Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42918
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊宏(Chun-Hung Lin)
dc.contributor.authorWen-Hung Hsuen
dc.contributor.author許文鴻zh_TW
dc.date.accessioned2021-06-15T01:28:49Z-
dc.date.available2014-07-24
dc.date.copyright2009-07-24
dc.date.issued2009
dc.date.submitted2009-07-21
dc.identifier.citation1. Tabor, C. W.; Tabor, H., Polyamines. Annu Rev Biochem 1984, 53, 749-90.
2. Bollinger, J. M., Jr.; Kwon, D. S.; Huisman, G. W.; Kolter, R.; Walsh, C. T., Glutathionylspermidine metabolism in Escherichia coli. Purification, cloning, overproduction, and characterization of a bifunctional glutathionylspermidine synthetase/amidase. J Biol Chem 1995, 270, 14031-41.
3. Marton, L. J.; Pegg, A. E., Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 1995, 35, 55-91.
4. Tabor, H.; Tabor, C. W., Isolation, characterization, and turnover of glutathionylspermidine from Escherichia coli. J Biol Chem 1975, 250, 2648-54.
5. Fairlamb, A. H.; Blackburn, P.; Ulrich, P.; Chait, B. T.; Cerami, A., Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 1985, 227, 1485-7.
6. Shames, S. L.; Fairlamb, A. H.; Cerami, A.; Walsh, C. T., Purification and characterization of trypanothione reductase from Crithidia fasciculata, a newly discovered member of the family of disulfide-containing flavoprotein reductases. Biochemistry 1986, 25, 3519-26.
7. Fairlamb, A. H.; Cerami, A., Identification of a novel, thiol-containing co-factor essential for glutathione reductase enzyme activity in trypanosomatids. Mol Biochem Parasitol 1985, 14, 187-98.
8. Henderson, G. B.; Fairlamb, A. H., Trypanothione metabolism: a chemotherapeutic target in trypanosomatids. Parasitol Today 1987, 3, 312-5.
9. Kwon, D. S.; Lin, C. H.; Chen, S.; Coward, J. K.; Walsh, C. T.; Bollinger, J. M., Jr., Dissection of glutathionylspermidine synthetase/amidase from Escherichia coli into autonomously folding and functional synthetase and amidase domains. J Biol Chem 1997, 272, 2429-36.
10. Lin, C. H.; Kwon, D. S.; Bollinger, J. M., Jr.; Walsh, C. T., Evidence for a glutathionyl-enzyme intermediate in the amidase activity of the bifunctional glutathionylspermidine synthetase/amidase from Escherichia coli. Biochemistry 1997, 36, 14930-8.
11. Pai, C. H.; Chiang, B. Y.; Ko, T. P.; Chou, C. C.; Chong, C. M.; Yen, F. J.; Chen, S.; Coward, J. K.; Wang, A. H.; Lin, C. H., Dual binding sites for translocation catalysis by Escherichia coli glutathionylspermidine synthetase. EMBO J 2006, 25, 5970-82.
12. Rigden, D. J.; Jedrzejas, M. J.; Galperin, M. Y., Amidase domains from bacterial and phage autolysins define a family of gamma-D,L-glutamate-specific amidohydrolases. Trends Biochem Sci 2003, 28, 230-4.
13. Bateman, A.; Rawlings, N. D., The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem Sci 2003, 28, 234-7.
14. Johnston, M., The yeast genome: on the road to the Golden Age. Curr Opin Genet Dev 2000, 10, 617-23.
15. Blattner, F. R.; Plunkett, G., 3rd; Bloch, C. A.; Perna, N. T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J. D.; Rode, C. K.; Mayhew, G. F.; Gregor, J.; Davis, N. W.; Kirkpatrick, H. A.; Goeden, M. A.; Rose, D. J.; Mau, B.; Shao, Y., The complete genome sequence of Escherichia coli K-12. Science 1997, 277, 1453-74.
