Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42977
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾立來(Lap-Loi Chung)
dc.contributor.authorTing-Han Linen
dc.contributor.author林廷翰zh_TW
dc.date.accessioned2021-06-15T01:31:14Z-
dc.date.available2014-07-30
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-20
dc.identifier.citation[1] 甘錫瀅、張敬昌、謝紹松,“細說臺北101高樓”,科學月刊,第三十八卷,第八期,第690-699頁 (2003)。
[2] 內政部營建署,“建築物耐風設計規範及解說”,(2006)。
[3] Frahm, H. Device for Damping Vibration of Bodies. U. S. Patent No. 989-958 (1911).
[4] Den Hartog JP. Mechanical Vibrations. 4th edn, McGraw-Hill, New York (1956).
[5] Warburton GB., and Ayorinde EO. “Optimum absorber parameters for simple systems.” Earthquake Engineering and Structural Dynamics, Vol. 8, pp. 197-217 (1980).
[6] Ayorinde EO., and Warburton GB. “Minimizing structural vibrations with absorbers.” Earthquake Engineering and Structural Dynamics, Vol. 8, pp. 219-236 (1980).
[7] Warburton GB. “Optimum absorber parameters for various combinations of response and excitation parameters.” Earthquake Engineering and Structural Dynamics, Vol. 10, pp. 381-401 (1982).
[8] Sadek F., Mohraz B., Taylor AW., and Chung RM. “A method of estimating the parameters of mass dampers for seismic applications.” Earthquake Engineering and Structural Dynamics, Vol. 26, pp. 617-635 (1997).
[9] Bakre SV., and Jangid RS. “Optimum parameters of tuned mass damper for damped main system.” Structural Control and Health Monitoring. Vol. 14, pp. 448-470 (2007).
[10] Ghosh A., and Basu B. “A closed-form optimal tuning criterion for TMD in damped structures.” Structural Control and Health Monitoring. Vol. 14, pp. 681-692 (2007).
[11] Fujino Y., and Abe M. “Design formulas for tuned mass dampers based on a perturbation technique.” Engineering and Structural Dynamics. Vol. 22, pp. 833-854 (1993).
[12] Tsai HC., and Lin GC. “Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems.” Engineering and Structural Dynamics. Vol. 22, pp. 957-973 (1993).
[13] Lee CL., Chen YT., Chung LL., and Wang YP. “Optimal design theories and applications of tuned mass dampers.” Engineering Structures. Vo1. 28, pp. 43-53 (2006).
[14] 陳永蒼,“多重調諧質塊阻尼系統之最佳控制理論及應用”,碩士論文,國立交通大學土木工程所 (2001)。
[15] Hadi MN., and Arfiadi Y. “Optimum design of absorber for MDOF structures.” Journal of Structural Engineering. Vol. 124, pp. 1272-1280 (1998).
[16] Ok SY., Song J., and Park KS. “Development of optimal design formula for bi-tuned mass dampers using multi-objective optimization.” Journal of Sound and Vibration. Vol. 322, pp. 60-77 (2009).
[17] Wu J., and Chen G. “Optimization of multiple tuned mass dampers for seismic response reduction.” Proceedings of the American Control Conference. Vol. 1, pp. 519-523 (2000).
[18] Bakre SV., and Jangid RS. “Optimum multiple tuned mass dampers for base-excited damped main system.” International Journal of Structural Stability and Dynamics. Vol. 4, pp. 527-542 (2004).
[19] Hoang N., and Warnitchi P. “Design of multiple tuned mass dampers by using a numerical optimizer.” Earthquake Engineering and Structural Dynamics. Vol. 34, pp. 125-144 (2005).
[20] Li C., and Zhu B. “Estimating double tuned mass dampers for structures under ground acceleration using a novel optimum criterion.” Journal of Sound and Vibration. Vol. 298, pp. 280-297 (2006).
[21] Li HN., and Ni XL. “Optimization of non-uniformly distributed multiple tuned mass damper.” Journal of Sound and Vibration. Vol. 308, pp. 80-97 (2007).
[22] 張民岦,“淺談調諧質量阻尼器”,中華技術季刊,67期 (2005.7)。
[23] Gerges RR., Vickery BJ. “Wind tunnel study of the across-wind response of a slender tower with a nonlinear tuned mass damper.” Journal of Wind Engineering and Industrial Aerodynamics. Vol. 91, pp. 1069-1092 (2003).
[24] Rudinger F. “Optimal vibration absorber with nonlinear viscous power law damping and white noise excitation.” Journal of Engineering Mechanics. Vol.132, pp. 46-53 (2006).
[25] Rudinger F. “Tuned mass damper with nonlinear viscous damping.” Journal of Sound and Vibration. Vol. 300, pp. 932-948 (2007).
[26] 吳賴雲,鍾立來,張忠信,黃旭輝,陳家乾,“非線性調諧質塊阻尼器設計參數最佳化之研究”,中華民國結構工程學會,結構工程期刊,第23卷,第2期,第107-136頁 (2008)。
[27] Inaudi JA., and Kelly JM. “Mass damper using friction-dissipating device.” Journal of Engineering Mechanics. Vol. 121, pp. 142-149 (1995).
[28] Ricciardelli F., and Vickery BJ. “Tuned vibration absorbers with dry friction damping.” Earthquake Engineering and Structural Dynamics. Vol. 28, pp. 707-723 (1999).
[29] 田志昌,張黎明,“乾摩擦在調諧質量阻尼器系統中的應用”,工程抗震,第1卷,第21-23頁 (2000)。
[30] 田志昌,王俊臣,馬志忠,“摩擦力在P-TMD中的應用”,包頭鋼鐵學院學報,第20卷,第1期,第71-75頁 (2001)。
[31] Tsopelas P., Constantinou MC., Kim YS., and Okamoto S. “Experimental study of FPS system in bridge seismic isolation.” Earthquake Engineering and Structural Dynamics. Vol. 25, pp. 65-78 (1996).
[32] Mokha AS., Amin N., Constantinou MC., and Zayas V. “Seismic isolation retrofit of large historic building.” Journal of Structural Engineering. ASCE, Vol. 122, pp. 298-308 (1996).
[33] Zayas V., Low SS., and Mahin SA. “A simple pendulum technique for achieving seismic isolation.” Earthquake Spectra. Vol. 6, pp. 317-331 (1990).
[34] 胡燦陽,李大望,“FPS隔震底框住宅樓的地震響應分析”,第3卷,第28期,第79-83頁 (2001)。
[35] 李大望,關罡,霍達,“FPS型TMD控震效應分析”,工業建築,第31卷,第2期,第21-23頁 (2001)。
[36] 熊世樹,潘琴存,黃麗婷,“FPS型TMD振動台試驗模型設計及其減震效率仿真分析”,工程抗震與加固改造,第28卷,第5期,第63-67頁 (2006)。
[37] 李黎,夏正春,張行,梁政平,“FPS型MTMD在輸電塔減震中的應用”,華中科技大學學報 (城市科學版),第24卷,第3期,第4-7頁 (2007)。
[38] 鍾立來,吳賴雲,陳宣宏,黃旭輝,張忠信,林廷翰,“摩擦鐘擺型調諧質塊阻尼器之最佳化設計研究”,國家地震工程研究中心,NCREE 08-018 (2008)。
[39] Desu N. B., Deb SK., and Dutta A. “Coupled tuned mass dampers for control of coupled vibrations in asymmetric buildings.” Structural Control and Health Monitoring. Vol. 13, pp. 897-916 (2005).
[40] Almazan JL., Llera JC. De la, Inaudi JA., Diego LG., and Izquierdo LE. “A bidirectional and homogeneous tuned mass A new device for passive control vibration.” Engineering Structures. Vol. 29, pp. 1548-1560 (2007).
[41] Matta E., Stefano A. DE., B. F. Spencer Jr. “A new passive rolling-pendulum vibration absorber using a non-axial-symmetrical guide to achieve bidirectional tuning.” Earthquake Engineering and Structural Dynamics. Vol. 38, pp. 125-144 (2009).
[42] Feng MQ., and Mita A. “Vibration control of tall buildings using mega subconfiguration.” Journal of Engineering Mechanics. Vol. 121, Issue 10, pp. 1082-1088 (1995).
[43] Lyan-Ywan Lu, Lap-Loi Chung, Lai-Yun Wu, and Ging-Long Lin. “Dynamic analysis of structures with friction devices using discrete-time state-space formulation.” Computers and Structures. Vol. 84, No. 15-16, pp. 1049-1071 (2006).
[44] 鍾立來,“結構主動控制講義”,國立台灣大學土木工程研究所 (2008)。
[45] 何明錦,甘錫瀅,謝紹松,“「台北101大樓」結構工程規劃設計紀錄”,內政部建築研究所研究報告 (2003)。
[46] 吳賴雲,鍾立來,陳家乾,黃國倫,“臺北101結構風力振動之控制模擬”,第七屆結構工程研討會 (2005)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42977-
dc.description.abstract本文旨在探討雙向結構系統加裝雙向FPS型TMD之動力行為及其減振效益,以雙向結構系統加裝單一雙向FPS型TMD為分析對象。當結構物雙向振動頻率不同時,雙向FPS型TMD可依結構雙向不同之振頻分別設計不同之曲率半徑,分別進行調頻,使FPS型TMD雙向之振動頻率與結構雙向振動頻率相調諧,以達到減振效果。首先,建立雙向FPS型TMD之滑動曲面方程式,詳述雙向FPS型TMD之力學行為及動力推導過程,其回復力與摩擦力皆為非線性,隨著質量塊移動位置不同而改變。將二階動力平衡方程式轉換成一階狀態方程式,再求得離散時間系統之一階差分狀態方程式進行動力分析。至於摩擦力之計算,以一個方程式囊括兩種滑動行為 (滑動狀態與非滑動狀態) 而求出摩擦力。先模擬雙向FPS型TMD於自由振動、強迫振動及地表加速度擾動下之動力行為,先瞭解雙向FPS型TMD之特性,再模擬一雙向結構系統加裝雙向FPS型TMD,以結構歷時平方和之最小化作為訴求,透過MATLAB現有之最佳化工具:直接搜索法 (Direct Search Method),搜尋雙向FPS型TMD之最佳設計參數;最後,以臺北101大樓作為實例分析對象,將其雙方向各自單自由度化後作為雙向結構系統,模擬臺北101加裝雙向FPS型TMD之動力行為,驗證雙向FPS型TMD之可行性,並探討當結構雙向振動頻率不同時,等曲率雙向FPS型TMD與變曲率雙向FPS型TMD對於結構減振效果之差異;由臺北101大樓之案例分析可知,當結構雙向之振動頻率相差越大時,越能彰顯出變曲率雙向FPS型TMD減振效果之顯著處。zh_TW
dc.description.abstractIn this study, a bidirectional friction pendulum system (FPS) typed tuned mass damper (TMD) is proposed. If the structural bidirectional natural frequencies are different, by designing bidirectional different the radius of curvature of the bidirectional FPS typed TMD to tuning the TMD frequencies with the structural bidirectional natural frequencies, respectively. At first, conducts the curved surface equation of bidirectional FPS typed TMD, and describes its mechanical behaviors and dynamic equations in detail. The restoring force and friction force both are nonlinear, and varies with the position of the mass. By employing the first order state-space equation transferred from the motion equation of a structure implemented with a bidirectional FPS typed TMD, the discrete-time state-space equation by which the time history analysis can be conducted is derived. In computing friction force, an equation which includes two kinds of motion behaviors (stick and slip states) is proposed. The behaviors of bidirectional FPS typed TMD under free-vibration, forced-vibration and ground motion is simulated, and then implements it on the bidirectional structural system. The design parameters of bidirectional FPS typed TMD are optimized such that the sum of squares of structural response is minimized by direct search method in MATLAB. Finally, the bidirectional FPS typed TMD is implemented on the structure of Taipei 101 such that bi-direction are simplified to single DOF system, respectively. The analytic result shows that when structural bidirectional natural frequencies are different, the vibration reduction of the variable curvature system is better than the fixed curvature system.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:31:14Z (GMT). No. of bitstreams: 1
ntu-98-R96521230-1.pdf: 5068611 bytes, checksum: 90f20cf5e22222ed23b5c47c24ae1a44 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員審定書 i
摘 要 ii
Abstract iii
目 錄 1
照 片 目 錄 3
表 目 錄 3
圖 目 錄 4
第一章 緒論 14
1.1 研究動機及目的 14
1.2 文獻回顧 16
1.3 本文內容 20
第二章 雙向摩擦鐘擺型TMD之動力行為 21
2.1 曲面之斜率 21
2.2 雙向FPS型TMD之回復力與最大摩擦力 22
2.3 雙向FPS型TMD之動力方程式 26
2.4 雙向FPS型TMD摩擦力之計算 29
第三章 雙向摩擦鐘擺型TMD之案例分析 35
3.1 雙向FPS型TMD於自由振動下之動力行為 35
3.2 雙向FPS型TMD於外擾動下之動力行為 37
3.2.1 雙向FPS型TMD於週期波擾動 37
3.2.2 雙向FPS型TMD於地表加速度擾動下之動力行為 39
第四章 結構加裝雙向摩擦鐘擺型TMD之動力行為 41
4.1 雙向結構系統之動力方程式 41
4.2 雙向結構系統加裝雙向FPS型TMD之動力方程式 42
4.3 摩擦力之計算 46
4.4 最佳設計參數分析 51
4.4.1 僅X方向單獨分析 54
4.4.2 僅Y方向單獨分析 55
4.4.3 雙向FPS型TMD之最佳設計參數與歷時分析 56
第五章 實例分析 59
5.1 臺北101大樓結構系統簡介 59
5.2 雙向結構系統加裝雙向FPS型TMD之案例分析 60
5.2.1 等曲率雙向FPS型TMD對於雙向同頻率結構之減振 60
5.2.2 變曲率雙向FPS型TMD對於雙向同頻率結構之減振 62
5.2.3 等曲率雙向FPS型TMD對於雙向不同頻率結構之減振 65
5.2.4 變曲率雙向FPS型TMD對於雙向不同頻率結構之減振 69
5.3 減振效益比較 74
第六章 結論與展望 77
6.1 結論 77
6.2 展望 79
參考文獻 80
dc.language.isozh-TW
dc.subject非線性zh_TW
dc.subject調諧質塊阻尼器zh_TW
dc.subject雙向zh_TW
dc.subject摩擦鐘擺系統zh_TW
dc.subjectFPSen
dc.subjectnonlinearen
dc.subjecttuned mass damper (TMD)en
dc.subjectbidirectionalen
dc.title雙向摩擦鐘擺型調諧質塊阻尼器減振效益之研究zh_TW
dc.titleThe Effect of Vibration Reduction of Bidirectional Friction Pendulum System Typed Tuned Mass Damperen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor吳賴雲(Lai-Yun Wu)
dc.contributor.oralexamcommittee盧煉元,王安培,王淑娟
dc.subject.keyword調諧質塊阻尼器,雙向,摩擦鐘擺系統,非線性,zh_TW
dc.subject.keywordtuned mass damper (TMD),bidirectional,FPS,nonlinear,en
dc.relation.page210
dc.rights.note有償授權
dc.date.accepted2009-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved