Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42972
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊宏(Chun-Hung Lin)
dc.contributor.authorYu-Ruei Chuangen
dc.contributor.author莊育瑞zh_TW
dc.date.accessioned2021-06-15T01:31:01Z-
dc.date.available2014-07-24
dc.date.copyright2009-07-24
dc.date.issued2009
dc.date.submitted2009-07-20
dc.identifier.citation第六章 參考文獻
1. Greenwell, P., Blood group antigens: molecules seeking a function? Glycoconj J 1997, 14, (2), 159-73.
2. Appelmelk, B. J.; van Die, I.; van Vliet, S. J.; Vandenbroucke-Grauls, C. M.; Geijtenbeek, T. B.; van Kooyk, Y., Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J Immunol 2003, 170, (4), 1635-9.
3. Giannis, A., The Sialyl Lewisx Group and its Analogues as Ligands for Selectins: Chemoenzymatic Syntheses and Biological Functions Angew. Chem. Int. Ed. Engl. 1994, 33, (2), 178-180.
4. Lewinsohn, D. M.; Bargatze, R. F.; Butcher, E. C., Leukocyte-endothelial cell recognition: evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes. J Immunol 1987, 138, (12), 4313-21.
5. Larsen, E.; Celi, A.; Gilbert, G. E.; Furie, B. C.; Erban, J. K.; Bonfanti, R.; Wagner, D. D.; Furie, B., PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 1989, 59, (2), 305-12.
6. Bevilacqua, M. P.; Pober, J. S.; Mendrick, D. L.; Cotran, R. S.; Gimbrone, M. A., Jr., Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci U S A 1987, 84, (24), 9238-42.
7. Hallmann, R.; Jutila, M. A.; Smith, C. W.; Anderson, D. C.; Kishimoto, T. K.; Butcher, E. C., The peripheral lymph node homing receptor, LECAM-1, is involved in CD18-independent adhesion of human neutrophils to endothelium. Biochem Biophys Res Commun 1991, 174, (1), 236-43.
8. Spertini, O.; Luscinskas, F. W.; Kansas, G. S.; Munro, J. M.; Griffin, J. D.; Gimbrone, M. A., Jr.; Tedder, T. F., Leukocyte adhesion molecule-1 (LAM-1, L-selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion. J Immunol 1991, 147, (8), 2565-73.
9. Ley, K.; Gaehtgens, P.; Fennie, C.; Singer, M. S.; Lasky, L. A.; Rosen, S. D., Lectin-like cell adhesion molecule 1 mediates leukocyte rolling in mesenteric venules in vivo. Blood 1991, 77, (12), 2553-5.
10. Simanek, E. E.; McGarvey, G. J.; Jablonowski, J. A.; Wong, C. H., Selectinminus signCarbohydrate Interactions: From Natural Ligands to Designed Mimics. Chem Rev 1998, 98, (2), 833-862.
11. Springer, T. A., Adhesion receptors of the immune system. Nature 1990, 346, (6283), 425-34.
12. Kannagi, R., Regulatory roles of carbohydrate ligands for selectins in the homing of lymphocytes. Curr Opin Struct Biol 2002, 12, (5), 599-608.
13. Pratt, M. R.; Bertozzi, C. R., Syntheses of 6-sulfo sialyl Lewis X glycans corresponding to the L-selectin ligand 'sulfoadhesin'. Org Lett 2004, 6, (14), 2345-8.
14. Lowe, J. B., Glycosylation in the control of selectin counter-receptor structure and function. Immunol Rev 2002, 186, 19-36.
15. Galustian, C.; Lawson, A. M.; Komba, S.; Ishida, H.; Kiso, M.; Feizi, T., Sialyl-Lewis(x) sequence 6-O-sulfated at N-acetylglucosamine rather than at galactose is the preferred ligand for L-selectin and de-N-acetylation of the sialic acid enhances the binding strength. Biochem Biophys Res Commun 1997, 240, (3), 748-51.
16. Galustian, C.; Elviss, N.; Chart, H.; Owen, R.; Feizi, T., Interactions of the gastrotropic bacterium Helicobacter pylori with the leukocyte-endothelium adhesion molecules, the selectins--a preliminary report. FEMS Immunol Med Microbiol 2003, 36, (3), 127-34.
17. Miyoshi, E.; Moriwaki, K.; Nakagawa, T., Biological function of fucosylation in cancer biology. J Biochem 2008, 143, (6), 725-9.
18. Muotiala, A.; Helander, I. M.; Pyhala, L.; Kosunen, T. U.; Moran, A. P., Low biological activity of Helicobacter pylori lipopolysaccharide. Infect Immun 1992, 60, (4), 1714-6.
19. Moran, A. P.; Lindner, B.; Walsh, E. J., Structural characterization of the lipid A component of Helicobacter pylori rough- and smooth-form lipopolysaccharides. J Bacteriol 1997, 179, (20), 6453-63.
20. Ma, B.; Simala-Grant, J. L.; Taylor, D. E., Fucosylation in prokaryotes and eukaryotes. Glycobiology 2006, 16, (12), 158R-184R.
21. Taniguchi, K., Handbook of glycosyltransferase and related genes. Springer, 2002.
22. Mollicone, R.; Cailleau, A.; Oriol, R., Molecular genetics of H, Se, Lewis and other fucosyltransferase genes. Transfus Clin Biol 1995, 2, (4), 235-42.
23. Avent, N. D., Human erythrocyte antigen expression: its molecular bases. Br J Biomed Sci 1997, 54, (1), 16-37.
24. Kauffmann, F.; Frette, C.; Pham, Q. T.; Nafissi, S.; Bertrand, J. P.; Oriol, R., Associations of blood group-related antigens to FEV1, wheezing, and asthma. Am J Respir Crit Care Med 1996, 153, (1), 76-82.
25. Ronchetti, F.; Villa, M. P.; Ronchetti, R.; Bonci, E.; Latini, L.; Pascone, R.; Bottini, N.; Gloria-Bottini, F., ABO/Secretor genetic complex and susceptibility to asthma in childhood. Eur Respir J 2001, 17, (6), 1236-8.
26. Schwemmer, B.; Schutz, W.; Kuntz, R. M.; Lehmer, A., Simultaneous determination of six tumor markers in patients with prostatic carcinoma and bladder tumors. Urol Res 1985, 13, (3), 133-6.
27. Madjd, Z.; Parsons, T.; Watson, N. F.; Spendlove, I.; Ellis, I.; Durrant, L. G., High expression of Lewis y/b antigens is associated with decreased survival in lymph node negative breast carcinomas. Breast Cancer Res 2005, 7, (5), R780-7.
28. Noda, K.; Miyoshi, E.; Gu, J.; Gao, C. X.; Nakahara, S.; Kitada, T.; Honke, K.; Suzuki, K.; Yoshihara, H.; Yoshikawa, K.; Kawano, K.; Tonetti, M.; Kasahara, A.; Hori, M.; Hayashi, N.; Taniguchi, N., Relationship between elevated FX expression and increased production of GDP-L-fucose, a common donor substrate for fucosylation in human hepatocellular carcinoma and hepatoma cell lines. Cancer Res 2003, 63, (19), 6282-9.
29. Noda, K.; Miyoshi, E.; Uozumi, N.; Gao, C. X.; Suzuki, K.; Hayashi, N.; Hori, M.; Taniguchi, N., High expression of alpha-1-6 fucosyltransferase during rat hepatocarcinogenesis. Int J Cancer 1998, 75, (3), 444-50.
30. Noda, K.; Miyoshi, E.; Uozumi, N.; Yanagidani, S.; Ikeda, Y.; Gao, C.; Suzuki, K.; Yoshihara, H.; Yoshikawa, K.; Kawano, K.; Hayashi, N.; Hori, M.; Taniguchi, N., Gene expression of alpha1-6 fucosyltransferase in human hepatoma tissues: a possible implication for increased fucosylation of alpha-fetoprotein. Hepatology 1998, 28, (4), 944-52.
31. de Vries, T.; Knegtel, R. M.; Holmes, E. H.; Macher, B. A., Fucosyltransferases: structure/function studies. Glycobiology 2001, 11, (10), 119R-128R.
32. Lowe, J. B.; Kukowska-Latallo, J. F.; Nair, R. P.; Larsen, R. D.; Marks, R. M.; Macher, B. A.; Kelly, R. J.; Ernst, L. K., Molecular cloning of a human fucosyltransferase gene that determines expression of the Lewis x and VIM-2 epitopes but not ELAM-1-dependent cell adhesion. J Biol Chem 1991, 266, (26), 17467-77.
33. Natsuka, S.; Gersten, K. M.; Zenita, K.; Kannagi, R.; Lowe, J. B., Molecular cloning of a cDNA encoding a novel human leukocyte alpha-1,3-fucosyltransferase capable of synthesizing the sialyl Lewis x determinant. J Biol Chem 1994, 269, (32), 20806.
34. Kaneko, M.; Kudo, T.; Iwasaki, H.; Ikehara, Y.; Nishihara, S.; Nakagawa, S.; Sasaki, K.; Shiina, T.; Inoko, H.; Saitou, N.; Narimatsu, H., Alpha1,3-fucosyltransferase IX (Fuc-TIX) is very highly conserved between human and mouse; molecular cloning, characterization and tissue distribution of human Fuc-TIX. FEBS Lett 1999, 452, (3), 237-42.
35. Roos, C.; Kolmer, M.; Mattila, P.; Renkonen, R., Composition of Drosophila melanogaster proteome involved in fucosylated glycan metabolism. J Biol Chem 2002, 277, (5), 3168-75.
36. Mollicone, R.; Moore, S. E.; Bovin, N.; Garcia-Rosasco, M.; Candelier, J. J.; Martinez-Duncker, I.; Oriol, R., Activity, splice variants, conserved peptide motifs, and phylogeny of two new alpha1,3-fucosyltransferase families (FUT10 and FUT11). J Biol Chem 2009, 284, (7), 4723-38.
37. Breton, C.; Oriol, R.; Imberty, A., Conserved structural features in eukaryotic and prokaryotic fucosyltransferases. Glycobiology 1998, 8, (1), 87-94.
38. Wang, G.; Ge, Z.; Rasko, D. A.; Taylor, D. E., Lewis antigens in Helicobacter pylori: biosynthesis and phase variation. Mol Microbiol 2000, 36, (6), 1187-96.
39. Dubois, A., Spiral bacteria in the human stomach: the gastric helicobacters. Emerg Infect Dis 1995, 1, (3), 79-85.
40. Peterson, W. L., Helicobacter pylori and peptic ulcer disease. N Engl J Med 1991, 324, (15), 1043-8.
41. Parsonnet, J., Helicobacter pylori in the stomach--a paradox unmasked. N Engl J Med 1996, 335, (4), 278-80.
42. Nakamura, S.; Yao, T.; Aoyagi, K.; Iida, M.; Fujishima, M.; Tsuneyoshi, M., Helicobacter pylori and primary gastric lymphoma. A histopathologic and immunohistochemical analysis of 237 patients. Cancer 1997, 79, (1), 3-11.
43. Conference, N. C., Helicobacter pylori in peptic ulcer disease. The Journal of the American Medical Association 1994, 65-69.
44. Rabbani, S.; Miksa, V.; Wipf, B.; Ernst, B., Molecular cloning and functional expression of a novel Helicobacter pylori alpha-1,4 fucosyltransferase. Glycobiology 2005, 15, (11), 1076-83.
45. Ge, Z.; Chan, N. W.; Palcic, M. M.; Taylor, D. E., Cloning and heterologous expression of an alpha1,3-fucosyltransferase gene from the gastric pathogen Helicobacter pylori. J Biol Chem 1997, 272, (34), 21357-63.
46. Martin, S. L.; Edbrooke, M. R.; Hodgman, T. C.; van den Eijnden, D. H.; Bird, M. I., Lewis X biosynthesis in Helicobacter pylori. Molecular cloning of an alpha(1,3)-fucosyltransferase gene. J Biol Chem 1997, 272, (34), 21349-56.
47. Rasko, D. A.; Wang, G.; Palcic, M. M.; Taylor, D. E., Cloning and characterization of the alpha(1,3/4) fucosyltransferase of Helicobacter pylori. J Biol Chem 2000, 275, (7), 4988-94.
48. Wang, G.; Boulton, P. G.; Chan, N. W.; Palcic, M. M.; Taylor, D. E., Novel Helicobacter pylori alpha1,2-fucosyltransferase, a key enzyme in the synthesis of Lewis antigens. Microbiology 1999, 145 ( Pt 11), 3245-53.
49. Sherburne, R.; Taylor, D. E., Helicobacter pylori expresses a complex surface carbohydrate, Lewis X. Infect Immun 1995, 63, (12), 4564-8.
50. Aspinall, G. O.; Monteiro, M. A., Lipopolysaccharides of Helicobacter pylori strains P466 and MO19: structures of the O antigen and core oligosaccharide regions. Biochemistry 1996, 35, (7), 2498-504.
51. Aspinall, G. O.; Monteiro, M. A.; Pang, H.; Walsh, E. J.; Moran, A. P., Lipopolysaccharide of the Helicobacter pylori type strain NCTC 11637 (ATCC 43504): structure of the O antigen chain and core oligosaccharide regions. Biochemistry 1996, 35, (7), 2489-97.
52. Wirth, H. P.; Yang, M.; Karita, M.; Blaser, M. J., Expression of the human cell surface glycoconjugates Lewis x and Lewis y by Helicobacter pylori isolates is related to cagA status. Infect Immun 1996, 64, (11), 4598-605.
53. Monteiro, M. A.; Chan, K. H.; Rasko, D. A.; Taylor, D. E.; Zheng, P. Y.; Appelmelk, B. J.; Wirth, H. P.; Yang, M.; Blaser, M. J.; Hynes, S. O.; Moran, A. P.; Perry, M. B., Simultaneous expression of type 1 and type 2 Lewis blood group antigens by Helicobacter pylori lipopolysaccharides. Molecular mimicry between h. pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. J Biol Chem 1998, 273, (19), 11533-43.
54. Monteiro, M. A.; Appelmelk, B. J.; Rasko, D. A.; Moran, A. P.; Hynes, S. O.; MacLean, L. L.; Chan, K. H.; Michael, F. S.; Logan, S. M.; O'Rourke, J.; Lee, A.; Taylor, D. E.; Perry, M. B., Lipopolysaccharide structures of Helicobacter pylori genomic strains 26695 and J99, mouse model H. pylori Sydney strain, H. pylori P466 carrying sialyl Lewis X, and H. pylori UA915 expressing Lewis B classification of H. pylori lipopolysaccharides into glycotype families. Eur J Biochem 2000, 267, (2), 305-20.
55. Oriol, R.; Mollicone, R.; Cailleau, A.; Balanzino, L.; Breton, C., Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology 1999, 9, (4), 323-34.
56. Ma, B.; Wang, G.; Palcic, M. M.; Hazes, B.; Taylor, D. E., C-terminal amino acids of Helicobacter pylori alpha1,3/4 fucosyltransferases determine type I and type II transfer. J Biol Chem 2003, 278, (24), 21893-900.
57. Wakarchuk, W. W.; Cunningham, A.; Watson, D. C.; Young, N. M., Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis. Protein Eng 1998, 11, (4), 295-302.
58. Sun, H. Y.; Lin, S. W.; Ko, T. P.; Pan, J. F.; Liu, C. L.; Lin, C. N.; Wang, A. H.; Lin, C. H., Structure and mechanism of Helicobacter pylori fucosyltransferase. A basis for lipopolysaccharide variation and inhibitor design. J Biol Chem 2007, 282, (13), 9973-82.
59. Dube, D. H.; Bertozzi, C. R., Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov 2005, 4, (6), 477-88.
60. Varki, A., Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993, 3, (2), 97-130.
61. Compain, P.; Martin, O. R., Carbohydrate mimetics-based glycosyltransferase inhibitors. Bioorg Med Chem 2001, 9, (12), 3077-92.
62. Murray, B. W.; Wittmann, V.; Burkart, M. D.; Hung, S. C.; Wong, C. H., Mechanism of human alpha-1,3-fucosyltransferase V: glycosidic cleavage occurs prior to nucleophilic attack. Biochemistry 1997, 36, (4), 823-31.
63. Hindsgaul, O.; Kaur, K. J.; Srivastava, G.; Blaszczyk-Thurin, M.; Crawley, S. C.; Heerze, L. D.; Palcic, M. M., Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltransferases. J Biol Chem 1991, 266, (27), 17858-62.
64. Wong, C. H., Specificity, Inhibition, and Synthetic Utility of a Recombinant Human a-1,3-Fucosyltransferase. J. Am. Chem. Soc. 1992, 114, 7321-7322.
65. Wong, C. H., Synergistic Inhibition of Human R-1,3-Fucosyltransferase V. J. Am. Chem. Soc. 1996, 118, 7653-7662.
66. Schuster, M.; Blechert, S., Inhibition of fucosyltransferase V by a GDP-Azasugar. Bioorg Med Chem Lett 2001, 11, (14), 1809-11.
67. Heskamp, B. M., Veeneman, G.H., van der Marel, G.A., van Boeckel,C.A.A., and van Boom, J.H. , Design and Synthesis of a Trisubstrate Analogue for a-1,3-Fucosyltransferase: A Potential Inhibitor. Tetrahedron 1995, 51, 8397-8406.
68. Wischnat, R., Martin, R., and Wong, C.-H. , Synthesis of a New Class of N-Linked Lewis and LacNAc Analogues as Potential Inhibitors of Human Fucosyltransferases: A General Method for the Incorporation of an Iminocyclitol as a Transition-State Mimetic of the Donor Sugar to the Acceptor. J. Org. Chem. 1998, 63, 8361-8365.
69. Lin, T. W.; Chang, W. W.; Chen, C. C.; Tsai, Y. C., Stachybotrydial, a potent inhibitor of fucosyltransferase and sialyltransferase. Biochem Biophys Res Commun 2005, 331, (4), 953-7.
70. Niu, X.; Fan, X.; Sun, J.; Ting, P.; Narula, S.; Lundell, D., Inhibition of fucosyltransferase VII by gallic acid and its derivatives. Arch Biochem Biophys 2004, 425, (1), 51-7.
71. Robinson, W. E., Jr.; Reinecke, M. G.; Abdel-Malek, S.; Jia, Q.; Chow, S. A., Inhibitors of HIV-1 replication [corrected; erratum to be published] that inhibit HIV integrase. Proc Natl Acad Sci U S A 1996, 93, (13), 6326-31.
72. Pluymers, W.; Neamati, N.; Pannecouque, C.; Fikkert, V.; Marchand, C.; Burke, T. R., Jr.; Pommier, Y.; Schols, D.; De Clercq, E.; Debyser, Z.; Witvrouw, M., Viral entry as the primary target for the anti-HIV activity of chicoric acid and its tetra-acetyl esters. Mol Pharmacol 2000, 58, (3), 641-8.
73. Meadows, D. C.; Mathews, T. B.; North, T. W.; Hadd, M. J.; Kuo, C. L.; Neamati, N.; Gervay-Hague, J., Synthesis and biological evaluation of geminal disulfones as HIV-1 integrase inhibitors. J Med Chem 2005, 48, (14), 4526-34.
74. Meadows, D. C.; Sanchez, T.; Neamati, N.; North, T. W.; Gervay-Hague, J., Ring substituent effects on biological activity of vinyl sulfones as inhibitors of HIV-1. Bioorg Med Chem 2007, 15, (2), 1127-37.
75. Lee, L. V.; Mitchell, M. L.; Huang, S. J.; Fokin, V. V.; Sharpless, K. B.; Wong, C. H., A potent and highly selective inhibitor of human alpha-1,3-fucosyltransferase via click chemistry. J Am Chem Soc 2003, 125, (32), 9588-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42972-
dc.description.abstract岩藻糖轉移酶(fucosyltransferase)催化醣化反應(glycosylation),將岩藻糖轉移至醣受體(acceptor substrate)。先前的研究指出,這些岩藻糖化的產物參與多種病原菌的感染和疾病的發生。因此,開發強效且具有選擇性的抑制劑,將有助於瞭解岩藻糖轉移酶與它的生理功能之間的關聯性,以及相關藥物開發的可能性。
過去的研究發現,這個酵素反應的副產物GDP對於岩藻糖轉移酶有很好的親和性,並會造成產物抑制作用 (product inhibition)。本實驗室設計並合成了30多種GDP衍生物,希望能探討抑制劑的結合強度與選擇性,包括幽門螺旋桿菌的alpha-1,3-FucT (HpFucT),人類的FucT2 (hFucT2),FucT6 (hFucT6)及FucT9 (hFucT9)。我們利用放射性標定法進行篩選,並測定其IC50和Ki值。比較碳鏈長度對岩藻糖轉移酶抑制性的影響,結果發現triazole與GDP相距2個碳的長度對於該酵素有最佳抑制性。此外相較於其他芳香環官能基,pyrrolidine能夠對於HpFucT和hFucT9產生抑制性;triazole則能夠有效地抑制hFucT2和hFucT6的活性。再者,額外連接疏水性官能基團,對岩藻糖轉移酶均有較好的抑制效果。透過雙倒數圖形判斷,所有GDP衍生物均為競爭型抑制劑,與GDP-fucose競爭相同的結合位。其中,化合物1對hFucT6有最好的抑制性,其Ki為19.9 microM。化合物18則能選擇性抑制hFucT2活性,其Ki為26.7 microM。
另外,其他17種sulfone化合物中,化合物S16對於前述四種岩藻糖轉移酶均有很好的抑制性。化合物S16對HpFucT和hFucT9進行可逆型抑制作用,由雙倒數圖形判斷,為非競爭型抑制機制 (noncompetitive inhibition)。從產物生成曲線圖判斷,化合物S16對hFucT6和hFucT2的抑制性,不但會隨著抑制物濃度的增加而提升 (dose-dependent inhibition),也因為延長預混合時間,使岩藻糖轉移酶完全失去活性 (time-dependent inhibition)。而化合物S16具有高反應性的 alpha,beta-不飽和雙鍵,確實會與dithiothreitol (DTT) 的硫醇基 (thiol group) 進行加成反應,形成共價鍵結。
zh_TW
dc.description.abstractFucosyltransferases (FucTs) catalyze the transfer of L-fucose from GDP-fucose to various glycoconjugate acceptors. Fucosylated glycoconjugates are known to play important roles in numerous physiological and pathological processes, but there are limited studies for FucT inhibition. The development of potent and selective inhibitors for FucTs is thus helpful to understand the relationship between FucTs and their physiological activities and eventually pursue their therapeutic use for drug discovery.
GDP, the side product of FucT reactions, is known to exert product inhibition, indicating that GDP has high affinity with FucTs. Our lab synthesized more than 30 various GDP-based derivatives that were investigated in this thesis. By using radio-isotope labeled GDP-fucose, we aimed to study the inhibition of several FucTs, including alpha-1,3-FucT from Helicobacter pylori, and three human FucTs (hFucT2, hFucT6, and hFucT9). Their IC50 and Ki values were obtained. The results indicated that the optimized chain length between GDP and triazole is two carbons, and that triazole and pyrrolidine are indeed better than other aromatic functional groups. Furthermore, additional incorporation of a suitable hydrophobic group was found to enhance the inhibition potency. The analysis of double reciprocal plots indicated that all the GDP-derived inhibitors are competitive inhibitors to the donor substrate (GDP-fucose). Among them, Compound 1 is the best inhibitor of hFucT6 (Ki = 19.9 microM), while 18 is the best for hFucT2 (Ki = 26.7 microM).
Moreover, among seventeen sulfones examined for FucT inhibition, S16 was found to be the best for all the four FucTs. Interestingly S16 shows reversible inhibition against HpFucT and hFucT9, while it exhibits irreversible inhibition against hFucT2 and hFucT6. The difference may be due to Michael addition of the vinyl sulfone in the presence of cysteine thiol(s).
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:31:01Z (GMT). No. of bitstreams: 1
ntu-98-R96223201-1.pdf: 2786285 bytes, checksum: 7531a233aabf32a4f576773a01d1729d (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄(I)
表次(IV)
圖次(V)
附錄(VIII)
縮寫表(IX)
中文摘要(XI)
英文摘要(XII)

第壹章 緒論(1)
一.岩藻糖轉移酶之簡介及重要性(1)
1. 路易士抗原之簡介及重要性(1)
1.1 人類岩藻糖轉移酶 (hFucT)(3)
1.2 胃幽門螺旋桿菌之岩藻糖轉移酶 (HpFucT)(5)
2. 岩藻糖轉移酶之催化反應機制(8)
二.岩藻糖轉移酶抑制劑之開發(11)
1. 醣受體 (acceptor) 衍生物之開發(11)
2. 醣予體 (donor) 衍生物之開發(12)
3. 雙受質 (bisubstrate) 衍生物之開發(12)
4. 其他岩藻糖轉移酶抑制劑(13)
三.Sulfone化合物之背景介紹(14)
四.研究動機(15)

第貳章 材料與方法(17)
一.實驗材料(17)
二.實驗相關之儀器設備(17)
三.實驗方法(18)
1. 岩藻糖轉移酶之胺基酸序列比對(18)
2. 岩藻糖轉移酶之純化與鑑定(18)
2.1 胃幽門螺旋桿菌岩藻糖轉移酶之表現與純化(18)
2.2 人類岩藻糖轉移酶之表現與純化(19)
2.3 岩藻糖轉移酶之鑑定(19)
3. 岩藻糖轉移酶之活性分析(20)
4. 抑制劑活性分析(20)
4.1 岩藻糖轉移酶之衍生物篩選(20)
4.2 代表性抑制劑之IC50測定(21)
4.3 最佳抑制劑之抑制常數之測定(21)
5. 化合物S16和hFucT6 (或hFucT2)的預混合時間對其抑制性之影響(22)
6. 測試化合物S16 + DTT對hFucT6之抑制性(22)
7. 鑑定化合物S16和DTT之加成反應產物(22)

第參章 實驗結果(23)
1. 岩藻糖轉移酶之胺基酸序列比對結果(23)
2. 幽門螺旋桿菌岩藻糖轉移酶之表現與純化結果(23)
3. 人類岩藻糖轉移酶之表現與純化結果(24)
4. 岩藻糖轉移酶之活性分析結果(24)
5. GDP衍生物抑制能力之結果(25)
5.1 GDP抑制劑篩選結果(25)
5.2 最佳抑制劑之抑制常數測定結果及作用機制(25)
6. Sulfone化合物抑制能力之結果(26)
6.1 Sulfone抑制劑篩選結果(26)
6.2 代表性sulfone抑制劑之作用機制(26)
6.2.1 化合物S13和S16對HpFucT及hFucT9之抑制作用(27)
6.2.2 化合物S13和S16對hFucT2及hFucT6之抑制作用(27)

第肆章 結論(29)
1. GDP衍生物對岩藻糖轉移酶之抑制性探討(29)
1.1 比較碳鏈長度對岩藻糖轉移酶抑制性之影響(30)
1.2 比較核心結構對岩藻糖轉移酶抑制性之影響(30)
1.3 GDP衍生物對岩藻糖轉移酶之選擇性抑制作用(31)
1.4 GDP衍生物對岩藻糖轉移酶之抑制作用機制探討(32)
2. Sulfone衍生物對岩藻糖轉移酶之抑制性探討(32)
2.1 化合物S16對HpFucT之抑制作用機制(33)
2.2 化合物S16對hFucT6之抑制作用機制(34)
2.3 Sulfone衍生物之選擇性抑制作用(34)

第伍章 未來展望(35)
第六章 參考文獻(36)
附錄(69)
dc.language.isozh-TW
dc.subject不競爭型zh_TW
dc.subject岩藻糖轉移&#37238zh_TW
dc.subject抑制zh_TW
dc.subject非競爭型zh_TW
dc.subject競爭型zh_TW
dc.subjectuncompetitiveen
dc.subjectfucosyltransferaseen
dc.subjectinhibitionen
dc.subjectGDPen
dc.subjectsulfoneen
dc.subjectcompetitiveen
dc.subjectnoncompetitiveen
dc.titleGDP及Sulfone的衍生化合物對岩藻糖轉移酶抑制性之研究zh_TW
dc.titleInhibition of Fucosyltransferases by GDP- and Sulfone-based Compoundsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李宗璘(Tsung-Lin Li),李耀坤(Yaw-Kuen Li),邱顯泰(Hsien-Tai Chiu)
dc.subject.keyword岩藻糖轉移&#37238,抑制,競爭型,非競爭型,不競爭型,zh_TW
dc.subject.keywordfucosyltransferase,inhibition,GDP,sulfone,competitive,noncompetitive,uncompetitive,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2009-07-21
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved