Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42971
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章
dc.contributor.authorPin-Hui Lien
dc.contributor.author李品輝zh_TW
dc.date.accessioned2021-06-15T01:30:59Z-
dc.date.available2010-09-01
dc.date.copyright2009-07-23
dc.date.issued2009
dc.date.submitted2009-07-20
dc.identifier.citation1. 甘俊二、陳清田、陳焜耀,1996,「台灣地區作物需水量推估模式之合適性研究」,農業工程學報,第42卷,第2期,8-19頁。
2. 邱湞瑋,2006,「勢能蒸發散計算方法應用於中海拔地區之比較」,國立臺灣大學森林環境暨資源學系碩士論文。
3. 吳國儒、高慧珊、鍾昌翰、何宜樺、張斐章,2008,「以類神經網路推估蒸發量」,農業工程學報,第54卷,第3期,1-13頁。
4. 高慧珊、何宜樺、黃振昌、張斐章,2007,「以自組特徵映射網路推估日蒸發量」,台灣水利,第55卷,第3期,18-25頁。
5. 高慧珊,2007,「以自組特徵映射網路推估蒸發量」,國立臺灣大學生物環境系統工程學系碩士論文。
6. 張本初,1990,「作物需水量最佳模式之探討」,台灣大學農業工程研究所碩士論文。
7. 張斐章、張麗秋,2005,「類神經網路」,東華書局。
8. 張煜權,1995,「臺灣之地域性水田灌溉用水量之推估研究」,國立台灣大學農業工程學研究所碩士論文。
9. 張敦程,2002,「模糊聚類演算法應用於高雄海域污染範圍之判定」,國立中山大學海洋環境及工程學系研究所碩士論文。
10. 陳彥傑、宋國城、張韻嫻、鄭光祐、楊雄興,2003,「台灣地形分區之地體架構意義—以面積高度積分與地形碎形分析為依據」,中國地理學會會刊,第32期,41-69頁。
11. 陳清田,1998,「以 Penman-Monteith 法估算區域性參考作物需水量之研究」,嘉義技術學院學報,第58卷,第53-62頁。
12. 葉信富、陳進發、李振誥, 2005,「潛勢能蒸發散經驗公式之最佳化比較」,農業工程學報,第51卷,第1期,27-37頁。
13. 楊國珍,2004,「類神經模糊系統應用於蒸發量推估之研究」,成功大學水利及海洋工程研究所碩士論文。
14. 劉祥熹、黃日鉦,2004,「資料挖掘技術應用於市場區隔分析之研究—以保險公司為例」,產業論壇,第6卷,第2期,183-209頁。
15. Burn, D., 1989. Cluster analysis as applied to regional flood frequency. Journal of Water Resources Planning and Management, 115(5): 567-582.
16. Chang, F., Chang, L. and Huang, H., 2002. Real-time recurrent learning neural network for stream-flow forecasting. Hydrological Processes, 16(13).
17. Chang, F. and Chen, Y., 2003. Estuary water-stage forecasting by using radial basis function neural network. Journal of Hydrology, 270(1-2): 158-166.
18. Doorenbos, J. and Pruitt, W., 1975. Guidelines for predicting crop water requirements. Irrigation and Drainage Paper (FAO).
19. Durrant, P., winGamma TM: a non-linear data analysis and modelling tool with applications to flood prediction, PhD thesis, Department of Computer Science, Cardiff University, Wales, UK, 2001.
20. Evans, D. and Jones, A., 2002. A proof of the Gamma test. Proceedings: Mathematics, Physical and Engineering Sciences: 2759-2799.
21. Hecht-Nielsen, R., 1987. Counterpropagation networks. Applied optics, 26(23): 4979-4983.
22. Hopfield, J., 1982. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8): 2554-2558.
23. Irmak, S., Payero, J.O., Martin, D.L., Irmak, A. and Howell, T.A., 2006. Sensitivity analyses and sensitivity coefficients of standardized daily ASCE-Penman-Monteith equation. Journal of Irrigation and Drainage Engineering-Asce, 132(6): 564-578.
24. Jain, S.K., Nayak, P.C. and Sudheer, K.P., 2008. Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrological Processes, 22(13): 2225-2234.