16. Sachidanandam, R.; Weissman, D.; Schmidt, S. C.; Kakol, J. M.; Stein, L. D.; Marth, G.; Sherry, S.; Mullikin, J. C.; Mortimore, B. J.; Willey, D. L.; Hunt, S. E.; Cole, C. G.; Coggill, P. C.; Rice, C. M.; Ning, Z.; Rogers, J.; Bentley, D. R.; Kwok, P. Y.; Mardis, E. R.; Yeh, R. T.; Schultz, B.; Cook, L.; Davenport, R.; Dante, M.; Fulton, L.; Hillier, L.; Waterston, R. H.; McPherson, J. D.; Gilman, B.; Schaffner, S.; Van Etten, W. J.; Reich, D.; Higgins, J.; Daly, M. J.; Blumenstiel, B.; Baldwin, J.; Stange-Thomann, N.; Zody, M. C.; Linton, L.; Lander, E. S.; Altshuler, D., A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001, 409, 928-33.
17. Schena, M.; Shalon, D.; Davis, R. W.; Brown, P. O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270, 467-70.
18. Lottspeich, F., Proteome Analysis: A Pathway to the Functional Analysis of Proteins. Angew Chem Int Ed Engl 1999, 38 (17), 2476-92.
19. O'Farrell, P. H., High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975, 250, 4007-21.
20. Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999, 17, 994-9.
21. Liu, Y.; Patricelli, M. P.; Cravatt, B. F., Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci U S A 1999, 96, 14694-9.
22. Cravatt, B. F.; Wright, A. T.; Kozarich, J. W., Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 2008, 77, 383-414.
23. Fonovic, M.; Bogyo, M., Activity-based probes as a tool for functional proteomic analysis of proteases. Expert Rev Proteomics 2008, 5, 721-30.
24. Paulick, M. G.; Bogyo, M., Application of activity-based probes to the study of enzymes involved in cancer progression. Curr Opin Genet Dev 2008, 18, 97-106.
25. Kidd, D.; Liu, Y.; Cravatt, B. F., Profiling serine hydrolase activities in complex proteomes. Biochemistry 2001, 40, 4005-15.
26. Adam, G. C.; Cravatt, B. F.; Sorensen, E. J., Profiling the specific reactivity of the proteome with non-directed activity-based probes. Chem Biol 2001, 8, 81-95.
27. Adam, G. C.; Sorensen, E. J.; Cravatt, B. F., Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat Biotechnol 2002, 20, 805-9.
28. Wang, G.; Mahesh, U.; Chen, G. Y.; Yao, S. Q., Solid-phase synthesis of peptide vinyl sulfones as potential inhibitors and activity-based probes of cysteine proteases. Org Lett 2003, 5, 737-40.
29. Sadaghiani, A. M.; Verhelst, S. H.; Gocheva, V.; Hill, K.; Majerova, E.; Stinson, S.; Joyce, J. A.; Bogyo, M., Design, synthesis, and evaluation of in vivo potency and selectivity of epoxysuccinyl-based inhibitors of papain-family cysteine proteases. Chem Biol 2007, 14, 499-511.
30. Belcheva, M.; Csanady, G.; Szucs, M.; Varga, E.; Wollemann, M.; Medzihradszky, K., Enkephalin photoaffinity probes: synthesis and binding properties. Neuropeptides 1988, 12, 149-54.
31. Kato, D.; Boatright, K. M.; Berger, A. B.; Nazif, T.; Blum, G.; Ryan, C.; Chehade, K. A.; Salvesen, G. S.; Bogyo, M., Activity-based probes that target diverse cysteine protease families. Nat Chem Biol 2005, 1, 33-8.
32. Fonovic, M.; Bogyo, M., Activity based probes for proteases: applications to biomarker discovery, molecular imaging and drug screening. Curr Pharm Des 2007, 13, 253-61.
33. Bogyo, M.; Verhelst, S.; Bellingard-Dubouchaud, V.; Toba, S.; Greenbaum, D., Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs. Chem Biol 2000, 7, 27-38.
34. Berkers, C. R.; Verdoes, M.; Lichtman, E.; Fiebiger, E.; Kessler, B. M.; Anderson, K. C.; Ploegh, H. L.; Ovaa, H.; Galardy, P. J., Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat Methods 2005, 2, 357-62.
35. Schmidinger, H.; Birner-Gruenberger, R.; Riesenhuber, G.; Saf, R.; Susani-Etzerodt, H.; Hermetter, A., Novel fluorescent phosphonic acid esters for discrimination of lipases and esterases. Chembiochem 2005, 6, 1776-81.
36. Verdoes, M.; Hillaert, U.; Florea, B. I.; Sae-Heng, M.; Risseeuw, M. D.; Filippov, D. V.; van der Marel, G. A.; Overkleeft, H. S., Acetylene functionalized BODIPY dyes and their application in the synthesis of activity based proteasome probes. Bioorg Med Chem Lett 2007, 17, 6169-71.
37. Speers, A. E.; Adam, G. C.; Cravatt, B. F., Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc 2003, 125, 4686-7.
38. Greenbaum, D.; Medzihradszky, K. F.; Burlingame, A.; Bogyo, M., Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol 2000, 7, 569-81.
39. Hang, H. C.; Loureiro, J.; Spooner, E.; van der Velden, A. W.; Kim, Y. M.; Pollington, A. M.; Maehr, R.; Starnbach, M. N.; Ploegh, H. L., Mechanism-based probe for the analysis of cathepsin cysteine proteases in living cells. ACS Chem Biol 2006, 1, 713-23.
40. Speers, A. E.; Cravatt, B. F., A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J Am Chem Soc 2005, 127, 10018-9.
41. Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J. M.; Sharpless, K. B.; Fokin, V. V., Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(i)-catalyzed ligation of azides and alkynes. Angew Chem Int Ed Engl 2004, 43, 3928-32.
42. Speers, A. E.; Cravatt, B. F., Profiling enzyme activities in vivo using click chemistry methods. Chem Biol 2004, 11, 535-46.
43. Speers, A. E.; Cravatt, B. F., Chemical strategies for activity-based proteomics. Chembiochem 2004, 5, 41-7.
44. Blum, G.; Mullins, S. R.; Keren, K.; Fonovic, M.; Jedeszko, C.; Rice, M. J.; Sloane, B. F.; Bogyo, M., Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat Chem Biol 2005, 1, 203-9.
45. Blum, G.; von Degenfeld, G.; Merchant, M. J.; Blau, H. M.; Bogyo, M., Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 2007, 3, 668-77.
46. Lin, C. H.; Chen, S.; Kwon, D. S.; Coward, J. K.; Walsh, C. T., Aldehyde and phosphinate analogs of glutathione and glutathionylspermidine: potent, selective binding inhibitors of the E. coli bifunctional glutathionylspermidine synthetase/amidase. Chem Biol 1997, 4, 859-66.
47. Chen, S.; Lin, C. H.; Kwon, D. S.; Walsh, C. T.; Coward, J. K., Design, synthesis, and biochemical evaluation of phosphonate and phosphonamidate analogs of glutathionylspermidine as inhibitors of glutathionylspermidine synthetase/amidase from Escherichia coli. J Med Chem 1997, 40, 3842-50.
48. Brady, K. D.; Giegel, D. A.; Grinnell, C.; Lunney, E.; Talanian, R. V.; Wong, W.; Walker, N., A catalytic mechanism for caspase-1 and for bimodal inhibition of caspase-1 by activated aspartic ketones. Bioorg Med Chem 1999, 7, 621-31.
49. Pliura, D. H.; Bonaventura, B. J.; Smith, R. A.; Coles, P. J.; Krantz, A., Comparative behaviour of calpain and cathepsin B toward peptidyl acyloxymethyl ketones, sulphonium methyl ketones and other potential inhibitors of cysteine proteinases. Biochem J 1992, 288, 759-62.
50. Powers, J. C.; Asgian, J. L.; Ekici, O. D.; James, K. E., Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 2002, 102, 4639-750.
51. Kanazawa, H.; Fujimoto, S.; Ohara, A., On the mechanism of inactivation of active papain by ascorbic acid in the presence of cupric ions. Biol Pharm Bull 1994, 17, 789-93.
52. Martin, C. B.; Rowland, L. O., Jr.; Easley, J. F.; Shirley, R. L., Effect of papain injection on mineral concentration in tissues of roosters and hens. Poult Sci 1975, 54, 1939-41.
53. Herblin, W. F.; Ritt, P. E., The Binding of Heavy Metal Ions by Papain. Biochim Biophys Acta 1964, 85, 489-90.
54. Xu, Q.; Sudek, S.; McMullan, D.; Miller, M. D.; Geierstanger, B.; Jones, D. H.; Krishna, S. S.; Spraggon, G.; Bursalay, B.; Abdubek, P.; Acosta, C.; Ambing, E.; Astakhova, T.; Axelrod, H. L.; Carlton, D.; Caruthers, J.; Chiu, H. J.; Clayton, T.; Deller, M. C.; Duan, L.; Elias, Y.; Elsliger, M. A.; Feuerhelm, J.; Grzechnik, S. K.; Hale, J.; Won Han, G.; Haugen, J.; Jaroszewski, L.; Jin, K. K.; Klock, H. E.; Knuth, M. W.; Kozbial, P.; Kumar, A.; Marciano, D.; Morse, A. T.; Nigoghossian, E.; Okach, L.; Oommachen, S.; Paulsen, J.; Reyes, R.; Rife, C. L.; Trout, C. V.; van den Bedem, H.; Weekes, D.; White, A.; Wolf, G.; Zubieta, C.; Hodgson, K. O.; Wooley, J.; Deacon, A. M.; Godzik, A.; Lesley, S. A.; Wilson, I. A., Structural basis of murein peptide specificity of a gamma-D-glutamyl-l-diamino acid endopeptidase. Structure 2009, 17, 303-13.
55. Link, A. J.; Vink, M. K.; Tirrell, D. A., Preparation of the functionalizable methionine surrogate azidohomoalanine via copper-catalyzed diazo transfer. Nat Protoc 2007, 2, 1879-83.
56. Henzing, A. J.; Dodson, H.; Reid, J. M.; Kaufmann, S. H.; Baxter, R. L.; Earnshaw, W. C., Synthesis of novel caspase inhibitors for characterization of the active caspase proteome in vitro and in vivo. J Med Chem 2006, 49, 7636-45.
57. Fyfe, P. K.; Oza, S. L.; Fairlamb, A. H.; Hunter, W. N., Leishmania trypanothione synthetase-amidase structure reveals a basis for regulation of conflicting synthetic and hydrolytic activities. J Biol Chem 2008, 283, 17672-80.
58. Vivares, D.; Arnoux, P.; Pignol, D., A papain-like enzyme at work: native and acyl-enzyme intermediate structures in phytochelatin synthesis. Proc Natl Acad Sci U S A 2005, 102, 18848-53.
59. Aravind, L.; Anantharaman, V.; Iyer, L. M., Evolutionary connections between bacterial and eukaryotic signaling systems: a genomic perspective. Curr Opin Microbiol 2003, 6, 490-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42918-
dc.description.abstract穀胱甘肽/精胺質 (glutathionylspermidine, Gsp) 是由一分子穀胱甘肽 (glutathione) 及一分子精胺質 (spermidine) 所組成之生物分子;主要存在於大腸桿菌等少數細菌及單細胞原(protozoa) 中。而Gsp synthetase/amidase (GspSA) 為一負責催化大腸桿菌中Gsp的合成 (同時消耗一分子ATP) 及水解互相拮抗的雙功能酵素;兩個酵素活性分別位於整個蛋白質兩端各自獨立摺疊的活性區塊 (activity domain)。先前的研究也證實大腸桿菌中Gsp amidase屬於半胱胺酸水解酶 (cysteine protease),以第59號半胱胺酸為催化親核基 (catalytic nucleophile)。
根據文獻報導,GspSA 在大腸桿菌氧化還原調控中扮演著重要的角色;GspSA兩個相拮抗之酵素活性,因應氧化壓力的不同而有所改變。藉由活性探針來觀察大腸桿菌中Gsp amidase的存在 (定性) 及含量 (定量),將有助於我們探討 GspSA調控兩個相反酵素活性的特殊機制。
本論文藉由蛋白質晶體結構與酵素反應機制,設計並合成了數個 Gsp amidase 的活性探針 (Activity-Based Probes; 簡稱 ABPs)。在 ABPs 的設計上以γ-Glu-Ala-Gly代替穀胱甘肽的三胜肽 (γ-Glu-Cys-Gly) 作為酵素專一性辨識區;並選擇活化酮基 (activated ketone) 當成特定反應基團,使ABPs可以與 Gsp amidase 中參與催化的半胱胺酸 (Cys59) 形成共價鍵鍵結。並進一步地經由ABPs上的標籤基團 (tag),可以觀察此酵素的存在 (定性) 及含量 (定量)。在合成 ABPs 的過程中,我們改良了傳統合成策略,由二醇類的化合物作為起始物,合成活化酮基類的活性探針,藉此簡化合成的步驟並提高安全性。最後經由電腦模擬與酵素活性的分析,決定最佳的活性探針,並且成功的利用此活性探針在菌體中標示到 GspS。未來期望可藉由此活性探針進一步去探討 Gsp amidase 在生物體內活性的調控 並協助發展出強效活性的酵素抑制劑來治療原蟲疾病的藥物。
zh_TW
dc.description.abstractGlutathionylspermidine (Gsp), an amide-bond conjugate of glutathione and spermidine, is mainly found in some protozoal parasites and E. coli. Glutathionylspermidine sythetase/amidase is a bifunctional enzyme with separate activity domains to catalyze both the synthesis and hydrolysis of Gsp.
