Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42882
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張淑媛
dc.contributor.authorYu-Tien Tsouen
dc.contributor.author鄒雨恬zh_TW
dc.date.accessioned2021-06-15T01:27:22Z-
dc.date.available2012-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-22
dc.identifier.citationAndersen, R. D. (1987). Herpes simplex virus infection of the neonatal respiratory tract. Am J Dis Child 141(3), 274-6.
Arsalane, K., Broeckaert, F., Knoops, B., Wiedig, M., Toubeau, G., and Bernard, A. (2000). Clara cell specific protein (CC16) expression after acute lung inflammation induced by intratracheal lipopolysaccharide administration. Am J Respir Crit Care Med 161(5), 1624-30.
Asakura, A., and Rudnicki, M. A. (2002). Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp Hematol 30(11), 1339-45.
Braun, E., Zimmerman, T., Hur, T. B., Reinhartz, E., Fellig, Y., Panet, A., and Steiner, I. (2006). Neurotropism of herpes simplex virus type 1 in brain organ cultures. J Gen Virol 87(Pt 10), 2827-37.
Broeckaert, F., and Bernard, A. (2000). Clara cell secretory protein (CC16): characteristics and perspectives as lung peripheral biomarker. Clin Exp Allergy 30(4), 469-75.
Chen, Y., Chan, V. S., Zheng, B., Chan, K. Y., Xu, X., To, L. Y., Huang, F. P., Khoo, U. S., and Lin, C. L. (2007). A novel subset of putative stem/progenitor CD34+Oct-4+ cells is the major target for SARS coronavirus in human lung. J Exp Med 204(11), 2529-36.
Daidoji, T., Koma, T., Du, A., Yang, C. S., Ueda, M., Ikuta, K., and Nakaya, T. (2008). H5N1 avian influenza virus induces apoptotic cell death in mammalian airway epithelial cells. J Virol 82(22), 11294-307.
Fehrenbach, H. (2001). Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res 2(1), 33-46.
Fouchier, R. A., Munster, V., Wallensten, A., Bestebroer, T. M., Herfst, S., Smith, D., Rimmelzwaan, G. F., Olsen, B., and Osterhaus, A. D. (2005). Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79(5), 2814-22.
Graham, B. S., and Snell, J. D., Jr. (1983). Herpes simplex virus infection of the adult lower respiratory tract. Medicine (Baltimore) 62(6), 384-93.
Habiba, A., Blanco, G., and Mercer, R. W. (2000). Expression, activity and distribution of Na,K-ATPase subunits during in vitro neuronal induction. Brain Res 875(1-2), 1-13.
Habiba, A., and Mercer, R. W. (2000). Embryonic stem cells: a model to study Na,K-ATPase isoform expression during development. Mol Genet Metab 71(1-2), 387-90.
Herold, B. C., WuDunn, D., Soltys, N., and Spear, P. G. (1991). Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol 65(3), 1090-8.
Hers, J. F., Mudler, J., Masurel, N., vd, K. L., and Tyrrell, D. A. (1962). Studies on the pathogenesis of influenza virus pneumonia in mice. J Pathol Bacteriol 83, 207-17.
Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G., and Webster, R. G. (2000). A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97(11), 6108-13.
Homa, F. L., and Brown, J. C. (1997). Capsid assembly and DNA packaging in herpes simplex virus. Rev Med Virol 7(2), 107-122.
Hong, K. U., Reynolds, S. D., Giangreco, A., Hurley, C. M., and Stripp, B. R. (2001). Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24(6), 671-81.
Hong, K. U., Reynolds, S. D., Watkins, S., Fuchs, E., and Stripp, B. R. (2004). Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol 164(2), 577-88.
Hurt, A. C., Ernest, J., Deng, Y. M., Iannello, P., Besselaar, T. G., Birch, C., Buchy, P., Chittaganpitch, M., Chiu, S. C., Dwyer, D., Guigon, A., Harrower, B., Kei, I. P., Kok, T., Lin, C., McPhie, K., Mohd, A., Olveda, R., Panayotou, T., Rawlinson, W., Scott, L., Smith, D., D'Souza, H., Komadina, N., Shaw, R., Kelso, A., and Barr, I. G. (2009). Emergence and spread of oseltamivir-resistant A(H1N1) influenza viruses in Oceania, South East Asia and South Africa. Antiviral Res 83(1), 90-3.
Ison, M. G., and Hayden, F. G. (2001). Therapeutic options for the management of influenza. Curr Opin Pharmacol 1(5), 482-90.
Kannan, S., and Wu, M. (2006). Respiratory stem cells and progenitors: overview, derivation, differentiation, carcinogenesis, regeneration and therapeutic application. Curr Stem Cell Res Ther 1(1), 37-46.
Kido, H., Yokogoshi, Y., Sakai, K., Tashiro, M., Kishino, Y., Fukutomi, A., and Katunuma, N. (1992). Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. A possible activator of the viral fusion glycoprotein. J Biol Chem 267(19), 13573-9.
Ling, T. Y., Kuo, M. D., Li, C. L., Yu, A. L., Huang, Y. H., Wu, T. J., Lin, Y. C., Chen, S. H., and Yu, J. (2006). Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci U S A 103(25), 9530-5.
Loosli, C. G., Stinson, S. F., Ryan, D. P., Hertweck, M. S., Hardy, J. D., and Serebrin, R. (1975). The destruction of type 2 pneumocytes by airborne influenza PR8-A virus; its effect on surfactant and lecithin content of the pneumonic lesions of mice. Chest 67(2 Suppl), 7S-14S.
Majka, S. M., Beutz, M. A., Hagen, M., Izzo, A. A., Voelkel, N., and Helm, K. M. (2005). Identification of novel resident pulmonary stem cells: form and function of the lung side population. Stem Cells 23(8), 1073-81.
Martin, K., and Helenius, A. (1991). Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell 67(1), 117-30.
Matthews, R. E. (1979). Third report of the International Committee on Taxonomy of Viruses. Classification and nomenclature of viruses. Intervirology 12(3-5), 129-296.
Meijer, A., Lackenby, A., Hungnes, O., Lina, B., van-der-Werf, S., Schweiger, B., Opp, M., Paget, J., van-de-Kassteele, J., Hay, A., and Zambon, M. (2009). Oseltamivir-resistant influenza virus A (H1N1), Europe, 2007-08 season. Emerg Infect Dis 15(4), 552-60.
Mettenleiter, T. C. (2002). Herpesvirus assembly and egress. J Virol 76(4), 1537-47.
Monto, A. S. (2003). The role of antivirals in the control of influenza. Vaccine 21(16), 1796-800.
Nayak, D. P., Hui, E. K., and Barman, S. (2004). Assembly and budding of influenza virus. Virus Res 106(2), 147-65.
Neuringer, I. P., and Randell, S. H. (2004). Stem cells and repair of lung injuries. Respir Res 5, 6.
Nicholson, K. G., Wood, J. M., and Zambon, M. (2003). Influenza. Lancet 362(9397), 1733-45.
Ojala, P. M., Sodeik, B., Ebersold, M. W., Kutay, U., and Helenius, A. (2000). Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Mol Cell Biol 20(13), 4922-31.
Palese, P. (2004). Influenza: old and new threats. Nat Med 10(12 Suppl), S82-7.
Palese, P., Tobita, K., Ueda, M., and Compans, R. W. (1974). Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61(2), 397-410.
Pinto, L. H., and Lamb, R. A. (1995). Understanding the mechanism of action of the anti-influenza virus drug amantadine. Trends Microbiol 3(7), 271.
Plotch, S. J., Bouloy, M., Ulmanen, I., and Krug, R. M. (1981). A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23(3), 847-58.
Prellner, T., Flamholc, L., Haidl, S., Lindholm, K., and Widell, A. (1992). Herpes simplex virus--the most frequently isolated pathogen in the lungs of patients with severe respiratory distress. Scand J Infect Dis 24(3), 283-92.
Ramsey, P. G., Fife, K. H., Hackman, R. C., Meyers, J. D., and Corey, L. (1982). Herpes simplex virus pneumonia: clinical, virologic, and pathologic features in 20 patients. Ann Intern Med 97(6), 813-20.
Raut, S., Hurd, J., Blandford, G., Heath, R. B., and Cureton, R. J. (1975). The pathogenesis of infections of the mouse caused by virulent and avirulent variants of an influenza virus. J Med Microbiol 8(1), 127-36.
Reno, J. M., Lee, L. F., and Boezi, J. A. (1978). Inhibition of herpesvirus replication and herpesvirus-induced deoxyribonucleic acid polymerase by phosphonoformate. Antimicrob Agents Chemother 13(2), 188-92.
Sacks, W. R., Greene, C. C., Aschman, D. P., and Schaffer, P. A. (1985). Herpes simplex virus type 1 ICP27 is an essential regulatory protein. J Virol 55(3), 796-805.
Schaeffer, H. J., Beauchamp, L., de Miranda, P., Elion, G. B., Bauer, D. J., and Collins, P. (1978). 9-(2-hydroxyethoxymethyl) guanine activity against viruses of the herpes group. Nature 272(5654), 583-5.
Shieh, M. T., WuDunn, D., Montgomery, R. I., Esko, J. D., and Spear, P. G. (1992). Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol 116(5), 1273-81.
Sodeik, B., Ebersold, M. W., and Helenius, A. (1997). Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 136(5), 1007-21.
Spear, P. G., Eisenberg, R. J., and Cohen, G. H. (2000). Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275(1), 1-8.
Spear, P. G., and Longnecker, R. (2003). Herpesvirus entry: an update. J Virol 77(19), 10179-85.
Su, C. T., Hsu, J. T., Hsieh, H. P., Lin, P. H., Chen, T. C., Kao, C. L., Lee, C. N., and Chang,S. Y. (2008). Anti-HSV activity of digitoxin and its possible mechanisms. Antiviral Res 79(1), 62-70.
Sumikoshi, M., Hashimoto, K., Kawasaki, Y., Sakuma, H., Suzutani, T., Suzuki, H., and Hosoya, M. (2008). Human influenza virus infection and apoptosis induction in human vascular endothelial cells. J Med Virol 80(6), 1072-8.
Sweet, C., and Smith, H. (1980). Pathogenicity of influenza virus. Microbiol Rev 44(2), 303-30.
Tobita, K., Sugiura, A., Enomote, C., and Furuyama, M. (1975). Plaque assay and primary isolation of influenza A viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin. Med Microbiol Immunol 162(1), 9-14.
Ward, A. C. (1997). Virulence of influenza A virus for mouse lung. Virus Genes 14(3), 187-94.
Whittaker, G. R., and Helenius, A. (1998). Nuclear import and export of viruses and virus genomes. Virology 246(1), 1-23.
Wyde, P. R., Couch, R. B., Mackler, B. F., Cate, T. R., and Levy, B. M. (1977). Effects of low- and high-passage influenza virus infection in normal and nude mice. Infect Immun 15(1), 221-9.
Zhou, Z. H., Chen, D. H., Jakana, J., Rixon, F. J., and Chiu, W. (1999). Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions. J Virol 73(4), 3210-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42882-
dc.description.abstract幹細胞處在發育最早期的階段,是一種原始且未經分化的細胞,其具有自我新生及多潛能分化性的特徵。在個體內,幹細胞負責各種組織和器官的更新與修復。2006年,林泰元老師自新生小鼠的肺部分離到一種帶有Oct-4標幟的肺部幹細胞,他們發現此種幹細胞表面帶有SARS病毒的受體,而且能夠支持病毒在此細胞中進行複製。2007年,香港大學在因SARS病毒感染而死亡的病人肺部發現被SARS感染的是一群帶有Oct-4肺部幹細胞,所以推測肺部幹細胞很有可能是SARS病毒主要攻擊的目標,因而造成嚴重的肺部感染。 除了上述報導外,其他關於肺部幹細胞和病毒有關的報導並不多,因此本篇論文的研究目的即是測試肺部幹細胞對於流感病毒和單純疱疹病毒的感受性,再進一步了解其感染的相關機制。
首先,藉由觀察感染後細胞病變產生的情況來做初步的判定。肺部幹細胞只有在高的流感病毒感染劑量下,才會產生明顯的細胞病變。利用免疫螢光染色的方法確認在受感染細胞的位置,確實有病毒蛋白的表現。在病毒生長時程實驗中發現,肺部幹細胞受到感染後病毒力價有一百倍的上升,且相較於MDCK細胞,克流感在此細胞中抑制病毒的效果較不顯著。在單純疱疹病毒方面,我們觀察到肺部幹細胞在受到感染的短時間內,即可產生嚴重的細胞病變,而且釋放出的病毒量比HEp2細胞高出一百倍以上。透過進一步分析後發現,疱疹病毒進入肺部幹細胞的效率比HEp2細胞高出兩倍,而病毒DNA複製的效率更高出HEp2細胞七倍以上。
由以上的實驗結果得知,流感病毒和單純疱疹病毒都能夠感染小鼠肺部幹細胞,而且肺部幹細胞能夠支持病毒在其中複製,並造成細胞的破壞。而肺部幹細胞在受到病毒感染後,對於其修復肺部能力的影響則須進一步的實驗來證明。
zh_TW
dc.description.abstractStem cells are characterized of self-renewal and multipotent differentiation, have been implicated to repair the injured organ and tissue. In 2006, Ling et al. established a primary culture system to generate mouse pulmonary Oct-4+ stem/progenitor cells, which can support SARS-CoV infection. In 2007, Chen et al. further reported the colocalization of Oct-4 and SARS viral protein in the SARS-infected cells in lung autopsy of SARS-infected patients.
In this study, we aimed at determining the susceptibility of mouse pulmonary stem/progenitor cells to influenza virus and herpes simplex virus type 1(HSV-1), and study the mechanisms of virus infection.
First, cytopathic effects were immediately observed in influenza virus infected stem/progenitor cells at 24hr. The expression of in stem cell colony and the gradual increase of release infectious virus particles in the supernatant, indicated that the stem cells died support the replicate of influenza virus. The susceptibility of influenza virus to Oseltamivir in stem cells is not as significant as those observed in MDCK cell lines. Next, we found that stem cells are more sensitive to HSV-1 infect than HEp2 cell lines and cytopathic effects can be observed at 16hr post infection. The efficient replication of HSV-1 in stem cells is likely due to more efficient viral entry and DNA replication.
The pulmonary stem/progenitor cells can be infected with influenza virus and HSV-1. The influences of viral infection in pulmonary stem/progenitor cells, such as repair of injured lung, require further analysis.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:27:22Z (GMT). No. of bitstreams: 1
ntu-98-R96424006-1.pdf: 3850036 bytes, checksum: d6c7e683d82d057a09f68bb6ed7cff05 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents致謝 III
圖目錄 V
表目錄 VI
中文摘要 VII
英文摘要 VIII
第一章 前言 1
1-1肺部幹細胞 1
1-2肺部幹細胞在臨床病毒學上的重要性 2
1-3流感病毒 3
1-3.1 流感病毒的構造 3
1-3.2 流感病毒的生長週期 3
1-3.3 流感病毒的流行病學 4
1-3.4 流感病毒對於老鼠肺部的感染 4
1-3.5 抗流感病毒的藥物 5
1-4單純疱疹病毒第一型 5
1-4.1 單純疱疹病毒的構造 5
1-4.2 單純疱疹病毒的生長週期 6
1-4.3 單純疱疹病毒的流行病學 7
1-4.2 單純疱疹病毒造成呼吸道的感染 7
1-4.5 抗單純疱疹病毒的藥物 7
1-5 研究目的 8
1-5.1 了解新生小鼠肺部幹細胞對於病毒株的感受性 8
1-5.2 研究病毒在肺部幹細胞中的複製情形與機制 8
第二章 實驗材料及方法 9
2-1 實驗材料 9
2-1.1 細胞 9
2-1.2 病毒 9
2-1.3 培養基與試劑 9
2-1.4 質體 10
2-1.5 抗體 11
2-1.6 商業試劑套組 11
2-1.7 引子及探針 11
2-1.8 藥物 12
2-2實驗方法 12
2-2.1 細胞培養 12
2-2.2 病毒 13
2-2.3 溶斑試驗 14
2-2.4 以轉染實驗製造流感病毒 15
2-2.5 細胞免疫螢光染色分析 15
2-2.6 病毒生長時程實驗 16
2-2.7 病毒穿透試驗 16
2-2.8 病毒核酸複製時程試驗 16
2-2.9 病毒DNA萃取 17
2-2.10 病毒RNA萃取 17
2-1.11 即時定量聚合酶鏈鎖反應 18
2-2.12 西方點墨法 19
2-2.13 MTT細胞毒性實驗 19
2-2.14 流感病毒藥物活性測試 19
2-2.15 單純疱疹病毒藥物活性測試 20
2-2.16 統計與分析軟體 20
第三章 實驗結果 21
3-1流感病毒 21
3-1.1老鼠肺部幹細胞對於流感病毒PR8 strain之感受性 21
3-1.2神經胺酸酶抑制藥物在肺部幹細胞中對於流感病毒的抑制效果 22
3-2單純疱疹病毒第一型 23
3-2.1老鼠肺部幹細胞對於單純疱疹病毒之感受性 23
3-2.2無環鳥苷和毛地黃在肺部幹細胞中對於單純疱疹病毒的抑制效果 24
3-2.3單純疱疹病毒在肺部幹細胞與細胞株中生長情況之比較 25
3-2.4 單純疱疹病毒在肺部幹細胞迅速複製的機制探討 26
第四章 討論 28
第五章 參考文獻 33
附圖 38
附表 59
dc.language.isozh-TW
dc.subject流感病毒zh_TW
dc.subject感受性zh_TW
dc.subject肺部幹細胞zh_TW
dc.subject疹病毒zh_TW
dc.subject單純疱zh_TW
dc.subjectsusceptibilityen
dc.subjectherpes simplex virusen
dc.subjectinfluenza virusen
dc.subjectpulmonary stem/progenitor cellsen
dc.title小鼠肺部幹細胞對於流感病毒和單純疱疹病毒第一型之感受性測試及其機制探討zh_TW
dc.titleStudy of Susceptibility of Mouse Pulmonary Stem/Progenitor Cells to Influenza Virus and Human Herpes Simplex Virus Type 1 Infectionsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高全良,林泰元,施信如
dc.subject.keyword肺部幹細胞,感受性,流感病毒,單純疱,疹病毒,zh_TW
dc.subject.keywordpulmonary stem/progenitor cells,susceptibility,influenza virus,herpes simplex virus,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2009-07-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved