Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42946
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇金佳
dc.contributor.authorTsung-Cheng Chenen
dc.contributor.author陳宗成zh_TW
dc.date.accessioned2021-06-15T01:29:56Z-
dc.date.available2009-07-27
dc.date.copyright2009-07-27
dc.date.issued2009
dc.date.submitted2009-07-21
dc.identifier.citation01、 2007年能源科技研究發展白皮書, 經濟部能源局 (2007)
02、 J. Larminie, A. Dicks, Fuel cell systems explained, WILEY (2003)
03、 劉毅弘, 顏貽乙, 金順志, 呂志興, 陳政群, 黃家銘, 曾善訓, 燃料電池微小型重組器及一氧化碳轉化技術探討, 清潔生產暨永續發展研討會論文集 (2007)
04、 胡興中, 觸媒原理與應用, 高立出版社, (2005)
05、 李秋煌, 黃瓊輝, 林萃, 燃料重組器系統概論, 石油季刊, 第39卷, 第4期, pp.45-62 (2003)
06、 X.F. Peng and G.P. Peterson, ”The effect of thermofluid and geometrical parameters on convection of liquid through rectangular microchannels”, Int. J. Heat Mass Transfer, 38, pp.755-758 (1995)
07、 X.F. Peng and G.P. Peterson, “Convective heat transfer and flow friction for water flow in microchannel structures”, Int. J. Heat Mass Transfer, 39, pp.2599-2608 (1996)
08、 Kansai research institute(KRI), Report No.5: Fuel Cell Materials(Update-3) (2001)
09、 顏貽乙, 微型燃料電池新選擇RMFC, 能源報導, 2006年8月
10、 D. J. Seo, W. L. Yoon, Y. G. Yoon, S. H. Park, G. G. Park, and C. S. Kim, Development of a Micro Fuel Processor for PEMFCs, Electrochim. Acta, Vol. 50, pp. 719-723 (2004)
11、 S. Rabe, F.. Vogel , A thermogravimetric study of the partial oxidation of methanol for hydrogen production over a Cu/ZnO/Al2O3 catalyst, Applied Catalysis B: Environmental, Vol.84, pp.827–834 (2008)
12、 J. D. Holladay, E. O. Jones, M. Phelps, and J. Hu, Microfuel Processor for Use in a Miniature Power Supply, J. Power Sources, Vol. 108, pp. 21-27 (2002)
13、 K. Geissler, E. Newson, F. Vogel, Thanh-Binh Truong, Peter Hottinger, Alexander Wokaun, Autothermal methanol reforming for hydrogen production in fuel cell applications, Phys. Chem. Chem. Phys., 2001 3rd, pp.289-293 (2001)
14 E. Jones, J. Holladay, J. Cao, Gordon Xia, Rob Dagle, Nano Miniaturization of a Hydrogen Plant, Pacific Northwest National Laboratory (2002)
15 J. Holladay, E. Jones, B. Rozmiarek, J. Hu, M. Phelps, E. Baker, D. Palo, Y. Wang, R. Dagle, Miniature Fuel Processors Miniature Fuel Processors for Portable Fuel Cell for Portable Fuel Cell Systems Systems, 200th Meeting of the Electrochemical Society Meeting
(2001)
16 UltraCell Corp., UltraCell for portable reformed methanol fuel cell technology, Fuel Cells Bulletin, Vol. 2005, Issue 10, pp. 10 (2005)
17、 G.. Kolb, Multifunctional Microstructured Reactors as Fuel Processor Components for Mobile Fuel Cell Systems, IMM (2008)
18 林明憲, 定置型與移動式燃料電池系統之發展趨勢與商品化應用介紹, 大同世界科技股份有限公司, (2008)
19 K. Kariatsumari, 提高氫產生能力以強化燃料電池輸出, 電子科技網 (2006)
20、 S. Tanaka, K. S. Changa, K. B. Mina, D. Satoha, K. Yoshidab, M. Esashi, MEMS-based components of a miniature fuel cell/fuel reformer system, Chem. Eng. J., Vol. 101, Issues 1-3, pp.143-149 (2004)
21、 B. Emonts, J. Bøgild-Hansen, S. Loegsgaard Jørgensen, B. Höhlein, R. Peters, Compact methanol reformer test for fuel-cell powered light-duty vehicles, J. Power Sources, Vol. 71, pp. 288-293 (1998)
22、 C. C. Chuang, Y. H. Chen, J. D. Ward, C. C. Yu, Y. C. Liu, C. H. Lee, Optimal design of an experimental methanol fuel reformer, Int. J. Hydrogen Energy, Vol. 33,pp. 7062-7073 (2008)
23、 C. Pan, R. He, Q. Li, J. O. Jensen, N. J. Bjerrum, H. A. Hjulmand, A. Børsting Jensen, Integration of high temperature PEM fuel cells with a methanol reformer, J. Power Sources, Vol. 145, pp. 392-398 (2005)
24、 Y. Choi, H. G. Stenger, Kinetics, simulation and optimization of methanol steam reformer for fuel cell applications, J. Power Sources, Vol. 142, pp. 81-91 (2005)
25、 T. Shishido, Y. Yamamoto, H. Morioka, K. Takehira, Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming, J. Molecular Catalysis A: Chemical, Vol. 268, pp.185-194 (2007)
26 C. Y. Huang, Y. M. Sun, C. Y. Chou and C. C. Su, Performance of catalysts CuO-ZnO-Al2O3, CuO-ZnO-Al2O3-Pt-Rh, and Pt-Rh in a small reformer for hydrogen generation, J. Power Sources, Vol. 166, pp. 450-457 (2007)
27、 黃智勇, 實驗研究小型重組器產氫之性能, 博士論文, 國立台灣大學機械工程研究所 (2007)
28、 C.Y. Huang, Y. Y. Chen, C. C. Su, C. F. Hsu, The cleanup of CO in hydrogen for PEMFC applications using Pt, Ru, Co, Fe in PROX reaction, J. Power Sources, Vol. 174, pp. 294-301 (2007)
29、 K. Shah, R.S. Besser, Understanding thermal integration issues and heat loss pathways in a planar microscale fuel processor: Demonstration of an integrated silicon microreactor-based methanol steam reformer, Chem. Eng. J., Vol. 135S, pp.S46-S56 (2008)
30、 H. Yu, H. Chen, M. Pan, Y. Tang, K. Z., F. Peng, H. Wang, Effect of the metal foam materials on the performance of methanol steam micro-reformer for fuel cells, Applied Catalysis A: General , Vol. 327, pp.106-113 (2007)
31、 G. G. Park, D. J. Seo, S.H. Park Y. G. Yoon, C. S. Kim, W. L. Yoon, Development of microchannel methanol steam reformer, Chemical Engineering J., Vol. 101, pp.87-92 (2004)
32、 A. V. Pattekar, M. V. Kothare, A Microreactor for Hydrogen Production in Micro Fuel Cell Applications, J. Microelectromechanical Systems, Vol. 13, NO. 1 (2004)
33、 J. D. Holladay, E. O. Jones, R. A. Dagle, G. G. Xia, C. Cao, and Y. Wang, High Efficiency and Low Carbon Monoxide Micro-Scale, J. Power Sources, Vol. 131, pp. 69-72 (2004)
34、 D. E. Park, , T. Kim, S. Kwon, C. K. Kim and E. Yoon, Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells, Sensors and Actuators A: Physical, Vol. 135, Issue 1, pp.58-66 (2007)
35、 W. Qu, I. Mudawar, Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink, International Journal of Heat and Mass Transfer, Vol. 45, Issue 12, pp. 2549-2565 (2002)
36、 W. Qu, I. Mudawar, Analysis of three-dimensional heat transfer in micro-channel heat sinks, International Journal of Heat and Mass Transfer, Vol 45, Issue 19, pp. 3973-3985 (2002)
37、 P. Naphon, O. Khonseur, Study on the convective heat transfer and pressure drop in the micro-channel heat sink, International Communications in Heat and Mass Transfer, Vol 36, Issue 1, pp. 39-44 (2009)
38、 金杏妹, 工業應用催化劑, 臺灣高等教育出版社 (2005)
39、 吳國華, 超音波霧化於燃料電池甲醇重組器製氫之研究, 碩士論文, 國立成功大學航空太空工程研究所 (2003)
40、 Methanex corp., 甲醇技術資訊與安全操作指南, 第三版, (2006)
41、 林俊一, 反應工程學, 新文京開發出版股份有限公司, 第七版 (2004)
42、 D.D. Ebbing, and S.D. Gammon, General Chemistry, Seventh Edition, Houghton Mifflin Company, Boston (2005)
43、 B. Höhlein, M. Bee, J. BØgild-Hansen, P. BrÖckerhoff, G. Colsnman, B. Emonts, R. Menzer, and E. Riedel, Hydrogen from Methanol for Fuel Cells in Mobile Systems:Development of a Compact Reformer, J. Power Sources Vol. 611, pp. 143-147 (1996)
44、 H. W. Xiang, A. Laesecke, M. L. Huber, A New Reference Correlation for the Viscosity of Methanol, J. Physical and Chemical reference, Vol. 35, Issue 4, pp.1597-1620(2006)
45、 B. R. Munson, D. F. Young, Theodore H. Okiishi, Fundamentals of Fluid Mechanics, WILEY, 5th edition (2006)
46、 黃鎮江, 燃料電池, 全華科技圖書股份有限公司, 修訂版 (2005)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42946-
dc.description.abstract微型質子交換膜燃料電池為最適用於可攜帶性電子產品之潔淨科技,為提供其氫氣來源須搭配穩定微型氫氣產生設備,本研究建置一套微型甲醇蒸氣重組系統,藉此探討在不同操作條件下對於甲醇轉化率與氫氣產生率之影響,其設定實驗參數分別為反應溫度、甲醇水溶液濃度、甲醇水溶液進料率、流道長度與微流道截面尺寸。
  甲醇蒸氣重組反應為甲醇水溶液經重組後生成氫氣與二氧化碳,為此本實驗設計一三上三下蛇行流道之重組反應器,其尺寸設計為100mm×120mm×15mm,單流道截面則有0.75 mm *0.75 mm與0.75 mm *1.5mm,流道長度分別為633mm、1015mm與1392mm,觸媒選擇為CuO-ZnO-Al2O3,其塗佈量上下蓋分別為0.08g與0.14g。
  實驗結果顯示,在實驗設定之200-280℃區間,隨著反應溫度增加,甲醇轉化率與氫氣產生率均大幅提升。在280℃時,甲醇進料率0.005ml/min,其轉化率接近100%,氫氣產生率5.4sccm;若甲醇進料率0.02ml/min,其轉化率83.4%,但氫氣產生率18.0sccm,約可供給微型質子交換膜燃料電池產生22.5W功率,為本實驗最高值。反應物濃度方面,水對甲醇比α=1.4相對於其他濃度,如較高之α=1.6與較低之α=1.0、1.2,在不同操作條件下,有較好之甲醇轉化率表現。在進料率方面,甲醇轉化率隨著甲醇進料率調升而降低,氫氣產生率則隨著甲醇進料率調升而上升。反應時間方面,在化學反應初期,增加化學反應的時間能有效促進系統之轉化率,加長反應器流道長度與增大流道截面尺寸則能增加反應流體之反應時間,提高蒸氣重組系統之甲醇轉化率與氫氣產生率。
zh_TW
dc.description.abstractReformed methanol fuel cell (RMFC) technology uses a steam reforming reactor to generate fuel-cell-ready hydrogen from a highly concentrated methanol solution. For PEMFC at portable electronic devices application, it is needed to develop micro RMFC which will work with micro PEMFC.
  At this research, a micro reformer was build for experimental study, which was construed with three channels included serpentine flow and has the dimension of 100mm×120mm×15mm. The micro channels have a width of 0.75mm and two kinds of depth, i.e. 0.75mm and 1.5mm. Three length of the channel was designed as 633mm、1015mm and 1392mm. Commercially available CuO-ZnO-Al2O3 catalyst was coated inside the micro channels for steam reforming. The catalyst was used about 0.08g for top plate and about 0.14g for base.
  The experimental results show the methanol conversion and hydrogen production rate increase with reaction temperature raise at 200-280℃. When reaction temperature at 280℃, 0.005ml/min feeding rate cause that the methanol conversion reaches 100% approximately. But as feeding rate set 0.02ml/min, the methanol conversion was 83.4%, and hydrogen production rate reaches 18.0sccm which can produce power output of 22.5W from micro PEMFC. The experimental results also show that the methanol conversion decrease and the hydrogen production rate increase with feeding rate raise. For different concentration, the water to methanol ratio at 1.4 has optimal methanol conversion. Increasing the length of channel and the dimension of cross section would add the chemical reaction time, and then increase the methanol conversion and hydrogen production rate.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:29:56Z (GMT). No. of bitstreams: 1
ntu-98-R96522306-1.pdf: 4267167 bytes, checksum: 4839a62122d417494a339c37ed0f7a53 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
目錄 III
表目錄 VI
圖目錄 VII
符號說明 XI
第一章 緒論 1
1.1燃料電池 1
1.2燃料重組器 2
1.3甲醇重組反應單元與類型 3
1.3.1甲醇蒸氣重組法 3
1.3.2甲醇部份氧化法 3
1.3.3甲醇自發熱重組法 4
1.3.4不同甲醇重組反應類型比較 4
1.4微型重組器 5
1.5 研究動機 7
第二章 文獻回顧 8
2.1甲醇蒸氣重組系統 8
2.2微型燃料重組器 9
2.3微流道 11
2.4研究目的 12
第三章 實驗設備與步驟 13
3.1甲醇水溶液供應系統 13
3.1.1甲醇水溶液儲存槽 13
3.1.2微幫浦 14
3.1.3管柱加熱器 14
3.2重組反應系統 14
3.2.1反應器本體 14
3.2.2觸媒選擇 15
3.2.3防洩環 15
3.2.4加熱器 16
3.2.5隔熱裝置 16
3.2.6溫度控制裝置 16
3.3收集與量測系統 16
3.3.1冷卻裝置 16
3.3.2乾燥器 17
3.3.3流量計 17
3.3.4氣相層析儀 17
3.4實驗程序 18
3.5實驗過程遭遇問題與解決方法 19
第四章 結果與討論 21
4.1甲醇轉化率的計算 21
4.2溫度效應 22
4.3水對甲醇比(α)效應 24
4.4反應時間效應 25
4.5流道截面尺寸效應 27
4.6微型甲醇重組系統之氫氣產生率 29
4.7 響應時間 30
4.7.1改變反應溫度之效應 30
4.7.2改變甲醇進料率之效應 31
第五章 結論與建議 33
5.1 結論 33
5.2 建議 34
參考文獻 35
表 41
圖 51
附錄A 誤差分析 86
附錄B 熱電偶線溫度校正 88
附錄C 財團法人台灣電子檢驗中心校正報告 89
dc.language.isozh-TW
dc.subject蒸氣重組法zh_TW
dc.subject氫zh_TW
dc.subject甲醇zh_TW
dc.subject質子交換膜燃料電池zh_TW
dc.subject微型zh_TW
dc.subject重組器zh_TW
dc.subjecthydrogenen
dc.subjectsteam reformingen
dc.subjectmethanolen
dc.subjectreformeren
dc.subjectmicroen
dc.subjectPEMFCen
dc.title微型甲醇重組器參數與性能研究zh_TW
dc.titleA Study of Parameters and Performance
for Micro Methanol Reformer
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝曉星,李昭仁,黃智勇
dc.subject.keyword質子交換膜燃料電池,微型,重組器,甲醇,蒸氣重組法,氫,zh_TW
dc.subject.keywordPEMFC,micro,reformer,methanol,steam reforming,hydrogen,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2009-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved