請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42922完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張斐章 | |
| dc.contributor.author | Yung-Hsiang Chen | en |
| dc.contributor.author | 陳永祥 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:28:58Z | - |
| dc.date.available | 2009-07-30 | |
| dc.date.copyright | 2009-07-30 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-21 | |
| dc.identifier.citation | 1.Abraham, A., 2004. Meta learning evolutionary artificial neural networks. Neurocomputing 56, 1-38.
2.Abrahart, R.J., See, L., Kneale P.E., 1998. New tools for neurohydrologist: using network pruning and model breeding algorithm to discover optimum inputs and architecture. In: Proceedings of the 3rd International Conference on Geocomputation. University of Bristol. 3.Angeline, P.J., Saunders, G.B., Pollack, J.B., 1994. An evolutionary algorithm that evolves recurrent neural networks. IEEEE Transactions on Neural Networks 5 (1), 54-65. 4.Atiya, A.F., Shaheen, S.I., 1999. A comparison between neural-network forecasting techniques - case study: river flow forecasting. IEEE Transaction on Neural Networks 10(2), 402-409. 5.Cieniawski, S.E., Eheart, J.W., Ranjithan, S., 1995. Using genetic algorithms to solve a multi-objective groundwater monitoring problem. Water Resources Research 31(2), 399-409. 6.Castillo, P.A., Merelo, J.J., Arenas, M.G., Romero G., 2007. Comparing evolutionary hybrid systems for design and optimization of multilayer perceptron structure along training parameters. Information Science: An International Journal 177(14): 2884-2905. 7.Chang, L.C., Chang, F.J., 2001. Intelligent control for modeling of real time reservoir operation. Hydrological Processes, 15(9): 1621-1634. 8.Chang, F.J., Chang, L.C., Huang, H.L., 2002. Real time recurrent neural network for streamflow forecasting. Hydrological Processes 16, 2577-2588. 9.Chang, F.J., Chang, L.C., Wang, Y.S., 2007. Enforced self-organizing map neural networks for river flood forecasting. Hydrological Processes 21, 741-749. 10.Chang, F.J., Chang, Y.T., 2006. Adaptive neural-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources 29, 1-10. 11.Chang, F.J., Chen, L., 1998. Real-coded genetic algorithm for rule-based flood control reservoir management, Water Resource Management, 12(3), 185-198. 12.Chang, F.J., Chen, L., Chang, L.C., 2005. Optimising the reservoir operation rule curves by genetic algorithms. Hydrological Processes 19, 2277-2289. 13.Chang, F.J., Chen, Y.C., 2001. A counterpropagation fuzzy-neural network modeling approach to real-time streamflow prediction. Journal of Hydrology 245, pp153-164. 14.Chang, F.J., Chen, Y.C., 2003. Estuary water-stage forecasting by using radial basis function neural network. Journal of Hydrology 270, 158-165. 15.Chang, F.J., Chen, Y.C., 2003. Estuary water-stage forecasting by using radial basis function neural network. Journal of Hydrology 270, 158-165. 16.Chang, F.J., Hwang, Y.Y., 1999. A self-organization algorithm for real-time flood forecast. Hydrological Processes 13, 123-138. 17.Chang, F.J., Lai, J.S., Kao, L.S., 2003. Optimization of operation rule curves and flushing schedule in a reservoir. Hydrological Processes 13, 123-138. 18.Chang, L.C., Chang, F.J., 2001. Intelligent control for modeling of real time reservoir operation, Hydrological Processes 15(9), 1621-1634. 19.Chang, L.C., Chang, F.J., Chiang, Y.M., 2003. A two-step ahead recurrent neural network for streamflow forecasting. Hydrological Processes 18, 81-92. 20.Chang, F.J., Hwang, Y.Y., 1999. A self-organization algorithm for real-time flood forecast. Hydrological Processes 13, 123-138. 21.Chang, Y.T., Chang, L.C., Chang, F.J., 2005. Intelligent control for modeling of real-time reservoir operation- part II: ANN with operating rule curves. Hydrological Processes 19, 1431-1444. 22.Chaves, P., Chang, F.J., 2008. Intelligent reservoir operation system based on evolving artificial neural networks. Advances in Water Resources 31, 926-936. 23.Chen Y.H., Chang, F.J., 2009. Evolutionary artificial neural networks for hydrological systems forecasting. Journal of Hydrology 367, 125-137. 24.Chiang, Y.M., Chang, F.J., Jou, B.J.D., Lin, P.F., 2007. Dynamic ANN for precipitation estimation and forecasting from radar observations. Journal of Hydrology 334, 250-261. 25.Cortez, P., Machado, J., Neves, J., 1996. An evolutionary artificial neural network time series forecasting system. In: Proceedings of the IASTED International Conference on Artificial Intelligence, Expert Systems and Neural Networks, 278-281. 26.Dawson, C.W., See, L.M., Abrahart, R., Heppenstall, A.J., 2006. Symbiotic adaptive neuro-evolution applied to rainfall-runoff modeling in northern England. Neural Networks 19, 236-247. 27.East, V., Hall, M.J., 1994. Water resources ststem optimization using genetic algorithms. In: Proceedings of the 1st International Conference on Hydroinformatics, Balkema, Rotterdam, the Netherlands, 225-231. 28.Fahmy, H.S., King, J.P., Wentzel, M.W., Seton, J.A., 1994. Economic optimization of river management using genetic algorithms. Paper No. 943034, ASCE International Summer Meeting, American Society of Agricultural Engineers. 29.Franchini, M., Galeati, G., 1997. Comparing several genetic algorithm schemes for the calibration of conceptual rainfall-runoff models. Hydrological Sciences Journal 42 (3), 357-379. 30.Goldberg, D.E., Kuo, C.H., 1987. Genetic algorithm in pipeline optimization. Journal of Computing in Civil Engineering 1(2), 128-141. 31.Ham, F.M. and Kostanic, I., 2001. Principles of Neurocomputing for Science and Engineering, McGraw-Hill. 32.Hasebe, M., Nagayama, Y., 2002. Reservoir operation using the neural network and fuzzy systems for dam control and operation support. Advances in Engineering Software 33(5), 245-260. 33.Holland, J.H., 1975. Adaptation in Natural and Artificial Systems, second ed. Massachusetts Institute of Technology, Cambridge. 34.Hsu, K.L., Gupta, H.V., Sorooshian, S., 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31(10), 2517-2530. 35.Jain, S.K., Das, A., Srivastava, D.K., 1999. Application of ANN for reservoir inflow prediction and operation. Journal of Water Resources Planning and Management 125(5), 263-271. 36.Karunasinghe, D.S.K., Liong, S.Y., 2006. Chaotic time series prediction with a global model: artificial neural network. Journal of Hydrology 323, 92-105. 37.Komda, T., Makarand, C., 2000. Hydrological forecasting using neural networks. Journal of Hydrologic Engineering 5(2), 180-189. 38.Kwok, T.Y., Yeung, D.Y., 1997, Constructive algorithm for structure learning in feedforward neural networks for regression problems, IEEE Transactions on Neural Networks, 3: 630-645. 39.Leahy, P., Kiely, G., Corcoran, G., 2008. Structural optimisation and input selection of an artificial neural network for river level prediction. Journal of Hydrology 355 (1), 192-201. 40.Lin, G.F., Chen, G.R., 2005. Determination of aquifer parameters using radial basis function network approach. Journal of the Chinese Institute of Engineers 28(2), 241-249. 41.Lin, G.F., Chen, G.R., 2008. A systematic approach to the input determination for neural network rainfall-runoff models. Hydrological Processes 22(14), 2524-2530. 42.Lin, G.F., Chen, G.R., Huang, P.Y., Chou, Y.C., 2009. Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods. Journal of Hydrology 372, 17-29. 43.Lin, G.F., Chen, L.H., 2004. A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology 289, 1-8. 44.Lin, G.F., Chen, L.H., 2005. Time series forecasting by combining the radial basis function network and the self-organizing map. Hydrological Processes 19(10), 1925-1937. 45.Lin, G.F., Chen, L.H., 2005. Application of artificial neural network to typhoon rainfall forecasting, Hydrological Processes 19(9), 1825-1837. 46.Mackey, M.C. and Glass, L., 1977. Oscillation and chaos in physiological control systems. Science 197, 287-289. 47.McCulloch, W.S., Pitts W., 1943. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115-133. 48.McKinney, D., Lin, M., 1994. Genetic algorithm solutin of groundwater management models. Water Resources Research 30(6), 1897-1906. 49.Moller, M.F., 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6, 525-533. 50.Moriaty, D.E., Miikkulainen, R., 1998. Forming neural networks through efficient and adaptive coevolution. Evolutionary Computation 5, 373-399. 51.Negnevistsky, M., 2005. Artificial Intelegence: A Guide to Intelligent Systems, second ed. Pearson Education, Inc. 52.Oliveira, R., Loucks, D.P., 1997. Nonlinear time series forecasting: a fuzzy-neural approach. Neurocomputing 16, 63-76. 53.Ritzel, B.J., Eheart, J.W., Ranjithan, S., 1994. Using genetic algorithms to solve a multiple objective groundwater pollution problem. Water Resources Research 30(5), 1589-1603. 54.Sajikumar, N., Thandaveswara, B.S., 1999. A non-linear rainfall-runoff model using an artificial network. Journal of Hydrology 216(1), 32-55. 55.Sahoo, G.B., Ray, C., 2006. Flow forecasting for a Hawaiian stream using rating curves and neural networks. Journal of Hydrology 317, 63-80. 56.Wang, Q.J., 1991. The genetic algorithm and its application to calibrating conceptual rainfall-runoff models. Water Resources Research 27(9), 2467-2471. 57.Yao, X, 1993. A review of evolutionary artificial neural networks. International Journal of Intelligent Systems 8, 539-567. 58.Yao, X, 1999. Evolving artificial neural networks. In: Proceedings of the IEEE 87 (9) 1423-1447. 59.Zhu, M.L., Fujita, M., 1994. Comparisons between fuzzy reasoning and neural network methods to forecast runoff discharge, Journal of Hydroscience and Hydraulic Engineering 12(2), 131-141. 60. 王如意、潘宗毅、宋文元,2004,「遞迴式類神經網路之系統辨識及其於降雨-逕流模擬之研究」,臺灣水利,39(1),1-14。 61. 阮聖裕,1993,「類神經網路應用於地表覆蓋分類之研究」,國立臺灣大學農業工程學研究所碩士論文。 62. 江介倫、鄭克聲,2004年,「類神經網路分類法之探討及其於衛星影像分類之應用」,農業工程學報50(1)。 63. 邱建堯,2005,「結合GA與CG優選最佳倒傳遞類神經網路-以雨水下水道水位預測模式為例」,國立臺灣大學農業工程學研究所碩士論文。 64. 林國峰、陳儒賢,2004,「應用全面監督式訓練法所建立之輻狀基底函數網路於洪水量預測」,水資源管理2003研討會,6.23-6.34。 65. 吳國儒、高慧珊、鍾昌翰、何宜樺、張斐章,2008,「以類神經網路推估蒸發量」,農業工程學報54(3),1-13。 66. 段鏞、傅金城、鄧慰先,2007,「適應性網路模糊推論系統於降雨-洪水位預報之研究」,臺灣水利56(2),50-70。 67. 孫志鴻、詹仕堅,1999,「類神經網路在集水區降雨逕流模擬之應用」,國立臺灣大學理學院地理學系地理學報25,1-14。 68. 孫建平,1996,「類神經網路及其應用於降雨及逕流過程之研究」,國立臺灣大學農業工程研究所碩士論文。 69. 高慧珊,2007,「以自組特徵映射網路推估蒸發量」,臺灣大學生物環境系統工程研究所碩士論文。 70. 張斐章、胡湘帆、黃源義,1998,「反傳遞模糊類神經網路於流量推估之應用」,中國農業工程學報44(2),26-38。 71. 張斐章、胡湘帆、蕭錫清、張長圖,2000,「模糊類神經網路於水庫即時入流量預測之應用」,臺電工程月刊618,7-19。 72. 張斐章、張麗秋,2005,類神經網路,東華書局。 73. 張斐章、陳莉,1993,「遺傳演算法於專家系統中參數優選之研究」,農業工程學報,39(2),1-12。 74. 張雅婷,2006,「調適性網路模糊推論系統於水庫操作之研究」,國立臺灣大學農業工程研究所博士論文。 75. 張麗秋、王國威、張斐章,2008,「逐時更新類神經網路於河川多階段洪水預測之探討」,臺灣水利52(3),12-21。 76. 張麗秋、張斐章,1999,「智慧型水庫即時操作控制系統」,中國農業工程學報45(4),18-30。 77. 陳昶憲、黃尹龍、吳青俊、蔡曜隆,2001,「應用倒傳遞與反傳遞類神經網路模式於洪流量之預測」,臺灣水利52(3),65-77。 78. 陳昶憲、陳建宏,1999,「類神經模糊邏輯法應用於洪水位預報」,中國土木水利工程學刊11(2),317-32。 79. 陳昶憲、楊朝仲、王益文,1996,「類神經網路於烏溪流域洪流預報之應用」,中華水土保持學報27(4),267-274。 80. 陳昶憲、鍾侑達、方唯鈞、劉錦蕙,2005,「結合類神經之模糊推理邏輯建置-以日流量預測模式為例」,臺灣水利53(3),41-55。 81. 陳莉,1995,「以物件導向之遺傳演算法優選水庫運用規線之研究」,國立臺灣大學農業工程學研究所博士論文。 82. 章盛傑,1994,「遺傳演算法之研究及其於水文化學模式之應用」,國立臺灣大學農業工程學研究所碩士論文。 83. 劉新達,1996,「類神經網路在水庫操作的應用」,國立交通大學土木工程學研究所碩士論文。 84. 楊昌儒、蔡長泰、游保杉,1999,「SOM類神經網路應用於降雨特性均一區劃分之研究」,中國土木水利工程學刊11(2),337-348。 85. 楊國珍,2004,「類神經模糊系統應用於蒸發量推估之研究」,成功大學水利及海洋工程研究所碩士論文。 86. 蔡孟蓉,2006,「類神經網路結合衛星影像預報颱風降雨量」,國立臺灣大學農業工程學研究所碩士論文。 87. 戴欣怡,2006,「考量生態流量之水庫最佳操作策略」,國立臺灣大學農業工程學研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42922 | - |
| dc.description.abstract | 智慧型之優選系統應具備自我調適以適應各類型問題之能力,而學習與演化為調適之二種基本型式。一般之優選系統多僅具備其中一種能力,如類神經網路具優異之學習能力,而演化法擁有絕佳之演化能力。傳統類神經網路之建構方式一般係預設固定之網路架構,惟此舉並無法自動地探尋最適合訓練資料之網路模式。而演化法可依生物演化之特點,針對擬求解問題之特性自動地調適網路架構或連結權重。為改善傳統類神經網路優選過程之缺失,本研究提出一嶄新智慧型之演化式類神經網路-「混合編碼演化式類神經網路」,此法以獨創之混合編碼方式,將多層前饋式類神經網路之架構參數(包含輸入變數及隱藏層之神經元)編碼,並以遺傳演算法搭配採用比例共軛梯度法之倒傳遞類神經網路及採用最陡坡降法之線性類神經網路,同時優選網路之架構及各神經元間之最佳連結權重。
本研究建構之混合編碼演化式類神經網路,具下列特色:(一)可自動優選多層前饋式類神經網路之最佳架構;(二)可自動優選出最佳輸入變數之組合;(三)經編碼後之網路架構染色體可於演化過程中進行基因交配運算,並於基因解碼後轉換為不同層數之網路架構;(四)兼具處理線性及非線性優選問題之能力。 由Mackey-Glass混沌時間序列預測之結果,顯示本研究所建構之混合編碼演化式類神經網路兼具效能性、效率性及強健性。另本研究將建構之演化式類神經網路應用於水庫入流量、水庫水位及蒸發量等不同水文系統之預測及推估,結果顯示相對於傳統倒傳遞類神經網路、AR(1)與ARMAX二種時間序列預測模式或Modified Penman蒸發量推估模式,演化式類神經網路之改善百分比均能達到10%以上。 | zh_TW |
| dc.description.abstract | Intelligent optimal systems should have the ability of self-adaptation in order to adjust to various problems. Learning and evolution are two fundemental forms of the adaptation ability. However, the common optimal systems only have one of the two above abilities, for example, artificial neural networks (ANNs) with excellent learning and evolutionary algorithms (EAs) with admirable evolution. The conventional ways of constructing ANNs for a problem generally presume a specific architecture and do not automatically discover network modules appropriate for specific training data. EAs are used to automatically adapt the network architecture or connection weights according to the problem environment without substantial human intervention. To improve on the drawbacks of the conventional optimal process, this study presents a novel intelligent evolutionary artificial neural network, so-called hybrid-encoding evolutionary artificial neural network (HEEANN), for time series forecasting. The HEEANN has a hybrid encoding and optimization procedure, including the genetic algorithm, the scaled conjugate gradient algorithm, and the gradient descent, where the feed-forward ANN architecture (including the inputs and the neurons in hidden layers) and its connection weights of neurons are simultaneously identified and optimized.
The proposed HEEANN has the abilities to: (a) automatically optimize architecture of feedforward ANNs; (b) automatically optimize input variables among all possible ones; (c) evolve network architecture with different-length hidden layers by performing crossover operation between ecoded architecture chromosome; (d) automatically deal with linear and non-linear optimization problems based on whether the evolved network architecture has hidden layer when prior information of the data is insufficient. We first explored the performance of the proposed HEEANN for the Mackey-Glass chaotic time series. The performances of the different networks were evaluated. The excellent performance in forecasting of the chaotic series shows that the proposed algorithm concurrently possesses efficiency, effectiveness, and robustness. We further explored the applicability and reliability of the HEEANN in several real hydrological time series. Again, the results indicate the HEEANN is supeior to backpropagation neural network (BPN), AR(1) and ARMAX models, or Modified Penman model with over 10% improvement. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:28:58Z (GMT). No. of bitstreams: 1 ntu-98-D93622002-1.pdf: 1121436 bytes, checksum: e5625cf2d6aeb319440823e47abb04f0 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘 要 I
Abstract III 目 錄 V 圖 錄 VII 表 錄 IX 第壹章 緒論 1 1-1 研究動機 1 1-2 研究方法 4 1-3 論文章節架構 6 第貳章 文獻回顧 7 2-1 類神經網路 7 2-2 遺傳演算法 9 2-3 演化式類神經網路 10 第參章 理論概述 19 3-1 類神經網路 19 3-2 遺傳演算法 22 3-3 演化式類神經網路 26 第肆章 理論序列及水文系統預測 39 4-1以演化式類神經網路預測理論序列 39 4-2以演化式類神經網路預測水庫旬入流量序列 46 4-3以演化式類神經網路預測水庫時水位 58 4-4以演化式類神經網路推估日蒸發量 67 第伍章 結論與建議 79 5-1結論 80 5-2建議 84 參考文獻 87 簡歷 99 附錄1 103 附錄2 107 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水資源 | zh_TW |
| dc.subject | 演化式類神經網路 | zh_TW |
| dc.subject | 遺傳演算法 | zh_TW |
| dc.subject | 混合編碼 | zh_TW |
| dc.subject | 時間序列 | zh_TW |
| dc.subject | 預測 | zh_TW |
| dc.subject | 水文 | zh_TW |
| dc.subject | Genetic algorithm (GA) | en |
| dc.subject | Hydrology | en |
| dc.subject | Forecasting | en |
| dc.subject | Time series | en |
| dc.subject | Evolutionary artificial neural network (EANN) | en |
| dc.subject | Hybrid-encoding | en |
| dc.subject | Water resources | en |
| dc.title | 演化式類神經網路於水文系統預測之研究 | zh_TW |
| dc.title | Evolutionary Artificial Neural Networks for Hydrological Systems Forecasting | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林國峰,游保杉,黃文政,張良正,鄭克聲 | |
| dc.subject.keyword | 演化式類神經網路,遺傳演算法,混合編碼,時間序列,預測,水文,水資源, | zh_TW |
| dc.subject.keyword | Evolutionary artificial neural network (EANN),Genetic algorithm (GA),Hybrid-encoding,Time series,Forecasting,Hydrology,Water resources, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-22 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
