面的被證實,但成本的考量方面的研究較少被提出。且之前的研究大多討論的是對稱型內熱整合蒸餾塔(symmetric HIDiC),對於精餾段語氣提段板數不同的非對稱型內熱整合蒸餾塔(asymmetric HIDiC)架構尚未有完整的研究,所以本文利用數學規劃法提出一普遍且完整之模式,包含能量使用以及年總成本之計算,比較傳統蒸餾塔(Conventional Distillation Column)與兩種不同內熱整合蒸餾塔的最佳設計架構,並分析非對稱式內熱整合蒸餾塔的結構對其能量與成本的影響。 | zh_TW |
| dc.description.abstract | Distillation is by far the most applied separation technology, but its low energy efficiency is also recognized as a major drawback. In order to overcome this drawback, various novel ideas and approachES have been proposed in literature. The subject of this work is on the design of internal energy-integrated distillation system.
Studies on internally heat-integrated distillation column(HIDiC) are proceeding for many years. HIDiC was proved to be effective in energy saving, but so far only few works addressed about its economic point of view and “asymmetric” structure. This work aims to develop a general model of mixed-integer nonlinear program (MINLP) for HIDiC design where exergy consumption and total annualized cost (TAC) are both taken into account. After the optimization, the results of asymmetric HIDiC are compared with those of conventional distillation column and symmetric HIDiC in the two aspects (exergy consumption and TAC). The follow-up analysis shows how the structure of asymmetric HIDiC to influence the energy efficiency and total cost. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:31:50Z (GMT). No. of bitstreams: 1 ntu-98-R96524046-1.pdf: 2226874 bytes, checksum: 3da9a1880e118d83f3423b3f37697cf4 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要 i
致謝 iii 摘要 v Abstract vii 附圖目錄 xiii 附表目錄 xvii 1. 緒論 1 1.1 前言 1 1.2 HIDiC之原理與結構介紹 2 1.3 文獻回顧與當前之技術背景 6 1.4 研究動機與目的 9 1.5 組織章節 10 2. 內熱整合蒸餾塔逐層式超結構模式建構 11 2.1 模式建立之背景說明 11 2.2 模式建立之基本假設條件 12 2.3 設計流程之介紹 14 2.4 模式之符號、集合、系統參數與系統變數(Indices, Sets, Parameters, and Variables) 16 2.4.1 符號說明(Indices) 16 2.4.2 集合說明(Sets) 17 2.4.3 系統參數(Parameters) 18 2.4.4 系統變數(Variables) 20 2.5 目標函數與限制式(Objective Functions and Contraints) 20 2.5.1 0-1變數決定塔板數限制式(Binary Representation of Column Trays) 20 2.5.2 質量及能量平衡限制式(Mass and Energy Balance Constraints) 21 2.5.3 邏輯限制式(Logical Constraints) 31 2.5.4 莫耳分率限制式(Mole Fraction Constraints) 32 2.5.5 單調增減限制式(Monotonic Constraints) 32 2.5.6 熱力學關係式(Thermodynamics) 33 2.5.7 規格限制式(Specification Constraints) 34 2.5.8 氣體與液體莫耳熱焓量計算式(Vapor and Liquid Molar Enthalpy Calculation) 35 2.5.9 蒸氣再壓縮機設計方程式(Compressor Design Equations) 35 2.5.10 塔結構限制式(Column Structure Constraints) 37 2.5.11 年總成本計算式(Total Annual Costs Calculation) 39 2.5.12 目標函數(Objective Functions) 41 3. 模式之實例暨模擬結果分析與討論 45 3.1 最佳化軟體介紹 45 3.2 苯與甲苯分離系統與基本性質之介紹 46 3.3 苯於甲苯最適化設計 49 3.3.1 目標函數一:最小化外部提供有效能(Exergy) 49 3.3.2 目標函數二:最小化年總成本(TAC) 61 3.4 非對稱內熱整合蒸餾塔(asHIDiC)架構討論 71 3.4.1 比較asHIDiC在最小化有效能與年總成本下的設計架構 71 3.4.2 asHIDiC板數對最適化結果之影響(Min. Exergy) 75 3.4.3 asHIDiC板數對最適化結果之影響(Min. TAC) 82 4. 結論與未來展望 85 4.1 結論 85 4.2 未來展望 87 參考文獻 89 作者簡歷 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 內熱整合蒸餾塔 | zh_TW |
| dc.subject | 超結構 | zh_TW |
| dc.subject | 最適化 | zh_TW |
| dc.subject | 混合整數非線性規劃 | zh_TW |
| dc.subject | MINLP | en |
| dc.subject | HIDiC | en |
| dc.subject | Superstructure | en |
| dc.subject | Optimization | en |
| dc.title | 以數學規劃法作非對稱內熱整合蒸餾塔最適化設計 | zh_TW |
| dc.title | Asymmetric Heat-Integrated Distillation Column Design by Mathematical Programming Approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃孝平,王子奇 | |
| dc.subject.keyword | 內熱整合蒸餾塔,混合整數非線性規劃,最適化,超結構, | zh_TW |
| dc.subject.keyword | HIDiC,MINLP,Optimization,Superstructure, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