25. Jones, A., Tsui, A. and Oliveira, A., 2002. Neural models of arbitrary chaotic systems: construction and the role of time delayed feedback in control and synchronization. Complexity International, 9: 1–9.
26. Keskin, M. and Terzi, O., 2006. Artificial neural network models of daily pan evaporation. Journal of Hydrologic Engineering, 11: 65.
27. Keskin, M., Terzi, O. and Taylan, D., 2004. Fuzzy logic model approaches to daily pan evaporation estimation in western Turkey/Estimation de l’evaporation journaliere du bac dans l’Ouest de la Turquie par des modeles a base de logique floue. Hydrological Sciences Journal/Journal des Sciences Hydrologiques, 49(6): 1001-1010.
28. Kim, S. and Kim, H.S., 2008. Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. Journal of Hydrology, 351(3-4): 299-317.
29. Kisi, O., 2006. Daily pan evaporation modelling using a neuro-fuzzy computing technique. Journal of Hydrology, 329(3-4): 636-646.
30. Kisi, O., 2007. Evapotranspiration modelling from climatic data using a neural computing technique. Hydrological Processes, 21(14): 1925-1934.
31. Kisi, O., 2008. The potential of different ANN techniques in evapotranspiration modelling. Hydrological Processes, 22(14): 2449-2460.
32. Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1): 59-69.
33. Koncar, N., 1997. Optimisation methodologies for direct inverse neurocontrol. University of London.
34. Kumar, M., Raghuwanshi, N., Singh, R., Wallender, W. and Pruitt, W., 2002. Estimating evapotranspiration using artificial neural network. Journal of irrigation and drainage engineering, 128: 224.
35. McCulloch, W.S. and Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 5(4): 115-133.
36. Moghaddamnia, A., Gousheh, M.G., Piri, J., Amin, S. and Han, D., 2009. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Advances in Water Resources, 32(1): 88-97.
37. Montieth, J. and Unsworth, M., 1990. Principles of environmental physics. Edward Arnold, London, 291.
38. Odhiambo, L., Yoder, R., Yoder, D. and Hines, J., 2001. Optimization of fuzzy evapotranspiration model through neural training with input-output examples. Transactions of the ASAE, 44(6): 1625-1633.
39. Penman, H., 1956. Estimating evaporation. Trans. Amer. Geophys. Union, 37(1): 43-50.
40. Penman, H., 1963. Vegetation and hydrology. Commonw. Bur. Soils. Harpenden, Tech. Comm.(53).
41. Penman, H.L., 1948. NATURAL EVAPORATION FROM OPEN WATER, BARE SOIL AND GRASS. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 193(1032): 120-&.
42. Rumelhart, D.E. and McClelland, J.L., 1986. Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations. Mit Press Computational Models Of Cognition And Perception Series: 547.
43. Sudheer, K., Gosain, A., Mohana Rangan, D. and Saheb, S., 2002. Modelling evaporation using an artificial neural network algorithm. Hydrological Processes, 16(16).
44. Terzi, O., Keskin, M. and Taylan, E., 2006. Estimating evaporation using ANFIS. Journal of irrigation and drainage engineering, 132: 503.
45. Tsui, A., Jones, A. and Guedes de Oliveira, A., 2002. The construction of smooth models using irregular embeddings determined by a Gamma test analysis. Neural Computing & Applications, 10(4): 318-329.
46. Xu, C.Y. and Singh, V.P., 2000. Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrological Processes, 14(2): 339-349.
47. Xu, C.Y. and Singh, V.P., 2002. Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resources Management, 16(3): 197-219.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42971-
dc.description.abstract蒸發量在水文循環中扮演著重要的角色,為集水區經營和水資源規劃中相當重要之參數。近年來陸續有學者應用類神經網路推估蒸發量,但皆僅針對單一測站的蒸發量進行推估,若採用建立完成的模式應用於其他測站以推估蒸發量,則會因不同測站的氣候特性,使誤差相對提高。本研究選定台灣地區16個氣象觀測站,蒐集2002到2007年的氣象資料,首先透過K-Means、Fuzzy C-Means及SOM等分群聚類的方法將16個測站依其特性分成四類,分析成果顯示SOM為最適用之模式,其分類結果大致呈現北區、中區、高山區以及南區,其後藉由The Gamma Test搜尋各區之主要影響蒸發量的氣象因子,以做為模式的輸入變數,最後利用自組特徵映射網路結合線性迴歸以建構區域性之蒸發量推估模式,而推估之成果更近一步與Modified Penman以及Penman-Monteith兩傳統經驗式進行比較。結果顯示, SOMN推估之成果優於傳統經驗式,整體而言,16個測站若各自分別架構日蒸發量推估模式,雖可較能獲得較佳的結果,但過程煩瑣複雜,而本研究所建構四個區域性之蒸發量推估模式,不僅大幅降低模式架構之個數量,其分類結果顯示16測站大致呈現出依地域性聚類之分佈;此外,研究成果亦驗證以SOMN架構之區域性蒸發量推估模式確實為一精確且有效之方法。zh_TW
dc.description.abstractEvaporation is an important component for watershed management and water resources development and therefore plays a key role in hydrological cycle. In recent years, applications of artificial neural networks on the estimation of evaporation have been proposed. However, previous works merely focused on estimating the evaporation at a specific site. The accuracy may decrease if the constructed model was applied to other sites due to the difference in hydro-geo-meteorology conditions. In this study, daily data are collected from 2002 to 2007 at sixteen meteorological gauges. First of all, these gauges are classified into four clusters according to their similarities by using K-Means, Fuzzy C-Means and SOM. The results indicate that the SOM is more suitable for classification as compared with other methods, and it clustered results cshow a distribution of north region, middle region, mountain region, and south region. Second, the Gamma test is used for finding the meteorological factors that may dominate the evaporation in each cluster. Finally, the selected meteorological factors are separately taken as the inputs of four self-organizing map networks (SOMNs) and the model performance are further compared with those of Modified Penman and Penman-Monteith. The results show that the SOMNs outperform two empirical formulas. Generally speaking, it is time-consuming to build a specific evaporation estimating model for each site in a region even though better performance may be obtained; whereas the four regional SOMN models constructed in this study not only provide a meaningful distribution of each cluster but effectively decrease the number of models. Furthermore, results obtained from this study strongly demonstrate that the regional SOM is an accurate and efficient method for evaporation estimation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:30:59Z (GMT). No. of bitstreams: 1
ntu-98-R96622019-1.pdf: 1770229 bytes, checksum: 2ce585c506caf593dd1b3c5f421b2d47 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘 要 i
Abstract ii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 前言 1
1.1動機與目的 1
1.2研究方法 2
1.3論文架構 2
第二章 文獻回顧 4
2.1經驗式的應用 4
2.2類神經網路的應用 5
第三章 理論概述 9
3.1群聚分析概述 9
3.2類神經網路概述 12
3.3自組特徵映射網路 14
3.4 The Gamma Test 20
3.5 經驗公式之選用 21
第四章 研究案例 28
4.1研究區域概況 28
4.2研究區域地形與氣候特性 28
4.3資料收集與處理 30
4.4模式架構 34
第五章 結果與討論 41
5.1測站分群聚類結果 41
5.2全台灣區域模式架構推估 47
5.3模式結果比較 50
第六章 結論與建議 75
6.1 結論 75
6.2 建議 76
第七章 參考文獻 78
dc.language.isozh-TW
dc.subject自組特徵映射網路zh_TW
dc.subject蒸發量zh_TW
dc.subject分群聚類zh_TW
dc.subject類神經網路zh_TW
dc.subjectArtificial Neural Networken
dc.subjectSelf- Organizing Mapen
dc.subjectEvaporationen
dc.subjectClusteren
dc.title以類神經網路探討全台蒸發量區域性分類與推估之成效zh_TW
dc.titleAn investigation of artificial neural networks on regional classification and estimation of evaporation in Taiwanen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃文政,張麗秋,王藝峰,江衍銘
dc.subject.keyword蒸發量,分群聚類,類神經網路,自組特徵映射網路,zh_TW
dc.subject.keywordEvaporation,Cluster,Artificial Neural Network,Self- Organizing Map,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2009-07-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved