請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42884完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴朝明 | |
| dc.contributor.author | Meng-Yu Chung | en |
| dc.contributor.author | 鍾孟妤 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:27:28Z | - |
| dc.date.available | 2014-07-28 | |
| dc.date.copyright | 2009-07-28 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-23 | |
| dc.identifier.citation | 于海群、劉勇、李國雷、李瑞生、呂瑞恒。2008。油松幼齡人工林土壤質量對間伐強度的響應。水土保持通報 3: 60-70。
江博能、莊舜堯、王明光。2007。柳杉人工林疏伐對土壤中氮的轉變。人工林之生態系經營研討會論文集 (邱志明、唐盛林、蔣華蕾)。p. 35-45。行政院農業委員會林業試驗所。台北市。 李久先。2005。疏伐示範區監測計畫。行政院農業委員會林務局委託研究計畫系列 94-03-05-03。 李建志。2006。六龜森林土壤碳循環有關酵素活性之研究。國立台灣大學農業化學系碩士論文。台北市。 李培芬、葛兆年。2002。柳杉林之動物多樣性。綠色矽島研討會。台灣大學森林學系。台北市。 李國雷、劉勇、甘敬、郭蓓、徐揚。2008。飛播油松林地土壤酶活性對間伐強度的季節影響。北京林業大學學報 30:82-88。 余瑞珠。2008。溪頭柳杉、台灣杉及巒大杉三種人工林疏伐處理對於土壤養份動態和枝葉分解之影響。國立台灣大學森林環境暨資源系碩士論文。台北市。 吳學平。2001。新竹林區柳杉人工林疏伐之工作研究。國立台灣大學森林學研究所碩士論文。台北市。 林世宗、蔡呈奇、張瑀芳、林亨勳、李思佳。2007。台灣東北部柳杉林疏伐對林分生物量生產、碳吸存與土壤養分之效應。人工林之生態系經營研討會論文集 (邱志明、唐盛林、蔣華蕾)。p. 204-208。行政院農業委員會林業試驗所。台北市。 林務局。1995。第三次臺灣森林資源及土地利用調查。台灣省政府農林廳林務局。 林務局。2005。人工林不同疏伐強度作業對原生樹種更新復育之影響。行政院農業委員會林務局造林研究系列 94-00-5-15號。 金恆鑣。2006。人工林生態系經營及生物多樣性保育研究之因應策略 (I)。永續發展科技與政策研討會論文集。p. 1-16。行政院國科會永續發展研究推動委員會。台北市。 洪維鍊。2001。塔塔加土壤微生物多樣性及族群之探討。國立台灣大學農業化學系碩士論文。台北市。 許文輝。2003。土壤微生物遺傳基因之研究發展趨勢。台灣土壤微生物之收集應用 (楊秋忠、趙維良、廖啟成、黃山內、曾顯雄、許文輝)。p. 103-111。財團法人中正農業科技社會公益基金會。台北市。 陳佩瑜。2005。玉米-水稻輪作系統下施肥管理對根圈土壤酵素活性及細菌族群結構之影響。國立台灣大學農業化學系碩士論文。台北市。 張文慧、陳明杰。2009。個人通訊。 張鼎華、葉章發、范必有、危廷林。2001。撫育間伐對人工林土壤肥力的影響。應用生態學報 5: 672-676。 郭彥軍、韓建國。2008。農牧交錯帶退耕還草對土壤酶活性的影響。草業學報 5: 23-29。 郭寶章。2005。森林的功能與保育。科學發展 (馬哲儒)。p. 6-13。行政院國家科學委員會。台北市。 黃正良、陳明杰、夏禹九、黃志堅。2007。林業經營對集水區水文之影響。人工林之生態系經營研討會論文集 (邱志明、唐盛林、蔣華蕾)。p. 15-30。行政院農業委員會林業試驗所。台北市。 楊秋忠、沈佛亭。2007。土壤微生物多樣性在農業之應用。永續農業-農業生物多樣性專輯 (王三太、林素禎、林鳳琪、邱輝龍、許秀惠、賴明信)。p. 3-7。中華永續農業協會。台中縣。 楊萬勤、王開運。2004。森林土壤酶的研究進展。林業科學 40: 152-159。 劉棠瑞、蘇鴻傑。1983。森林植物生態學。台灣商務印書館股份有限公司。台北市。 劉福成。2007。國有林人工林之現況及經營策略。人工林之生態系經營研討會論文集 (邱志明、唐盛林、蔣華蕾)。p. 4-14。行政院農業委員會林業試驗所。台北市。 顏添明。1993。不同間伐強度對紅檜人工林生長之影響。國立中興大學森林學研究所碩士論文。 Acosta-Martínez, V., L. Cruz, D. Sotomayor-Ramírez, and L. Pérez-Alegrí. 2007. Enzyme activities as affected by soil properties and land use in a tropical watershed. Appl. Soil Ecol. 35: 35–45. Albiach, R., R. Canet, F. Pomares, and F. Ingelmo. 2000. Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Biores. Technol. 75: 43–48. Alkorta, I., A. Aizpurua, P. Riga, I. Albizu, I. Amézaga, and C. Garbisu. 2003. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health 18:65-73. Ball, D. F. 1964. Loss on-ignition as an estimator of organic matter and organic carbon in non-calcareous soils. J. Soil Sci. 15: 84–92. Bending, G. D., M. K. Turner, and J.E. Jones. 2002. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biol. Biochem. 34: 1073–1082. Bending, G. D., M. K. Turner, F. Rayns, M. C. Marx, and M. Wood. 2004. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol. Biochem. 36: 1785–1792. Blanco, J. A., J. B. Imbert, and F. J. Castillo. 2008. Nutrient return via litter fall in two contrasting Pinus sylvestris forests in the Pyrenees under different thinning intensities. For. Ecol. Manage. 256: 1840-1852. Boerner, R. E. J., C. Giai, J. Huang, and J. R. Miesel. 2008. Initial effects of fire and mechanical thinning on soil enzyme activity and nitrogen transformations in eight North American forest ecosystems. Soil Biol. Biochem. 40: 3076-3085. Bosatta, E., and G. Ågren. 1993. Theoretical analysis of microbial biomass dynamics in soils. Soil Biol. Biochem. 26: 143–148. Brady, N. C., and R. R. Weil. 2007. The Nature and Properties of Soils. p. 1-28. Pearson Prentice Hall. Upper Saddle River, NJ. Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59: 39-45. Breland, T. A., and S. Hansen. 1995. Nitrogen mineralization and microbial biomass as affected by soil compaction. Soil Biol. Biochem. 28: 655–663. Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-Total. p. 595-624. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2, 2nd ed. ASA-SSSA, Madision, WI. Buée, M., D. Vairelles, and J. Garbaye. 2005. Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus silvatica) forest subjected to two thinning regimes. Mycorrhiza 15: 235–245. Burns, R. G. 1982. Enzyme activities in soil: Location and a possible role in microbial activity. Soil Biol. Biochem. 14: 423-427. Camiña, F., C. Trasar-Cepeda, F. Gil-Sotres, and C. Leiros. 1998. Measurement of dehydrogenase activity in acid soils rich in organic matter. Soil Biol. Biochem. 30: 1005-1011. Casida, L. E., D. A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Sci. 98: 371-376. Cooper, P. J. M. 1972. Arylsulphatase activity in northern Nigerian soils. Soil Biol. Biochem. 4: 333-337. Courty, P. E., N. Bréda, and J. Garbaye. 2007. Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break. Soil Biol. Biochem. 39: 1655-1663. David, M. B., S. C. Schinder, M. J. Mitchell. 1983. Importance of organic and inorganic sulfur to mineralization processes in a forest soil. Soil Biol. Biochem. 15: 671-677. Debose, K., P. H., Rasmussen, and A. R. Pedersen. 1999. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input. Appl. Soil Ecol. 13: 209-218. Deng, S. P., and M. A. Tabatabai. 1994. Cellulase activity of soils. Soil Biol. Biochem. 26: 1347-1354. Dick, R. P., D. D. Myrold, and E. A. Kerle. 1988. Microbial biomass and soil enzyme activities in compacted and rehabilitated skid trail soils. Soil Sci. Soc. Am. J. 52: 512-516. Doran, J. W., and M. R. Zeiss. 2000. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15: 3-11. Dormaar, J. F., A. Johnston, and S. Smoliak. 1984. Seasonal changes in carbon content, and dehydrogenase, phosphatase, and urease activities in mixed prairie and fescue grassland Ah horizons. J. Range Manage. 37: 31-35. Duncan S. W., and K. J. Puettmann. 2007. Density management and biodiversity in young Douglas-fir forests: Challenges of managing across scales. For. Ecol. Manage. 246: 123-134. Eivazi, F., and M. A. Tabatabai. 1977. Phosphates in soils. Soil Biol. Biochem. 9: 167-172. Ekenler, M., and M. A. Tabatabai. 2002. β-glucosaminindase activity of soils: effect of cropping systems and its relationship to nitrogen mineralization. Biol. Fertil. Soil. 36: 367-376. Elena M., M. Lucio, S. Linda, and G. Jean. 2007. Enzymatic activities of three ectomycorrhizal types of Quercus robur L. in relation to tree decline and thinning. Soil Biol. Biochem. 39: 2897-2904. Epelde, L., J. M. Becerril, J. Hernández-Allica, O. Barrutia, and C. Garbisu. 2008. Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Appl. Soil Ecol. 39: 299-310. Eriksson, K. E. L., R. A. Blanchette, and P. Ander. 1990. Biodegration of cellulose. p. 89-180. In K.E.L. Eriksson et al. (ed.) Microbial and enzymatic degradation of wood and wood components, Springer-Verlag, New York. Fioretto, A., S. Papa, G. Sorrentino, and A. Fuggi. 2001. Decomposition of Cistus incanus leaf litter in a Mediterranean maquis ecosystem: mass loss, microbial enzyme activities and nutrient changes. Soil Boil. Biochem. 3: 311-21. Franzluebbers, A. J.. 2002. Soil organic matter stratification ratio as an indicator of soil quality. Soil Till. Res. 66: 95-106. Frazer, D. W., J. G. McColl, and R. F. Powers. 1990. Soil nitrogen mineralization in a clearcutting chronosequence in a northern California conifer forest. Soil Sci. Soc. Am. J. 54: 1145–1152. Gary, D. B., K. T. Mary, R. Francis, M. Marie-Claude, and M. Wood. 2004. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol. Biochem. 36: 1785-1792. Gee, G. W., and J. W. Bauder. 1986. Particle size analysis. p. 383-411. In A. L. Page et al. (ed.) Methods of soil analysis, Part 1, 2nd ed. ASA-SSSA, Madison, WI. Giai, C., and R. E. J. Boerner. 2007. Effects of ecological restoration on microbial activity, microbial functional diversity, and soil organic matter in mixed-oak forests of southern Ohio, USA. Appl. Soil Ecol. 35: 281–290. Hayes, J. P., S. S. Chan, W. H. Emmingham, J. C. Tappeiner, L.D. Kellogg, and J.D. Bailey. 1997. Wildlife response to thinning young forests in the Pacific Northwest. J. Forest. 95: 28-33. Henrot, J., and P. Robertson. 1994. Vegetation removal in two soils of the humid tropics: Effect on microbial biomass. Soil Biol. Biochem. 26: 111-116. Horwath, W. R., and E. A. Paul. 1986. Microbial biomass. p. 753-773. In S. H. Micklson et al. (ed.) Methods of soil analysis, Part 2, 2nd ed. ASA-SSSA, Madison, WI. Jackson, M. L. 1962. Soluble salt analysis for soil and waters. p. 240-242. In Soil Chemical Analysis. Prentice-Hall, Inc., Englewood Cliffs, New York. Johnson, D. W., and P. S. Curtis. 2001. Effects of forest management on soil C and N storage: meta-analysis. For. Ecol. Manage. 140: 227–238. Johnson, J. E., D. W. Smith, and J. A. Burger. 1985. Effect on the forest floor of whole-tree harvesting in an Appalachian oak forest. Am. Midl. Nat. 114: 51–61. Kandeler, E., C. Kampichler, and O. Horak. 1996. Influence of heavy metals on the functional diversity of soil microbial communities. Biol. Fertil. Soils 23: 299-306. Keeney, D. R., and D. W. Nelson. 1982. Nitrogen-inorganic forms. p. 643-698. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2, 2nd ed. ASA-SSSA, Madision, WI, USA. Kuo, S. 1996. Phosphorus. p. 869-919. In D. L. Sparks (ed.) Methods of soil analysis, Part 3. ASA-SSSA, Madison, WI. Lars V., D. Mads, F. Claus, R. Karsten and B.J. Bruno. 1995. Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands. For. Ecol. Manage. 77: 1-10. Li, Q., H. L. Allen, and A. G. Wollum II. 2004. Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control. Soil Biol. Biochem. 36: 571-579. Lindner, M., 2000. Developing adaptive forest management strategies to cope with climate change. Tree Physiol. 20: 299–307. Maassen, S., F. Hannu, and W. Stephan. 2006. Response of soil microbial biomass, activities, and community structure at a pine stand in northeastern Germany 5 years after thinning. Can. J. For. Res. 36: 1427–1434. Marzluff, J. M., M. G. Raphael, and R. Sallabanks. 2000. Understanding the effects of forest management on avian species. Wildl. Soc. Bull. 28: 1132-1143. Maynard, D. G., Y. P. Kalra, and F. G. Radford. 1987. Extraction and determination of sulfur in organic horizons of forest soil. Soil Sci. Soc. Am. J. 51: 801-805. McClaugherty, C. A., and A. E. Linkins. 1988. Extractability of cellulase in forest litter and soil. Biol. Fertil. Soils 6: 322-327. McClaugherty, C. A., J. D. Aber, and M. Melillo. 1990. The fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63: 1481–1940. McGill, W.B., and C.V. Cole. 1981. Comparative aspects of organic C, N, S, and P cycling through soil organic matter. Geoderma 26: 267-286. McIver, J. D., R. E. J. Boerner, and C. H. Stephen. 2008. The national fire and fire surrogate study: Ecological consequences of alternative fuel reduction methods in seasonally dry forests. For. Ecol. Manage. 255: 3075-3080. McLean, E. O. 1982. Soil pH and lime requirement. p. 199-224. In A.L. Page et al. (ed.) Methods of soil analysis, Part 2, 2nd ed. ASA-SSSA, Madision, WI. Michael A., K. Annelise, and S. Sten. 2004. Microbial enzyme activities in leaf litter, humus and mineral soil layers of European forests. Soil Biol. Biochem. 36: 1527-1537. Moghaddas, E. E. Y., and S. L. Stephens. 2007. Thinning, burning, and thin-burn fuel treatment effects on soil properties in a Sierra Nevada mixed-conifer forest. For. Ecol. Manage. 250: 156-166 Mosca, E., L. Montecchio, L. Sella, and J. Garbaye. 2007. Short-term effect of removing tree competition on the ectomycorrhizal status of a declining pedunculate oak forest (Quercus robur L.). Forest Ecol. Manage. 244: 129-140. Naseby, D. C., and J. M. Lynch. 2002. Enzymes and microorganisms in the rhizosphere. p. 109-123. In R.G. Burns, and R.P. Dick (ed.) Enzymes in the Environment. Marcel Dekker. New York, USA. Nilsen P., and L. T. Strand. 2008. Thinning intensity effects on carbon and nitrogen stores and fluxes in a Norway spruce (Picea abies (L.) Karst.) stand after 33 years. For. Ecol. Manage. 256: 201–208. Parham, J. A., and S. P. Deng. 2000. Detection, quantification and characterization of β-glucosaminidase activity in soil. Soil Biol. Biochem. 32: 1183-1190. Prietzel, J. 2001. Arylsulfatase activities in soils of the Black Forest/Germany- seasonal variation and effect of (NH4)2SO4 fertilization. Soil Biol. Biochem. 33: 1317-1328. Priha, O., and A. Smolander. 1997. Microbial biomass and activity in soil and litter under Pinus sylvestris, Picea abies and Betula pendula at originally similar field afforestation sites. Biol. Fertil. Soils 24: 45-51. Rastin, N., K. Rosenplnter, and A. Httermann. 1988. Seasonal variation of enzyme activity and their dependence on certain soil factors in a beech forest soil. Soil Biol. Biochem. 20: 637-642. Reganold, J.P., J.D. Glover, P.K. Andrews, and H.R. Hinman. 2001. Sustainability of three apple production systems. Nature 410: 926-930. Richmond, P. A. 1991. Occurrence and functions of native cellulose. p. 5-23. In C.H. Haigler and P.J. Weimer (ed.) Biosynthesis and biodegradation of cellulose. Marcel Dekker, Inc., New York. Rodríguez-Loinaza, G., M. Onaindia, I. Amezagaa, I. Mijangosb, and C. Garbisub. 2008. Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests. Soil Biol. Biochem. 40: 49-60. Roper, M. M., and V. V. S. R. Gupta. 1995. Management practices and soil biota. Aust. J. Soil Res. 33: 321–339. Sinsabaugh R. L. 1994. Enzymic analysis of microbial pattern and process. Biol. Fertil. Soils 17: 69-74. Sowerby, A., B. Emmett, C. Beier, A. Tietema, J. Peñuelas, M. Estiarte, M. J .M. Van Meeteren, S. Huges, and C. Freeman. 2005. Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations. Soil Biol. Biochem. 37: 1805–1813. Sparling, G. P., P. B. S. Hart, J. A. August, and D. M. Leslie. 1994. A comparison of soil and microbial carbon, nitrogen, and phosphorus contents, and macro-aggregate stability of a soil under native forest and after clearance for pastures and plantation forest. Biol. Fertil. Soils 17: 91–100. Speir, T. W., and D. J. Ross. 1978. Soil phosphatase and sulphatase. p. 197-250. In R.G. Burns (ed.) Soil enzymes. Academic Press, London. Speir, T. W., E. A. Pansier, and A. Cairns. 1980. A comparison of sulphatase, urease and protease activities in planted and fallow soils. Soil Biol. Biochem. 12: 281-291. Tabatabai, M. A., and J. M. Bremner. 1969. Use of ρ-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1: 301-307. Tabatabai, M. A., and J. M. Bremner. 1970. Arylsulfatase activity of soil. Soil Sci. Soc. Am. Proc. 34: 225-229. Tabatabai, M. A. 1994. Soil enzymes. p. 775-833. In R.W. Weaver, et al. (ed.) Methods of soil analysis, Part 2. ASA -SSSA, Madison, WI. Tabatabai, M. A. and W. A. Dick. 2002. Enzymes in soil: Research and developments in measuring activities. p. 539-565. In R.G. Burns, and R.P. Dick (ed.) Enzymes in the Environment. Marcel Dekker, New York, USA. Wood, C. W., H. A. Torbert, H. H. Rogers, G. B. Runion, and S. A. Prior. 1994. Free-air CO2 enrichment effects on soil carbon and nitrogen. Agric. For. Meteorol. 70: 103-116. Yin, X., J. A. Perry, and R. K. Dixon. 1989. Influence of canopy removal on oak forest floor decomposition. Can. J. For. Res. 19: 204–214. Young, C. C., B. B. Bohlool, and D. P. Bartholomew. 1980. Soil microbial populations and enzymes associated with the decomposition of roots of a legume and a grass species in a tropical soil. Soils and Fertilizers in Taiwan. p. 41-50. Zak, J. C., M. R. Willig, D. L. Moorhead, and H. G. Wildman. 1994. Functional diversity of microbial communities: A quantitative approach. Soil Biol. Biochem. 26: 1101-1108. Zhong, Z., and F. Makeschin. 2003. Soil biochemical and chemical changes in relation to mature spruce (Picea abies) forest conversion and regeneration. J. Plant Nutr. Soil Sci. 166: 291–299. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42884 | - |
| dc.description.abstract | 本研究目的為探究南投縣人倫林道人工林 (N 23˚ 44’ E120˚ 53’)不同疏伐強度對土壤酵素活性及土壤功能多樣性之影響,並分析土壤酵素活性及土壤功能多樣性之季節性變化以及人工林疏伐強度與土壤物理、化學與生物性質間之簡單相關分析。本研究試驗林為20~30年生的柳杉人工林 (Cryptomeria japonica D Don.),其原始林木株數為每公頃943株至1525株。本研究採取三種疏伐強度 (0%、25%、50 %)處理 (疏伐三個月後)各四重複樣區 (1公頃/樣區)之表層 (0-15 cm)及底層 (15-30 cm)土壤,並分析其五種與碳、氮、磷、硫循環及微生物活性有關的土壤酵素 (纖維素酶、β-胺基葡萄糖苷酶、酸性磷酸酯酶、芳香基硫酸酯酶及去氫酶)活性及其十四種土壤物理、化學及其他生物性質 (質地、pH、EC、水分、有機質、全氮、銨態氮、硝酸態氮、無機態氮、有效性磷、水溶性磷、硫酸鹽、微生物生質碳及微生物生質氮等),並依據分析所得之五種土壤酵素活性計算其土壤功能多樣性指數。結果顯示: (一)表層土壤纖維素酶活性在25%疏伐強度之處理顯著高於其他處理 (p<0.05),β-胺基葡萄醣苷酶、酸性磷酸酯酶、芳香基硫酸酯酶及去氫酶活性在25%疏伐強度及50%之處理皆顯著高於控制組 (p<0.05);底層土壤纖維素酶及去氫酶活性在不同疏伐強度間並無顯著差異 (p<0.05),β-胺基葡萄醣苷酶及芳香基硫酸酯酶活性在25%疏伐強度及50%之處理皆顯著高於控制組 (p<0.05),而酸性磷酸酯酶活性在50%疏伐強度之處理顯著高於控制組 (p<0.05)。依據以上之結果,25%疏伐強度及50%之處理顯著提高上述五種土壤酵素活性 (p<0.05)。 (二)表層土壤功能多樣性在50%疏伐強度及控制組之處理皆顯著高於25% (p<0.05);底層土壤功能多樣性在50%疏伐強度之處理顯著高於25%及控制組 (p<0.05)。依據以上之結果,人工林50%疏伐強度處理之土壤功能多樣性顯著高於25%及控制組 (p<0.05)。 (三)人工林疏伐強度與土壤β-胺基葡萄糖苷酶、酸性磷酸酯酶、芳香基硫酸酯酶活性、有機質、全氮、有效性磷及土壤水分間皆呈顯著正相關 (p<0.05)。 (四)綜合以上之結果,並考量林業之生物多樣性保育及永續經營,本試驗林之人工林疏伐強度處理之優先次序建議為50%>25%>0%。 | zh_TW |
| dc.description.abstract | The aims of this study were to examine the effects of thinning intensities on soil enzyme activities and soil functional diversity of Renlun plantation forest, 20-30-year-old Cryptomeria japonica D Don. with initial density of 943-1525 trees ha-1, in Nantou, Taiwan (N 23˚ 44’ E120˚ 53’). Seasonal changes in soil enzyme activities and soil functional diversity, and the simple regression analysis between thinning intensity and soil properties were also investigated. Surface soil (0-15 cm) and subsurface soil (15-30 cm) samples were taken from three thinning treatments including control (0%), 25%, and 50% thinning intensities (3 months after thinning treatments), each with 4 replicates. Five soil enzyme activities (cellulase, β-glucosaminidase, acid phosphatase, arylsulfatase and dehydrogenase) were measured and from which soil functional diversity indexes were calculated. Soil moisture, organic matter, total nitrogen, inorganic nitrogen, available phosphate, water soluble phosphate, sulfate, microbial biomass carbon, and microbial biomass nitrogen were also determined. The results of this study can be summarized by the following: 1. The cellulase activity of surface soil was significantly higher in 25% thinning intensity than in other treatments (p<0.05), and the β-glucosaminidase, acid phosphatase, arylsulfatase and dehydrogenase activities of surface soil were significantly higher in 25% and 50% thinning intensities than in control (p<0.05); The cellulase and dehydrogenase activities of subsurface soil were no significant difference among treatments (p<0.05). The β-glucosaminidase and arylsulfatase activities of subsurface soil were significantly higher in 25% and 50% thinning intensities than in control (p<0.05), and the acid phosphatase activity of subsurface soil was significantly higher in 50% thinning intensity than in control (p<0.05). In short, the enzymes activities were significantly higher in 25% and 50% thinning intensities than in control (p<0.05). 2. The soil functional diversity index of surface soil was significantly higher in 50% and control than in 25% thinning intensity (p<0.05), and the soil functional diversity index of subsurface soil was significantly higher in 50% thinning intensity than in other treatments (p<0.05). In short, the soil functional diversity index was significantly higher in 50% thinning intensity than in other treatments (p<0.05). 3. The results of simple correlation analysis indicated that soil β-glucosaminidase, acid phosphatase, arylsulfatase, organic matter, total nitrogen, available phosphate and soil moisture were significantly positively correlated with thinning intensity (p<0.05). 4. In conclusion, considering the above results and the biodiversity and sustainability of forestry, we suggest that the priority of thinning intensity treatments in this study are: 50%>25%>0%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:27:28Z (GMT). No. of bitstreams: 1 ntu-98-R96623014-1.pdf: 646733 bytes, checksum: a140c7f1e396f6619af29ca25e90c5af (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………………............... i
英文摘要………………………………………………………………... iii 目錄………………………………………………………………........... v 表目錄....………………………………………………………............... vii 圖目錄………………………………………………………................... viii 附錄目錄.........……...................................................... ix 第一章 前言……………………………………………………............. 1 第二章 前人研究………………………………………………………. 4 第一節 人工林疏伐…………………….………………………....... 4 第二節 土壤酵素...........………………………………………......... 7 第三節 土壤功能多樣性…………………………………………..... 13 第三章 材料與方法………………………………………...................... 17 第一節 採樣地點……………………………………………............ 17 第二節 疏伐處理............…………………………………................ 17 第三節 土壤樣品之採集…………………………………................ 20 第四節 土壤物理化學性質之分析…………………….................... 21 第五節 土壤生物性質之分析……………………............................ 22 第六節 土壤功能多樣性指數計算………………............................ 25 第七節 統計分析方法....................………………............................ 26 第四章 結果與討論....................……………….................................... 27 第一節 人倫林道人工林土壤性質之季節性變化....………............ 27 第二節 人倫林道人工林疏伐強度對土壤性質之影響....................31 第三節 人倫林道人工林土壤酵素活性之季節性變化.................... 34 第四節 人倫林道人工林疏伐強度對土壤酵素活性之影響............ 45 第五節 人倫林道人工林土壤功能多樣性之季節性變化.............58 第六節 人倫林道人工林疏伐強度對土壤功能多樣性之影響........ 60 第七節 人倫林道人工林土壤物理、化學、生物及其他土壤 性質間之關係...................................................................... 62 第五章 結論..............………………....................................................... 68 參考文獻.........………………................................................................... 70 附錄. .......………………........................................................................... 86 | |
| dc.language.iso | zh-TW | |
| dc.subject | 人工林 | zh_TW |
| dc.subject | 疏伐 | zh_TW |
| dc.subject | 土壤性質 | zh_TW |
| dc.subject | 土壤功能多樣性 | zh_TW |
| dc.subject | 土壤酵素 | zh_TW |
| dc.subject | plantation forest | en |
| dc.subject | soil functional diversity | en |
| dc.subject | soil enzyme | en |
| dc.subject | soil properties | en |
| dc.subject | thinning | en |
| dc.title | 人工林疏伐強度對土壤酵素活性及土壤功能多樣性之影響 | zh_TW |
| dc.title | Effects of thinning intensity of plantation forest on soil enzyme activities and soil functional diversity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王明光,汪碧涵,楊盛行,譚鎮中 | |
| dc.subject.keyword | 人工林,疏伐,土壤性質,土壤酵素,土壤功能多樣性, | zh_TW |
| dc.subject.keyword | plantation forest,thinning,soil properties,soil enzyme,soil functional diversity, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-23 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 631.58 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