Recently we discovered that Gsp synthetase/amidase plays an important role in redox regulation in E. coli. The amidase activity changes depending on the condition of various oxidative stress. In order to qualitatively and quantitatively monitor the amidase activity level in vivo, it is necessary to design and synthesize specific activity-based probes (ABPs) to investigate how Gsp amidase is involved in redox regulation and how the synthetase and amidase communicate with each other in the oxidative defense.
Based on the catalytic mechanism and X-ray structural information of Gsp amidase, the
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:28:49Z (GMT). No. of bitstreams: 1
ntu-98-R96b46034-1.pdf: 8702091 bytes, checksum: 359e189dfcb0c4b79851d5a490ec4bd3 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄 (I)
縮寫表 (III)
中文摘要 (V)
英文摘要 (VI)
圖目錄 (VIII)
表格目錄 (XI)
流程圖目錄 (XII)
第一章緒論 (1)
1.1大腸桿菌中穀胱甘肽/精胺質合成及水解酵素的簡介 (1)
1.2 Gsp amidase結構及催化機制之探討 (5)
1.3活性探針 (activity-based probes) 之簡介 (9)
1.3.1基因體學及蛋白質體學之發展 (9)
1.3.2活性探針 (Activity-based probes) 之應用 (9)
1.3.3活性探針之基本架構 (11)
1.3.4活性探針之應用及突破 (16)
1.4 研究動機 (18)
第二章 結果與討論 (20)
2.1 Gsp amidase活性探針之設計 (20)
2.2受質類似物及活性探針之合成 (28)
2.2.1 Gsp amidase受質類似物6與12之合成策略 (28)
2.2.2化合物6之合成路徑 (29)
2.2.3化合物12之合成路徑 (30)
2.2.4活性碳針GAP-1之逆合成分析 (31)
2.2.5活性探針GAP-1之合成路徑及改良 (32)
2.2.6活性探針GAP-2及GAP-3之合成方法 (38)
2.2.7標籤分子之合成路徑 (39)
2.2.8活性探針GAP-4之合成方法 (40)
2.3 Gsp amidase與活性探針的生物活性測試 (41)
2.3.1活性探針的酵素動力學分析及其結果討論 (41)
2.3.2 MALDI-TOF串連質譜實驗 (MS-MS) 實驗結果與討論(42)
2.3.3西方墨點標示實驗結果與討論 (43)
2.4 結論與未來展望 (45)
2.4.1 結論 (45)
2.4.2 未來展望 (46)
第三章 實驗部分 (50)
3.1 General method (50)
3.2 Synthetic Procedures and Spectral Data (51)
第四章 補充資料 (88)
第五章 參考文獻 (91)
附錄 (A1)
NMR光譜圖 (A1)
dc.language.isozh-TW
dc.title穀胱甘肽/精胺質水解酵素活性探針之設計與開發zh_TW
dc.titleActivity-based Probes for Gsp Amidase :
Structure-guided Design, Synthesis and Evaluation.
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳世雄(Shih-Hsiung Wu),羅禮強(Lee-Chiang Lo),陳佩燁(Rita P.-Y. Chen)
dc.subject.keyword穀胱甘&#32957,/精胺質,水解酵素,活性探針,zh_TW
dc.subject.keywordglutathionylspermidine,protease,activity-based probes,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2009-07-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
8.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved