請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42978完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何國川(Kuo-Chuan Ho) | |
| dc.contributor.author | Ta-Jen Li | en |
| dc.contributor.author | 李達人 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:31:17Z | - |
| dc.date.available | 2011-07-23 | |
| dc.date.copyright | 2009-07-23 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-20 | |
| dc.identifier.citation | [1] K. Yano, I. Karube, “Molecularly imprinted polymers for biosensor applications”, Trends Anal. Chem., 18, 3 (1999).
[2] G. Winter, A.D. Griffiths, R.E. Hawkins, H.R. Hoogenboom, “Making antibodies by phage display technology”, Annu. Rev. Immuno., 12, 433 (1994). [3] P.J. Hudson, “Recombinant antibody fragments”, Curr. Opin. Biotechnol., 9, 395 (1998). [4] S. Brahim, D. Narinesingh, A. Guiseppi-Elie, “Amperometric determination of cholesterol in serum using a biosensor of cholesterol oxidase contained within a polypyrrole-hydrogel membrane”, Anal. Chim. Acta, 448, 27 (2001). [5] B. Sellergren, “Molecularly imprinted polymers, man-Made mimics of antibodies and their applications in analytical chemistry”, Elsevier, Amsterdam, The Netherlands (2001). [6] J. Golini, “ The dangers of creatinine”, Booklocker.com (2006). [7] J. Liebig, “Kreatin und kreatinin, bestandtheile des harns der menschen”, J. Prakt. Chem., 40, 288 (1847). [8] C.A. Pekelharing, C.J.C. van Hoogenhuyze, “The formation of creatine in muscle by tonus and rigidity”, Hoppe-Seylers Z., 64, 262 (1910). [9] C.H. Fiske, Y. Subbarow, “The nature of the inorganic phosphate in voluntary muscle”, Science, 65, 403 (1927). [10] S. Narayanan, H.D. Appleton, “Creatinine: a review”, Clin. Chem., 26, 1119 (1980). [11] J. Horbaczewski, “Neue synthese des kreatins”, Jahresber. Their Chem., 15, 86 (1885). [12] W. Paulmann, “Beitrage zur kenntniss des sarkosins”, Arch. Pharm., 232, 601 (1894). [13] M. Wyss, R.K. Daouk, “Creatine and creatinine metabolism”, Physiol. Rev., 80, 1108 (2000). [14] K. Bloch, R. Schoenheimer, “Studies in protein metabolism. XI. The metabolic relation of creatine and creatinine studied with isotopic nitrogen”, J. Biol. Chem., 131, 111 (1939). [15] K. Bloch, R. Schoenheimer, “The biological formation of creatine”, J. Biol. Chem., 133, 634 (1940). [16] K. Bloch, R. Schoenheimer, “The biological origin of the amidine group in creatine”, J. Biol. Chem., 134, 785 (1940). [17] H. Borsook, J.W. Dubnoff, “The formation of creatine from glycocyamine in the liver”, J. Biol. Chem, 132, 559 (1940). [18] H. Borsook, J.W. Dubnoff, “The formation of creatine from glycocyamine in animal tissues”, J. Biol. Chem, 138, 389 (1941). [19] V. du Vigneaud, J.P. Chandler, M. Cohn, G.B. Brown, “The transfer of methyl group from methionine to choline and creatine”, J. Biol. Chem., 134, 787 (1940). [20] V. du Vigneaud, M. Cohn, J.P. Chandler, J.R. Schenck, S. Simmons, “The utilization of the methyl group of methionine in the biological synthesis of choline and creatine”, J. Biol. Chem., 140, 625 (1941). [21] 何敏夫,“臨床化學 Clinical chemistry”,第四版,合記出版社,台北,台灣 (2005)。 [22] P.H. Raven, G.B. Johnson, “Biology”, 5th edition, McGraw-Hill, Boston (1999). [23] 陳威志,“利用微卡計所得資訊設計肌酸酐分子模版”,國立成功大學化學工程研究所碩士論文,台南,台灣 (2004)。 [24] 駱永建,“腎功能檢測中尿素與尿酸生化感測器之研究”,東海大學化學工程研究所博士論文,台中,台灣 (2006)。 [25] R.D. Perrone, N.E. Madias, A.S. Levey, “Serum creatinine as an index of renal function: new insights into old concepts”, Clin. Chem., 38, 1933 (1992). [26] 黃清意,賴世偉,林正介,“蛋白尿與微量蛋白尿”,基層醫學,第二十一卷第六期 (2006)。 [27] A. Kaplan, K.E. Opheim, R. Jack, B. Toivola, A.W. Lyon, “Clinical chemistry: Interpretation and techniques”, 4th edition, Lea and Febiger, Philadelphia (1995). [28] C.A. Burtis, E.R. Ashwood, “Tietz textbook of clinical chemistry”, 3rd edition, W.B. Saunders, Philadelphia (1999). [29] J.C. Chen, A.S. Kumar, H.H. Chung, S.H. Chien, M.C. Kuo, J.M. Zen, “An enzymeless electrochemical sensor for the selective determination of creatinine in human urine”, Sens. Actuator B-Chem., 115, 473 (2006). [30] I. Greenwald, “The chemistry of Jaffé reaction for creatinine II. The effect of substitution in the creatinine molecule and a possible formula for the red tautomer”, J. Am. Chem. Soc., 47, 1443 (1925). [31] O. Folin, “On the determination of creatinine and creatine in blood and tissues”, J. Biol. Chem. 17, 475 (1914). [32] O. Folin, H. Wu, “A system of blood analysis”, J. Biol. Chem., 38, 81 (1919). [33] R.S. Hare, “Endogenous creatinine in serum and urine”, Proc. Soc. Exp. Biol. Med., 74, 148 (1950). [34] N.A. Daugherty, K.B. Hammond, I.M. Osberg, “Bilirubin interference with the kinetic Jaffé method for serum creatinine”, Clin. Chem., 24, 392 (1978). [35] G.A. Moss, R.J.L. Bondar, D.M. Buzzelli, “Kinetic enzymatic method for determining serum creatinine”, Clin. Chem., 21, 1422 (1975). [36] A.J. Killard, M.R. Smyth, “Creatinine biosensors: principles and designs”, Trends Biotechnol., 18, 433 (2000). [37] M. Meyerhoff, G.A. Rechnitz, “An active enzyme electrode for creatinine”, Anal. Chim. Acta, 85, 277 (1976). [38] G.G. Guilbault, P.R. Coulet, “Creatinine-selective enzyme electrodes”, Anal. Chim. Acta, 152, 223 (1983). [39] M. Mascini, S. Fortunati, D. Moscone, G. Palleschi, “Ammonia abatement in an enzymatic flow system for the determination of creatinine in blood sera and urine”, Anal. Chim. Acta, 171, 175 (1985). [40] T. Osaka, S. Komaba, A. Amano, “Highly selective microbiosensor for creatinine based on the combination of inactive polypyrrole with polyion complexes”, J. Electrochem., 145, 406 (1998). [41] T. Tsuchida, K. Yoda, “Multi-enzyme membrane electrodes for determination of creatinine and creatine in serum”, Clin. Chem., 29, 51 (1983). [42] J. Wang, “Analytical electrochemistry”, 3rd edition, Wiley-VCH, N.J. Hoboken (2006). [43] Y.T. Shih, H.J. Huang, “A creatinine deiminase modified polyaniline electrode for creatinine analysis”, Anal. Chim. Acta, 392, 143 (1999). [44] M.B. Madaras, I.C. Popescu, S. Ufer, R.P. Buck, “Microfabricated amperometric creatine and creatinine biosensors”, Anal. Chim. Acta, 319, 335 (1996). [45] J. Schneider, B. Grundig, R. Renneberg, K. Cammann, M.B. Madaras, R.P. Buck, K.D. Vorlop, “Hydrogel matrix for enzyme entrapment in creatine / creatinine amperometric biosensing”, Anal. Chim. Acta, 325, 161 (1996). [46] G.F. Khan, W. Wernet, “A highly sensitive amperometric creatinine sensor”, Anal. Chim. Acta, 351, 151 (1997). [47] E.J. Kim, T. Haruyama, Y. Yanagida, E. Kobatake, M. Aizawa, “Disposable creatinine sensor based on thick-film hydrogen peroxide electrode system”, Anal. Chim. Acta, 394, 225 (1999). [48] B. Tombach, J. Schneider, F. Matzkies, R.M. Schaefer, G.C. Chemnitius, “Amperometric creatinine biosensor for hemodialysis patients”, Clin. Chim. Acta, 312, 129 (2001). [49] G.H. Hsiue, P.L. Lu, J.C. Chen, “Multienzyme-immobilized modified polypropylene membrane for an amperometric creatinine biosensor”, J. Appl. Polym. Sci., 92, 3126 (2004). [50] K. Sreenivasan, R. Sivakumar, “Interaction of molecularly imprinted polymers with creatinine”, J. Appl. Polym. Sci., 66, 2539 (1997). [51] M. Subat, A. S. Borovik, B. Konig, “Synthetic Creatinine Receptor: Imprinting of a Lewis acidic zinc(II) cyclen binding site to shape its molecular recognition selectivity”, J. Am. Chem. Soc., 126, 3185 (2004). [52] H.A. Tsai, M.J. Syu, “Synthesis of creatinine-imprinted poly(β-cyclodextrin) for the specific binding of creatinine”, Biomaterials, 26, 2759 (2005). [53] R.Y. Hsieh, H.A. Tsai, M.J. Syu, “Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums”, Biomaterials, 27, 2083 (2006). [54] S. Subrahmanyam, S.A. Piletsky, E.V. Piletska, B. Chen, K. Karim, A. Turner, “Bite-and Switch approach using computationally designed molecularly imprinted polymers for sensing creatinine”, Biosens. Bioelectron., 16, 631 (2001). [55] T.P. Delaney, V.M. Mirsky, O.S. Wolfbeis, “Capacitive creatinine sensor based on a photografted molecularly imprinted polymer”, Electroanalysis, 14, 221 (2002). [56] D. Lakshmi, B.B. Prasad, P.S. Sharma, “Creatinine sensor based on a molecularly imprinted polymer-modified hanging mercury drop electrode”, Talanta, 70, 272 (2006). [57] P.S. Sharma, D. Lakshmi, B.B. Prasad, “Highly sensitive and selective detection of creatinine by combined use of MISPE and a complementary MIP-Sensor”, Chromatographia, 65, 419 (2007). [58] A.K. Patel, P.S. Sharma, B.B. Prasad, “Development of a creatinine sensor based on a molecularly imprinted polymer-modified gol-gel film on graphite electrode”, Electroanalysis, 19, 2102 (2008). [59] U.R. Lemieux, U. Spohr, “How Fisher, Emil was led to the lock and key concept for enzyme specificity”, Adv. Carbohydr. Chem. Biochem., 50, 1 (1994). [60] 許玉瑩,“利用矽氧烷化合物製備分子拓印高分子”,國立中央大學化學工程與材料工程研究所碩士論文,桃園,台灣 (2005)。 [61] F. Breinl, F. Haurowitz, “Chemical examinations on the precipitate from haemoglobin and anti-haemoglobin serum and comments on the nature of antibodies”, Hoppe-Seylers Z., 192, 45 (1930). [62] S. Mudd, “A hypothetical mechanism of antibody formation”, J. Immuno., 23, 423 (1932). [63] L. Pauling, “A theory of the structure and process of formation of antibodies”, J. Am. Chem. Soc., 62, 2643 (1940). [64] 周澤川,“從紅龜粿印模到分子模版”,科學發展,419期 (2007)。 [65] 蘇煒翔,“製備高選擇性分子模版從蛋及疫苗中進行固相萃取過敏原卵蛋白”,國立成功大學化學工程研究所碩士論文,台南,台灣 (2008)。 [66] F.H. Dickey, “The preparation of specific adsorbents”, Proc. Natl. Acad. Sci. U. S. A., 35, 227 (1949). [67] G. Wulff, A. Sarhan “Use of polymers with enzyme-analogous structures for resolution racemates”, Angew. Chem. Int. Edit., 11, 341 (1972). [68] O. Norrlow, M. Glad, K. Mosbach, “Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates”, J. Chromatogr., 299, 29 (1984). [69] B. Sellergren, B. Ekberg, K. Mosbach,“Molecular imprinting of amino acid derivatives in macroporous polymers: Demonstration of substrate- and enantio-selectivity by chromatographic resolution of racemic mixtures of amino acid derivatives ”, J. Chromatogr., 347, 1 (1985). [70] 吳佳怡,“分子拓印高分子之製備”,國立中央大學化學工程與材料工程研究所碩士論文,桃園,台灣 (2003)。 [71] S. Marx, A. Zaltsman, “Molecular imprinting of sol gel polymers for the detection of paraxone in water”, Intern. J. Environ. Anal. Chem., 83, 671 (2003). [72] 王思惠,“應用分子模版從不同大豆溶液中萃取異黃酮素”,國立成功大學化學工程研究所碩士論文,台南,台灣 (2007)。 [73] M.J. Whitcombe, M.E. Rodriguez, P. Villar, E.N. Vulfson, “A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol” J. Am. Chem. Soc., 117, 7105 (1995). [74] G. Vlatakis, L.I. Andersson, R. Muller, K. Mosbach, “Drug assay using antibody mimics made by molecular imprinting”, Nature, 361, 645 (1993). [75] 葉威明,“以分子模版修飾電極感測嗎啡以及膽固醇”,國立台灣大學化學工程研究所碩士論文,台北,台灣 (2005)。 [76] J.D. Marty, M. Mauzac, “Molecular imprinting: state of the art and perspectives”, Adv. Polym. Sci., 172, 1 (2005). [77] K. Hosoya, K. Yoshizako, “Molecular recognition towards coplanar polychlorinated biphenyls based on the porogen imprinting effects of xylenes”, J. Chromatogr., 828, 91 (1998). [78] D.A. Spivak, “Optimization, evaluation, and characterization of molecularly imprinted polymers”, Adv. Drug Deliv. Rev., 57, 1779 (2005). [79] 林欣怡,“用微接觸技術製備肌紅蛋白質的人工抗體模版”,國立成功大學化學工程研究所碩士論文,台南,台灣 (2006)。 [80] M.J. Whitcombe, E.N. Vulfson, “Imprinted polymers”, Adv. Mater., 13, 467 (2001). [81] L. Fischer, R. Muller, B. Ekberg, K. Mosbach, “Direct enantioseparation of beta adrenergic blockers using a chiral stationary phase prepared by molecular imprinting”, J. Am. Chem. Soc., 113, 9358 (1991). [82] D. Kriz, C. Berggren, K. Lars, I. Andersson, K.H. Mosbach, “Thin-layer chromatography based on the molecular imprinting technique”, Anal. Chem., 66, 2636 (1994). [83] R.J. Ansell, K. Mosbach, “Molecularly imprinted polymers by suspension polymerization in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent”, J. Chromatogr. A, 787, 55 (1997). [84] J. Haginaka, H. Takehira, K. Hosoya, N. Tanaka, “Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen: Comparison of molecular recognition ability of molecularly imprinted polymers prepared by thermal and redox polymerization techniques”, J. Chromatogr. A, 816, 113 (1998). [85] K. Hosoya, K. Yoshizako, Y. Shirasu, K. Kimata, T. Araki, N. Tanaka, J. Haginaka, “Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography structural contribution of cross-linked polymer network on molecular recognition”, J. Chromatogr. A, 728, 139 (1996). [86] A.G. Mayes, K. Mosbach, “Molecularly imprinted polymer beads: suspension polymerization using liquid perflurocarbon as the dispering phase”, Anal. Chem. 65, 3769 (1996). [87] F. Svec, J.M.J. Frechet, “Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography”, Anal. Chem., 65, 2243 (1992). [88] B. Sellergren, “Direct drug determination by selective sample enrichment on an imprinted polymer”, Anal. Chem., 66, 1578 (1994). [89] F. Puoci, G. Girillo, M. Curcio, F. Iemma, U.G. Spizzirri, N. Picci, “Molecularly imprinted solid phase extraction for the selective HPLC determination of α-tocopherol in bay leaves”, Anal. Chim. Acta, 593, 164 (2007). [90] R.J. Ansell, O. Ramstrom, K. Mosbach, “Towards artificial antibodies prepared by molecular imprinting”, Clin. Chem., 42, 1506 (1996). [91] K. Haupt, K. Mosbach, “Plastic antibodies: developments and applications”, Trends Biotechnol., 16, 468 (1998). [92] R. Muller, L.I. Andersson, K. Mosbach, “Molecularly imprinted polymers facilitating a β-elimination reaction”, Makromol. Chem., Rapid Commun., 14, 637 (1993). [93] G. Wulff, T. Gross, R. Schonfeld, “Enzyme models based on molecularly imprinted polymers with strong esterase activity”, Angew. Chem. Int. Ed. Engl., 36, 1961 (1997). [94] M.A. Markowitz, P.R. Kust, J. Klaehm, G. Deng, B.P. Gaber, “Surface-imprinted silica particles: the effects of added organolsilanes on catalytic activity”, Anal. Chim. Acta, 435, 177 (2001). [95] B.R. Eggins, “Chemical sensors and biosensors”, Wiley (2006). [96] M.J. Syu, T.C. Chiu, C.Y. Lai, Y.S. Chang, “Amperometric detection of bilirubin from a micro-sensing electrode with a synthetic bilirubin imprinted poly(MAA-co-EGDMA) film”, Biosens. Bioelectron., 22, 550 (2006). [97] M.J. Syu, Y.M. Nian, “An allosteric model for the binding of bilirubin to the bilirubin imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate)”, Anal. Chim. Acta, 539, 97 (2005). [98] C.Y. Huang, M.J. Syu, Y.S. Chang, C.H. Chang, T.C. Chou, B.D. Liu, “A portable potentiostat for the bilirubin-specific sensor prepared from molecular imprinting”, Biosens. Bioelectrons., 22, 1694 (2007). [99] H.J. Liang, T.R. Ling, J.F. Rick, T.C. Chou, “Molecularly imprinted electrochemical sensor able to enantioselectively recognition D and L-tyrosine”, Anal. Chim. Acta, 542, 83 (2005). [100] D. Kriz, K. Mosbach, “Competitive amperometric morphine sensor based on an agarose immobilized molecularly imprinted polymer”, Anal. Chim. Acta, 300, 71 (1995). [101] W.M. Yeh, K.C. Ho, “Amperometric morphine sensing using a molecularly imprinted polymer-modified electrode”, Anal. Chim. Acta, 542, 76 (2005). [102] K.C. Ho, W.M. Yeh, T.S. Tung, J.Y. Liao, “Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophen) immobilized molecularly imprinted polymer particles prepared by participation polymerization”, 542, 92 (2005). [103] M.C. Blanco-Lopez, M.J. Lobo-Castanon, A.J. Miranda-Ordieres, T. Blanco, “Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes”, Biosens. Bioelectron., 18, 353 (2003). [104] R. Shoji, T. Takeuchi, I. Kubo, “Atrazine sensor based on molecularly imprinted polymer-modified gold electrode”, Anal. Chem., 75, 4882 (2003). [105] L. Pospisil, R. Trskova, R. Fuoco, M.P. Colombini, “Electrochemistry of s-triazine herbicides of atrazine and tertbutylazine in aqueous solutions”, J. Electroanal. Chem., 395, 189 (1995). [106] P. Andrea, S.A. Miroslav, S.A. Silvia, M. Stanislav, “A solid binding matrix/molecularly imprinted polymer-based sensor system for the determination of clenbuterol in bovine liver using differential-pulse voltammetry”, Sens. Actuator B-Chem, 76, 286 (2001). [107] S.A. Piletsky, E.V. Piletskaya, T.A. Sergeyeva, T.L. Panasyuk, A.V. El’skaya, “Molecularly imprinted self-assembled films with specificity to cholesterol”, Sens. Actuator B-Chem., 60, 216 (1999). [108] L.C.S. Chou, C.C. Liu, “Development of a molecularly imprinting thick film electrochemical sensor for cholesterol detection”, Sens. Actuators B-Chem., 110, 204 (2005). [109] Y. Yoshimi, R. Ohdaria, C. Iiyama, K. Sakai, “Gate effect of thin layer of molecularly-imprinted poly(methacrylic acid-co-ethyleneglycol dimethacrylate)”, 73, 49 (2001). [110] T.L. Delaney, D. Zimin, M. Rahm, D. Weiss, O.S. Wolfbeis, V.M. Mirsky, “Capacitive detection in ultrathin chemosensors prepared by molecularly imprinted grafting photopolymerization”, Anal. Chem., 79, 3220 (2007). [111] T.Y. Lin, C.H. Hu, T.C. Chou, “Determination of albumin concentration by MIP-QCM sensor”, Biosens. Bioelectron., 20, 75 (2004). [112] N. Sallacan, M. Zayats, T. Bourenko, A.B. Kharitonov, I. Willner, “Imprinting of nucleotide and monosaccharide recognition sites in acrylamidephenylboronic acid-acrylamide copolymer membranes associated with electronic transducers”, 74, 702 (2002). [113] T. Kobayashi, Y. Murawaki, P.S. Reddy, M. Abe, N. Fujii, “Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance”, Anal. Chim. Acta., 435, 141 (2001). [114] K. Haupt, K. Noworyta, W. Kutner, “Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance”, Anal. Commun., 36, 391 (1999). [115] A. Kugimiya, T. Takeuchi, “Molecularly imprinted polymer-coated quartz crystal microbalance for detection of biological hormone”, Electroanalysis, 11, 1158 (1999). [116] J.D. Wright, N. Sommerdijk, “Sol-Gel materials chemistry and applications”, Gordon and Breach Science Publishers, Amsterdam, Nitherlands (2001). [117] 魏宏森,“溶膠-凝膠法製備相轉移材料微膠囊”,國立中央大學化學工程與材料科學研究所碩士論文,桃園,台灣 (2002)。 [118] 鐘佳芸,“溶膠-凝膠法製備分子拓印高分子”,國立中央大學化學工程與材料科學研究所碩士論文,桃園,台灣 (2004)。 [119] 詹佳樺,“溶膠-凝膠法製備聚甲基丙烯酸甲酯/二氧化矽混成體之研究”,國立中央大學化學工程與材料科學研究所碩士論文,桃園,台灣 (2001)。 [120] A.M. Siouffi, “Silica gel-based monoliths prepared by the sol-gel method: facts and figures”, J. Chromatogr., 1000, 801 (2003). [121] M. Jokinen, E. Gyorvary, J.B. Rosenholm, “Viscoelastic characterization of three different sol-gel derived silica gels”, Colloid Surf. A-Physicochem. Eng. Asp., 141, 205 (1998). [122] A. Katz, M.E. Davis, “Molecular imprinting of bulk microporous silica”, Nature, 403, 286 (2000). [123] S. Marx, Z. Liron, “Molecular imprinting in thin films of organic-inorganic hybrid sol-gel and acrylic polymers”, Chem. Mater., 13, 3624 (2001). [124] S.F. Shoresh, D. Avnir, S. Marx, “General method for chiral imprinting of sol-gel thin films exhibiting enantioselectivity”, Chem. Mater., 15, 3607 (2003). [125] C.W. Hsu, M.C. Yang, “Electrochemical epinephrine sensor using artificial receptor synthesized by sol-gel process”, Sens. Actuator B-Chem., 134, 680 (2008). [126] R.J. Makote, M.M. Collinson, “Dopamine recognition in templated silicate films”, Chem. Commun., 425 (1998). [127] R.J. Makote, M.M. Collinson, “Template recognition in inorganic-organic hybrid films prepared by the sol-gel process”, 10, 2440 (1998). [128] S. Marx, A. Zaltsman, I. Turyan, D. Mandler, “Parathion sensor based on molecularly imprinted sol-gel films”, Anal. Chem.,76, 120 (2004). [129] S.F. Shoresh, I. Turyan, D. Mandler, D. Avnir, S. Marx, “Chiral electrochemical recognition by very thin molecularly imprinted sol-gel films”, 21, 7842 (2005). [130] S.L. Gong, Z.J. Yu, L.Z. Meng, L. Hu, Y.B. He, “Dye-molecular-imprinted polysiloxanes. II. Preparation, characterization, and recognition behavior”, J. Appl. Polym. Sci., 93, 637 (2004). [131] T.R. Ling, Y.Z. Syu, Y.C. Tsai, T.C. Chou, C.C. Liu, “Size-selective recognition of catecholamines by molecular imprinting on silica-alumina gel”, Biosens. Bioelectron., 21, 901 (2005). [132] H.A. Tsai, M.J. Syu, “Synthesis and characterization of creatinine imprinted poly(4-vinylpyridine-co-divinylbenzene) as a specific recognition receptor”, Anal. Chim. Acta, 539 107 (2005). [133] T. Shimada, R. Hirose, K. Morihara, “Footprint catalysis. X. Surface modification of molecular footprint catalysis and its effects on their molecular recognition and catalysis”, Bull. Chem. Soc. Jpn., 67, 227 (1994). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42978 | - |
| dc.description.abstract | 本研究利用溶膠-凝膠法(Sol-gel method)製備肌酸酐(Creatinine, Cre)的分子模版。在實驗上以氯化鋁(Aluminum chloride, AlCl3)為功能性單體與肌酸酐作用,四乙氧基矽烷(Tetraethoxysilane, TEOS)為交鏈劑,鹽酸為催化劑,水為溶劑配製成溶膠,然後在60 °C的環境下縮合一天得到塊狀的凝膠。之後利用水將肌酸酐萃取出來得到肌酸酐分子模版。非分子模版的製備過程除了不加入肌酸酐之外其餘的步驟都與分子模版相同。
在分子模版的效能測試中,本研究發現以Cre:AlCl3:TEOS=1:3:10(莫耳數比)所製備出來的分子模版在50, 100, 150, 200 μM的肌酸酐濃度之下的模版效率分別為1.93, 1.93, 1.83, 2.17。在干擾物測試上,本研究選擇的四種干擾物分別為肌酸(Creatine, Cn),N-羥基琥珀酼亞胺(N-hydroxysuccinimide, NHS),L-酪氨酸(L-tyrosine, L-tyr)以及乙醯酚胺(Acetaminophen, APAP)。分子模版對於四種干擾物的選擇性分別為7.98(Cre/Cn)、39.98(Cre/NHS)、13.87(Cre/L-tyr)、6.51(Cre/APAP)。非分子模版亦對於肌酸酐有選擇性,它們分別為4.00(Cre/Cn)、9.20(Cre/NHS)、16.72(Cre/L-tyr)、6.34(Cre/APAP)。 本研究對於矽醇基(Silanol group)、路易斯酸位置(Lewis acid site)以及氯化鋁對於肌酸酐吸附造成的影響做了一些探討。在氯化鋁與矽醇基方面,本研究發現有添加與沒添加氯化鋁的分子模版在不同濃度下的吸附量有明顯的差異,在20, 40, 60, 80, 100 μM下相差的量分別為0.84, 1.18, 1.85, 2.49, 2.98 mg/g,至於造成差異的原因本研究首先推論是氯化鋁的添加使得粒子變為較小顆,而有較多的矽醇基裸露在外面,此推論在微卡計測試、傅立葉轉換紅外線光譜以及掃描式電子顯微鏡的檢測中獲得證實。本研究也將TEOS的量提高一倍,然後比較分子模版與非分子模版的吸附量,結果發現吸附量均較之前來得低,但是模版效率卻提高(在50, 100, 150, 200 μM下的模版效率分別為2.52, 2.12, 2.30, 2.41),推論吸附量較低的原因為,TEOS的量增加一倍將使得粒子變為較大顆,裸露在外面的矽醇基變得較少,而模版效率提高的原因是,TEOS的量提高使得矽醇基在模印位置的比例增加。 本研究在製備分子模版的過程中加入氯化鋁,希望鋁能夠與矽基材結合形成路易斯酸位置,但是在萃取過程中發現只有約20%的鋁與矽基材結合,而且是否形成路易斯酸位置並沒有直接證據。有鑑於此,本研究在製程中加入覆蓋(Capping)的步驟,將粒子表面的矽醇基與六甲基二矽氮烷(Hexamethyldisilazane, HMDS)反應成以三甲基矽(Trimethylsilyl)為終端的基團,然後偵測覆蓋後的粒子對於肌酸酐的吸附量,以了解路易斯酸位置對於肌酸酐吸附的貢獻。結果發現經過覆蓋後的粒子完全不會吸附肌酸酐,本研究提出可能的原因為,路易斯酸位置在粒子的內層,而粒子經過覆蓋的步驟後變得非常的疏水,因此高度親水性的肌酸酐不易靠近而擴散到此位置。 | zh_TW |
| dc.description.abstract | A creatinine (Cre) imprinted polymer was fabricated by the sol-gel method. In this experiment, aluminum chloride (AlCl3) was chosen as the functional monomer, tetraethoxysilane (TEOS) as the cross-linker, hydrochloric acid (HCl) as the catalyst, and deionized water (DIW) as the solvent to prepare a sol. And then, the sol was put at 60 °C for 1 day for gelation to get a gel monolith. After that, Cre was extracted by DIW to get a Cre imprinted polymer. Non-imprinted polymer (NIP) was prepared in the same manner except for adding Cre during preparation.
In the performance tests, the imprinting efficiencies of Cre imprinted polymer, fabricated with the molar ratio of Cre:AlCl3:TEOS=1:3:10, were 1.93, 1.93, 1.83, and 2.17 at the concentration of 50, 100, 150, and 200 μM, respectively. In the interferences tests, four compounds, including creatine (Cn), N-hydroxysuccinimide (NHS), L-tyrosine (L-tyr), and acetaminophen (APAP), were chosen as interferences. The selectivities of Cre imprinted polymer were 7.98(Cre/Cn), 39.98(Cre/NHS), 13.87(Cre/L-tyr), and 6.51(Cre/APAP), respectively. NIP was also found selective to Cre, and the selectivities were 4.00(Cre/Cn), 9.20(Cre/NHS), 16.72(Cre/L-tyr), and 6.34(Cre/APAP), respectively. This research also did some investigations on the effects of silanol groups, Lewis acid sites, and AlCl3 toward the adsorption of Cre. In the aspect of silanol groups and AlCl3, it was observed that the imprinted polymer, with adding AlCl3 during fabrication, adsorbed much more Cre than that without adding AlCl3 did. The differences of adsorption amount were 0.84, 1.18, 1.85, 2.49 and 2.98 mg/g at the concentration of 20, 40, 60, 80 and 100 μM, respectively. As for the reasons for making the differences, we first postulated that adding AlCl3 made the particles smaller, more silanol groups being on the surface. This postulation was substantiated by using microcalorimeter to measure the interactions, Fourier transform infrared spectrometer (FTIR) to observe the absorbance of silanol groups, and scanning electron microscope (SEM) to observe the morphology of surface. In addition, the amount of TEOS was doubled to see the effects toward the adsorption amount and the imprinting efficiency. It was shown that the adsorption amounts were lower than that of previous, but the imprinting efficiencies were upgraded a little. (The imprinting efficiencies were 2.52, 2.12, 2.30, and 2.41 at the concentration of 50, 100, 150, and 200 μM, respectively.) Adsorption amounts being lower was considered to be caused by higher cross-linking degree, thus leaving less silanol groups on the surface, while imprinting efficiencies being higher was considered to be caused by higher proportion of silanol groups in the total imprinted sites. During preparation, AlCl3 was added for the purpose of forming Lewis acid sites in the silica matrix. However, it was shown that only 20% of Al incorporated with silica matrix, and whether the Lewis acid sites was formed was not very clear. In view of this, the silanol groups were capped by reacting with hexamethyldisilazane (HMDS) to give tirmethylsilyl (TMS) terminating groups. The adsorption amounts of capped particles were tested to see the contribution of Lewis acid sites to Cre adsorption singly. However, it was observed that the capped particles didn’t adsorb Cre. Explanations to this phenomenon were given in this research. Lewis acid sites maybe formed in the inner layer of the particles, which became very hydrophobic after capping, so it was not easy for a highly hydrophilic compound, Cre, to diffuse into. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:31:17Z (GMT). No. of bitstreams: 1 ntu-98-R96524031-1.pdf: 4868000 bytes, checksum: f3b85fa8cbe5c22c318a69cf57fa6b77 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝....................................................................................................................................I
中文摘要...........................................................................................................................II 英文摘要.........................................................................................................................IV 目錄................................................................................................................................VII 圖目錄.............................................................................................................................XI 表目錄.......................................................................................................................XVIII 符號說明.......................................................................................................................XX 縮寫說明......................................................................................................................XXI 酵素委員會號碼及名稱對照表...............................................................................XXVI 第一章 緒論.....................................................................................................................1 1-1 前言..............................................................................................................1 1-2 肌酸與肌酸肝的發現史..............................................................................3 1-2-1 肌酸的發現史...................................................................................3 1-2-2 肌酸酐的發現史...............................................................................4 1-3 肌酸與肌酸酐的代謝..................................................................................5 1-3-1 肌酸在人體內的合成.......................................................................5 1-3-2 肌酸在人體內的利用.......................................................................7 1-3-3 肌酸酐在人體內的代謝...................................................................9 1-4 肌酸肝的臨床意義....................................................................................12 1-4-1 腎臟的基本介紹.............................................................................12 1-4-2 腎功能的檢測指標.........................................................................14 1-5 肌酸酐的檢測方法....................................................................................18 1-5-1 Jaffé氏反應.....................................................................................18 1-5-2 勞埃德試劑.....................................................................................19 1-5-3 光動力學法.....................................................................................19 1-5-4 酵素法.............................................................................................20 1-5-5 肌酸酐分子模版.............................................................................26 1-5-5-1 肌酸酐分子模版粉體高效能液相層析感測.................26 1-5-5-2 肌酸酐分子模版粉體螢光式感測................................ 34 1-5-5-3 肌酸酐分子模版感測器................................................ 36 1-6 研究動機....................................................................................................44 第二章 原理...................................................................................................................45 2-1 分子模版技術的介紹................................................................................45 2-1-1 分子模版的起源與發展.................................................................45 2-1-2 分子模版的原理.............................................................................48 2-1-2-1 結合.................................................................................49 2-1-2-2 聚合.................................................................................52 2-1-2-3 萃取.................................................................................53 2-1-3 製備分子模版的要素.....................................................................54 2-1-3-1 目標分子.........................................................................54 2-1-3-2 功能性單體.....................................................................55 2-1-3-3 交鏈劑.............................................................................56 2-1-3-4 起始劑.............................................................................58 2-1-3-5 溶劑.................................................................................59 2-1-4 分子模版效能測試.........................................................................60 2-1-4-1 批次再吸附.....................................................................60 2-1-4-2 層析.................................................................................62 2-1-5 分子模版的應用.............................................................................63 2-2 溶膠-凝膠法的介紹...................................................................................66 2-2-1 溶膠-凝膠法製備二氧化矽的反應...............................................66 2-2-1-1 水解.................................................................................66 2-2-1-2 縮合.................................................................................67 2-2-2 pH值對於溶膠-凝膠法的影響.......................................................69 2-2-3 共溶劑對於溶膠-凝膠法的影響...................................................71 2-2-4 含水量對於溶膠-凝膠法的影響...................................................71 2-2-5 溶膠-凝膠法在分子模版製備上的應用.......................................72 2-3 微卡計的介紹............................................................................................81 第三章 實驗設備與方法...............................................................................................85 3-1 實驗藥品....................................................................................................85 3-2 實驗儀器....................................................................................................87 3-3 製備方法....................................................................................................88 3-3-1 利用溶膠-凝膠法製備肌酸酐分子模版.......................................88 3-3-2 利用溶膠-凝膠法製備非分子模版 .............................................89 3-3-3 加入覆蓋步驟於肌酸酐分子模版的製備 ...................................91 3-4 分析方法....................................................................................................93 3-4-1 萃取液的分析.................................................................................93 3-4-1-1 肌酸酐校正曲線的製作.................................................93 3-4-1-2 利用UV/Vis吸收光譜估算肌酸酐的萃取量................93 3-4-1-3 感應藕荷電漿發射光譜定量萃取液中的鋁.................93 3-4-2 分子模版與非分子模版的吸附測試.............................................94 3-4-2-1 干擾物校正曲線的製作.................................................94 3-4-2-2 吸附時間的決定.............................................................94 3-4-2-3 分子模版及非分子模版對於肌酸酐吸附量的評估.....95 3-4-2-4 分子模版及非分子模版對於干擾物吸附量的評估.....95 3-4-3 等溫微卡劑滴定.............................................................................96 3-4-4 傅立葉轉換紅外線光譜儀分析.....................................................98 3-4-5 掃描式電子顯微鏡分析.................................................................98 第四章 結果與討論 .....................................................................................................99 4-1 製備方法與配方的決定..........................................................................101 4-2 肌酸酐分子的萃取..................................................................................104 4-3 萃取液UV/Vis吸收波形偏移原因的討論.............................................109 4-4 檢量線的製作..........................................................................................115 4-5 吸附時間的決定......................................................................................121 4-6 模版效率測試..........................................................................................123 4-7 干擾測試..................................................................................................126 4-8 不同氯化鋁量對於肌酸酐吸附量的影響..............................................130 4-9 應用微卡計評估作用力..........................................................................135 4-10 覆蓋表面矽醇基並觀察吸附量............................................................138 4-11 提高交鏈劑比例對於吸附量以及模版效率的影響............................142 4-12 利用掃描式電子顯微鏡觀察粒子的表面型態....................................144 4-13 利用傅立葉轉換紅外線光譜儀觀測粒子的官能基............................147 4-14 綜合討論................................................................................................150 第五章 結論與建議.....................................................................................................155 5-1 結論..........................................................................................................155 5-2 建議..........................................................................................................158 第六章 參考文獻.........................................................................................................161 附錄A 酵素委員會號碼的介紹..................................................................................175 附錄B 自述..................................................................................................................176 | |
| dc.language.iso | zh-TW | |
| dc.subject | 矽醇基 | zh_TW |
| dc.subject | 氯化鋁 | zh_TW |
| dc.subject | 覆蓋 | zh_TW |
| dc.subject | 肌酸酐 | zh_TW |
| dc.subject | 肌酸酐吸附量 | zh_TW |
| dc.subject | 肌酸酐分子模版 | zh_TW |
| dc.subject | 六甲基二矽氮烷 | zh_TW |
| dc.subject | 路易斯酸位置 | zh_TW |
| dc.subject | 微卡計測試 | zh_TW |
| dc.subject | Aluminum chloride (AlCl3) | en |
| dc.subject | Silanol groups | en |
| dc.subject | Micro-calorimeter tests | en |
| dc.subject | Lewis acid sites | en |
| dc.subject | Hexamethyldisilazane (HMDS) | en |
| dc.subject | Cre imprinted polymer | en |
| dc.subject | Cre adsorption amount | en |
| dc.subject | Creatinine (Cre) | en |
| dc.subject | Capping | en |
| dc.title | 以溶膠-凝膠法製備分子模版感測肌酸酐 | zh_TW |
| dc.title | Fabricating a Molecularly Imprinted Polymer for Sensing Creatinine by the Sol-Gel Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周澤川(Tse-Chuan Chou),黃炳照(Bing-Joe Huang),顏溪成(Shi-Chern Yen) | |
| dc.subject.keyword | 氯化鋁,覆蓋,肌酸酐,肌酸酐吸附量,肌酸酐分子模版,六甲基二矽氮烷,路易斯酸位置,微卡計測試,矽醇基, | zh_TW |
| dc.subject.keyword | Aluminum chloride (AlCl3),Capping,Creatinine (Cre),Cre adsorption amount,Cre imprinted polymer,Hexamethyldisilazane (HMDS),Lewis acid sites,Micro-calorimeter tests,Silanol groups, | en |
| dc.relation.page | 176 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
