Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42989
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姜祖恕(Tzuu-Shuh Chiang)
dc.contributor.authorWan-Chu Chienen
dc.contributor.author簡婉竹zh_TW
dc.date.accessioned2021-06-15T01:31:45Z-
dc.date.available2009-07-30
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-20
dc.identifier.citation[1]R. Z. Khasminskii and G. Yin, On transition densities of singular perturbed diffusion with fast and slow components, SIAM Journal on Applied Mathematics, Vol. 56, No. 6 (Dec., 1996), pp. 1794-1819.
[2]R. Z. Khasminskii and G. Yin, Asymptotic series for singular perturbed Kolmogorov-Fokker-Planck equations, SIAM Journal on Applied Mathematics, Vol. 56, No. 6 (Dec., 1996), pp. 1766-1793.
[3]D. G Aronson, Non-negative solutions of linear parabolic equations, Ann, Scuola Norm. Sup. Pisa C1. Sci.,XXII (1968), pp.607-694.
[4]O. A Ladyahenskaia, V. A. Solonnikov, and N.Ural'tseva, Linear and quasilinear equations of parabolic type, American Mathematical Society, Providence, RI, 1968.
[5]A. Bensoussan, Perturbation methods in optimal control, J. Wiley, Chichester, 1988.
[6]A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, NJ, 1964.
[7]R. Z. Khasminskii, Stochastic stability of differential equations, Sijthoff & Noordhoff, Groningen, the Netherlands, 1980.
[8]Bernt Øksendal, Stochastic Differential Equations: An Introduction with Applications, 6th ed. 2003
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42989-
dc.description.abstract這篇文章是考慮有二階擾動影響的擴散過程,並且利用漸近展開的方法來求滿足向前方程式的轉移密度函數,希望可以用一個一般項和兩個邊界項(分別是ε階層和ε^2階層)來描述解的行為。zh_TW
dc.description.abstractThis article introduces the diffusion process with second-order perturbations and match the asymptotic expansions for the solutions to forward equations. And we separate the solution by a regular term and two boundary layer terms to describe the behavior of solution. (ε-layer andε^2-layer).en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:31:45Z (GMT). No. of bitstreams: 1
ntu-98-R96221022-1.pdf: 577638 bytes, checksum: a8e9ff3d2d84959c660188941ba59db1 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . iii
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . iii
1 Introduction 1
2 Basic assumptions and denitions 8
3 The regular expansions 13
3.1 The zero-order regular terms . . . . . . . . . . . . . . 13
3.2 The first-order regular terms . . . . . . . . . . . . . .17
3.3 The ith-order regular terms . . . . . . . . . . . . . . . 19
4 The boundary layer expansions 21
4.1 The second boundary layer terms . . . . . . . . . . . . . 22
4.2 The first boundary layer terms . . . . . . . . . . . . . 25
4.2.1 The zero-order of first boundary layer terms . . . . .. 25
4.2.2 The first-order of first boundary layer terms . . . . . 27
4.2.3 The ith-order of first boundary layer terms . . .. . . 29
5 Choose the initial condition 30
5.1 Special property of Green's function and the solutions . 30
5.2 Choose the initial conditions of the zero-order . . . . . 34
5.3 Choose the initial conditions of the first-order . . .. . 36
6 The error term 39
References 46
dc.language.isoen
dc.subject向前方程式zh_TW
dc.subject二階擾動zh_TW
dc.subjectforward equationen
dc.subjectsecond-order perturbationsen
dc.title二階擾動擴散過程中轉換密度的漸近展開zh_TW
dc.titleAsymptotic Expansions to Transition Densities of Second-Order Perturbed Diffusion Processen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許順吉(Shuenn-Jhi Sheu),韓傳祥(Chuan-Hsiang Han)
dc.subject.keyword二階擾動,向前方程式,zh_TW
dc.subject.keywordsecond-order perturbations,forward equation,en
dc.relation.page46
dc.rights.note有償授權
dc.date.accepted2009-07-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
564.1 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved