請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42917完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳建春 | |
| dc.contributor.author | Jyun-Yan Liang | en |
| dc.contributor.author | 梁俊諺 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:28:46Z | - |
| dc.date.available | 2009-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-22 | |
| dc.identifier.citation | 1. Bao X, Reuss L, Altenberg GA. 2004. Regulation of purified and reconstituted connexin 43 hemichannels by protein kinase C-mediated phosphorylation of Serine 368. J Biol Chem 279:20058-66.
2. Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Saffitz JE. 2000. Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656-62. 3. Chung TH, Wang SM, Chang YC, Chen YL, Wu JC. 2007. 18beta-glycyrrhetinic acid promotes src interaction with connexin43 in rat cardiomyocytes. J Cell Biochem 100:653-64. 4. Chung TH, Wang SM, Wu JC. 2004. 17beta-estradiol reduces the effect of metabolic inhibition on gap junction intercellular communication in rat cardiomyocytes via the estrogen receptor. J Mol Cell Cardiol 37:1013-22. 5. Davidson JS, Baumgarten IM. 1988. Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships. J Pharmacol Exp Ther 246:1104-7. 6. Davidson JS, Baumgarten IM, Harley EH. 1986. Reversible inhibition of intercellular junctional communication by glycyrrhetinic acid. Biochem Biophys Res Commun 134:29-36. 7. Disatnik MH, Buraggi G, Mochly-Rosen D. 1994. Localization of protein kinase C isozymes in cardiac myocytes. Exp Cell Res 210:287-97. 8. Doble BW, Ping P, Kardami E. 2000. The epsilon subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 86:293-301. 9. Ek-Vitorin JF, King TJ, Heyman NS, Lampe PD, Burt JM. 2006. Selectivity of connexin 43 channels is regulated through protein kinase C-dependent phosphorylation. Circ Res 98:1498-505. 10. Finney RS, Somers GF. 1958. The antiinflammatory activity of glycyrrhetinic acid and derivatives. J Pharm Pharmacol 10:613-20. 11. Godwin AJ, Green LM, Walsh MP, McDonald JR, Walsh DA, Fletcher WH. 1993. In situ regulation of cell-cell communication by the cAMP-dependent protein kinase and protein kinase C. Mol Cell Biochem 127-128:293-307. 12. Goodenough DA, Goliger JA, Paul DL. 1996. Connexins, connexons, and intercellular communication. Annu Rev Biochem 65:475-502. 13. Goodenough DA, Paul DL. 2003. Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285-94. 14. Grazul-Bilska AT, Reynolds LP, Redmer DA. 1997. Gap junctions in the ovaries. Biol Reprod 57:947-57. 15. Guan X, Wilson S, Schlender KK, Ruch RJ. 1996. Gap-junction disassembly and connexin 43 dephosphorylation induced by 18 beta-glycyrrhetinic acid. Mol Carcinog 16:157-64. 16. Guo Y, Martinez-Williams C, Gilbert KA, Rannels DE. 1999. Inhibition of gap junction communication in alveolar epithelial cells by 18alpha-glycyrrhetinic acid. Am J Physiol 276:L1018-26. 17. Hagen A, Dietze A, Dhein S. 2009. Human cardiac gap-junction coupling: effects of antiarrhythmic peptide AAP10. Cardiovasc Res. 18. Hossain MZ, Ao P, Boynton AL. 1998. Platelet-derived growth factor-induced disruption of gap junctional communication and phosphorylation of connexin43 involves protein kinase C and mitogen-activated protein kinase. J Cell Physiol 176:332-41. 19. Hossain MZ, Murphy LJ, Hertzberg EL, Nagy JI. 1994. Phosphorylated forms of connexin43 predominate in rat brain: demonstration by rapid inactivation of brain metabolism. J Neurochem 62:2394-403. 20. Huang SH, Wu JC, Hwang RD, Yeo HL, Wang SM. 2003. Effects of 18beta-glycyrrhetinic acid on the junctional complex and steroidogenesis in rat adrenocortical cells. J Cell Biochem 90:33-41. 21. Huang YS, Tseng YZ, Wu JC, Wang SM. 2004. Mechanism of oleic acid-induced gap junctional disassembly in rat cardiomyocytes. J Mol Cell Cardiol 37:755-66. 22. Kelloff GJ, Boone CW, Crowell JA, Steele VE, Lubet R, Sigman CC. 1994. Chemopreventive drug development: perspectives and progress. Cancer Epidemiol Biomarkers Prev 3:85-98. 23. Kim DH, Jang IS, Lee SW. 1997. Bacteroides J-37, a human intestinal bacterium, produces alpha-glucuronidase. Biol Pharm Bull 20:834-7. 24. Kimura S, Suzuki K, Sagara T, Nishida T, Yamamoto T, Kitazawa Y. 2000. Regulation of connexin phosphorylation and cell-cell coupling in trabecular meshwork cells. Invest Ophthalmol Vis Sci 41:2222-8. 25. Kuroki T, Inoguchi T, Umeda F, Ueda F, Nawata H. 1998. High glucose induces alteration of gap junction permeability and phosphorylation of connexin-43 in cultured aortic smooth muscle cells. Diabetes 47:931-6. 26. Kwak BR, Jongsma HJ. 1996. Regulation of cardiac gap junction channel permeability and conductance by several phosphorylating conditions. Mol Cell Biochem 157:93-9. 27. Kwak BR, van Veen TA, Analbers LJ, Jongsma HJ. 1995. TPA increases conductance but decreases permeability in neonatal rat cardiomyocyte gap junction channels. Exp Cell Res 220:456-63. 28. Laing JG, Tadros PN, Green K, Saffitz JE, Beyer EC. 1998. Proteolysis of connexin43-containing gap junctions in normal and heat-stressed cardiac myocytes. Cardiovasc Res 38:711-8. 29. Laird DW, Puranam KL, Revel JP. 1991. Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J 273(Pt 1):67-72. 30. Lampe PD, TenBroek EM, Burt JM, Kurata WE, Johnson RG, Lau AF. 2000. Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J Cell Biol 149:1503-12. 31. Lauf U, Giepmans BN, Lopez P, Braconnot S, Chen SC, Falk MM. 2002. Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proc Natl Acad Sci U S A 99:10446-51. 32. Li H, Liu TF, Lazrak A, Peracchia C, Goldberg GS, Lampe PD, Johnson RG. 1996. Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells. J Cell Biol 134:1019-30. 33. Lye SJ, Nicholson BJ, Mascarenhas M, MacKenzie L, Petrocelli T. 1993. Increased expression of connexin-43 in the rat myometrium during labor is associated with an increase in the plasma estrogen:progesterone ratio. Endocrinology 132:2380-6. 34. Matesic DF, Rupp HL, Bonney WJ, Ruch RJ, Trosko JE. 1994. Changes in gap-junction permeability, phosphorylation, and number mediated by phorbol ester and non-phorbol-ester tumor promoters in rat liver epithelial cells. Mol Carcinog 10:226-36. 35. Musil LS, Cunningham BA, Edelman GM, Goodenough DA. 1990. Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and -deficient cell lines. J Cell Biol 111:2077-88. 36. Musil LS, Goodenough DA. 1991. Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115:1357-74. 37. Nishino H, Kitagawa K, Iwashima A. 1984. Antitumor-promoting activity of glycyrrhetic acid in mouse skin tumor formation induced by 7,12-dimethylbenz[a]anthracene plus teleocidin. Carcinogenesis 5:1529-30. 38. O'Brian CA, Ward NE, Vogel VG. 1990. Inhibition of protein kinase C by the 12-O-tetradecanoylphorbol-13-acetate antagonist glycyrrhetic acid. Cancer Lett 49:9-12. 39. Ogawa H, Oyamada M, Mori T, Mori M, Shimizu H. 2000. Relationship of gap junction formation to phosphorylation of connexin43 in mouse preimplantation embryos. Mol Reprod Dev 55:393-8. 40. Ohtsuki K, Iahida N. 1988. Inhibitory effect of glycyrrhizin on polypeptide phosphorylation by polypeptide-dependent protein kinase (kinase P) in vitro. Biochem Biophys Res Commun 157:597-604. 41. Perez-Armendariz EM, Romano MC, Luna J, Miranda C, Bennett MV, Moreno AP. 1994. Characterization of gap junctions between pairs of Leydig cells from mouse testis. Am J Physiol 267:C570-80. 42. Proulx A, Merrifield PA, Naus CC. 1997. Blocking gap junctional intercellular communication in myoblasts inhibits myogenin and MRF4 expression. Dev Genet 20:133-44. 43. Reynhout JK, Lampe PD, Johnson RG. 1992. An activator of protein kinase C inhibits gap junction communication between cultured bovine lens cells. Exp Cell Res 198:337-42. 44. Saez JC, Nairn AC, Czernik AJ, Fishman GI, Spray DC, Hertzberg EL. 1997. Phosphorylation of connexin43 and the regulation of neonatal rat cardiac myocyte gap junctions. J Mol Cell Cardiol 29:2131-45. 45. Saitongdee P, Milner P, Becker DL, Knight GE, Burnstock G. 2000. Increased connexin43 gap junction protein in hamster cardiomyocytes during cold acclimatization and hibernation. Cardiovasc Res 47:108-15. 46. Severs NJ, Rothery S, Dupont E, Coppen SR, Yeh HI, Ko YS, Matsushita T, Kaba R, Halliday D. 2001. Immunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system. Microsc Res Tech 52:301-22. 47. Sohl G, Willecke K. 2004. Gap junctions and the connexin protein family. Cardiovasc Res 62:228-32. 48. Solan JL, Fry MD, TenBroek EM, Lampe PD. 2003. Connexin43 phosphorylation at S368 is acute during S and G2/M and in response to protein kinase C activation. J Cell Sci 116:2203-11. 49. Solan JL, Lampe PD. 2005. Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochim Biophys Acta 1711:154-63. 50. Vondriska TM, Zhang J, Song C, Tang XL, Cao X, Baines CP, Pass JM, Wang S, Bolli R, Ping P. 2001. Protein kinase C epsilon-Src modules direct signal transduction in nitric oxide-induced cardioprotection: complex formation as a means for cardioprotective signaling. Circ Res 88:1306-13. 51. Yamamoto Y, Fukuta H, Nakahira Y, Suzuki H. 1998. Blockade by 18beta-glycyrrhetinic acid of intercellular electrical coupling in guinea-pig arterioles. J Physiol 511 ( Pt 2):501-8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42917 | - |
| dc.description.abstract | 間隙接合提供相鄰心肌細胞間小於1 kDa的分子自由擴散的一個途徑,而心肌細胞間隙接合主要構成的蛋白質為Cx43。Cx43的碳端磷酸化狀態會影響Cx43的結構、分布及更新,進而影響間隙接合的功能。甘草次酸(18beta-GA)是間隙接合的抑制劑,可以調控心肌細胞Cx43上serine和tyrosine的磷酸化狀態,進而影響間隙接合的功能。本研究我們利用可辨識磷酸化蛋白質之專一性抗體,來探討甘草次酸是否會使Cx43的Ser368 (Ser368Cx43)磷酸化,並進一步測試這過程是否有蛋白激酶C (PKC)參與。我們發現甘草次酸的濃度越高,心肌細胞Ser368Cx43磷酸化程度就越高。隨著處理的時間越久,磷酸化的Ser368Cx43及活化的PKCepsilon也越多。我們利用PKC抑制劑chelerythrine和甘草次酸共同處理心肌細胞,發現抑制PKC會降低甘草次酸所引起的Ser368Cx43磷酸化上升,確定Ser368Cx43的磷酸化與PKC活化有關。雙重免疫螢光染色的結果顯示,甘草次酸處理使間隙接合處的Ser368Cx43及去磷酸化的Cx43-NP都呈明顯的點狀分布,而隨處理的時間延長Cx43-NP的染色點會分布在細胞質。免疫螢光染色的結果進一步顯示,甘草次酸使細胞接合處PKCepsilon的染色增強,並和Cx43同位分布。Ser368Cx43染色的變化雖可以透過抑制PKC而回復,然而Cx43-NP則不受影響。先前的研究指出甘草次酸會活化蛋白質水解酶,使心肌細胞的Cx43全面性去磷酸化,並使Cx43-NP上升。我們發現蛋白質水解酶的抑制劑calyculin A,可以防止甘草次酸所引起Cx43-NP及Ser368Cx43的增加。免疫沉澱分析發現甘草次酸使活化態的pPKCepsilon和Cx43作用增加,而共同處理calyculin A可抑制此作用。我們推測甘草次酸經由活化PKCepsilon使Ser368Cx43的磷酸化上升,同時活化蛋白質水解酶去磷酸化Cx43,使Cx43-NP上升,並使間隙接合去組裝,其機制可能是心肌細胞受甘草次酸刺激產生的Cx43-NP可以當成pPKCepsilon的受質,再經由pPKCepsilon磷酸化之後即可使Ser368Cx43的量增加。 | zh_TW |
| dc.description.abstract | Gap junctions are channels between contiguous cardiomyocytes that provide a direct route for cytoplasmic diffusion of small molecules. The predominant gap junction protein expressed in ventricular cardiomyocytes is connexin43 (Cx43). Phosphorylation of the C-terminus of Cx43 has been implicated in regulation of its localization, turnover, and gap junction function. 18beta-Glycyrrhetinic acid (18beta-GA) has been used as a gap junction uncoupler, which regulates gap junction function by affecting phosphorylation of serine and tyrosine residue of Cx43. In this study phosphor-specific antibodies were used to determine whether 18beta-GA induces phosphorylation of Cx43 at serine 368 residue (pSer368Cx43), and whether this phosphorylation involves PKC. 18beta-GA induced a dose-dependent increase in pSer368Cx43 levels and a time-dependent increase in both pSer368Cx43 and pPKCe levels. The increase in pSer368Cx43 levels was inhibited by co-treatment with the PKC inhibitor, chelerythrine, suggesting that phosphorylation of pSer368Cx43 is mediated by PKC. 18beta-GA induced a punctuate pSer368Cx43 immunostaining and a prominent Cx43-NP immunostaining at cell-cell contact sites. Longer incubation of 18beta-GA may cause some cytoplasmic distribution of Cx43-NP. 18beta-GA also induced an increase of PKCepsilon immunoreactivity which colocalized with Cx43 at gap junction plaques. The 18beta-GA-induced change in pSer368Cx43 staining was reserved by co-treatment with chelerythrine, while the 18beta-GA-induced change in Cx43-NP staining were unaffected. However, the 18beta-GA-induced increase in pSer368Cx43 and Cx43-NP levels were prevented by protein phosphatase inhibitor, calyculin A. 18beta-GA also increased the co-immunoprecipitation of total Cx43 and PKCepsilon, and this effect was prevented by calyculin A co-treatment. We conclude that 18beta-GA induces disassembly of gap junction concomitant with Ser368 phosphorylation of Cx43 via PKCepsilon activation. The Cx43-NP induced by 18beta-GA could be substrates for PKCepsilon to increase pSer368Cx43. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:28:46Z (GMT). No. of bitstreams: 1 ntu-98-R94446008-1.pdf: 1452588 bytes, checksum: 5655edfd192a2b87faa2b461ca1fc5e5 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………i
致謝…………………………ii 中文摘要…………………………iii 英文摘要…………………………iv 目錄…………………………1 圖目錄…………………………2 序論…………………………3 材料與方法…………………………8 結果…………………………14 討論…………………………18 參考文獻…………………………22 圖與圖片說明…………………………28 | |
| dc.language.iso | zh-TW | |
| dc.subject | 心肌細胞 | zh_TW |
| dc.subject | 間隙接合 | zh_TW |
| dc.subject | 甘草次酸 | zh_TW |
| dc.subject | Ser368Cx43 | zh_TW |
| dc.subject | 蛋白激酶 | zh_TW |
| dc.subject | C(PKC) | zh_TW |
| dc.subject | gap junction | en |
| dc.subject | PKC | en |
| dc.subject | Ser368Cx43 | en |
| dc.subject | 18beta-GA | en |
| dc.subject | cardiomyocytes | en |
| dc.title | 甘草次酸對於新生大鼠心肌細胞中間隙接合蛋白connexin43磷酸化之影響 | zh_TW |
| dc.title | Effects of 18beta-glycyrrhetinic acid on phosphorylation of gap junctional protein connexin43 in rat neonatal cardiomyocytes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王淑美,王懷詩,鍾敦輝 | |
| dc.subject.keyword | 心肌細胞,間隙接合,甘草次酸,Ser368Cx43,蛋白激酶,C(PKC), | zh_TW |
| dc.subject.keyword | cardiomyocytes,gap junction,18beta-GA,Ser368Cx43,PKC, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨生物細胞學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
