請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42870完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鹿兒陽(Erh-Yang Lu) | |
| dc.contributor.author | Chich-Chung Yang | en |
| dc.contributor.author | 楊介中 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:26:51Z | - |
| dc.date.available | 2009-07-27 | |
| dc.date.copyright | 2009-07-27 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-22 | |
| dc.identifier.citation | 引用文獻
全鴻德 (2007) 塔塔加地區植物相調查與解說規劃。靜宜大學生態學系碩士論文 216頁。 朱佩綺 (2005) 台大實驗林神木溪保護林兩相鄰林分枯落物動態及其養分之研究。國立台灣大學森林環境暨資源學系碩士論文 92頁。 行政院農委會全球資網(2008) 全島森林地林型面積。森林資源調查專案成果。2008年9月15日 取自http://www.forest.gov.tw/ 何鎮平 (1977) 台大實驗林溪頭人工林森林土壤性質之分析。國立台灣大學森林學研究所碩士論文 145頁。 吳佳其 ( 2002 ) 南仁山亞熱帶雨林優勢樹種養分含量與環境因子之關係。國立台灣大學農業化學所碩士論文 121頁。 李欣蓉 (2004) 七星山優勢樹種生物量估算養分濃度與土壤性質之探討。國立台灣大學農業化學所碩士論文 84頁。 林世宗 (1998) 棲蘭山闊葉林枯落物及其養分之變動。中華林學季刊 31(2):115-130。 林國詮 (1997) 福山闊葉林枯落物及枝葉層之動態變化。台灣林業科學 12(2):135-144。 金恆鑣、唐凱軍、唐敏捷、黃正良、李聖餘 (1991) 合歡山台灣冷杉土壤發育與分類。 太魯閣國家公園管理處印行。 洪淑芬 (2003) 腦寮溪天然闊葉林枯落物與林地養分動態之研究。國立台灣中興大學森林學研究所碩士論文 91頁。 高雄的位置-認識篇 (2009) 台灣地圖 2009年7月14日取自http://163.32.133.5/~sm019/teach.htm 張惠珠、古心蘭 (1999) 合歡山台灣冷杉永久樣區植群分析 內政部營建署太魯閣國家公園管理處、國立花蓮師範學院合作研究計畫 64頁。 梁鉅榮 (1961) 台灣山地之土壤 台灣銀行季刊12(4): 78-95。 楊金昌、王亞男、姜家華、賴裕芳 (1997) 塔塔加地區台灣雲杉、台灣鐵杉以及玉山箭竹物候學之初步研究。 中華林學季刊31(3): 251-263。 楊淑瀚 (2007) 溪頭天然闊葉林枯落物及其落葉氮、磷濃度之動態變化。國立台灣大學森林環境暨資源學系碩士論文 83頁。 劉育延 (2006) 福山三種地形主要樹種葉部養分濃度之季節變化。國立台灣大學森林環境暨資源學系碩士論文 109頁。 劉靜榆 (2004) 台灣中西部氣候區森林植群分類系統之研究。國立台灣大學森林研究所博士論文 228頁。 劉瓊霦 (2000) 雨水流經關刀溪三種林分水化學的變化。國立中興大學森林學研究所博士論文 131頁。 鍾智昕 (2005) 台灣中部塔塔加地區台灣雲杉人工林之樹幹解析研究。國立台灣大學森林環境暨資源學系碩士論文 62頁 Aerts, R. (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? Journal of Ecology 84:597-608. Aerts, R. and F. S. Chapin (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30: 1-67. Ares, A. and S. M. Gleason (2007) Foliar nutrient resorption in tree species. Pages: 1-32 in New Research on Forest Ecology. Nova Science Publishers, Inc., New York. Andrews, M., J. I. Sprent, J. A. Raven and P. E. Eady (1999) Relationships between shoot to root ratio, growth and leaf soluble protein concentration of Pisum sativum, Phaseolus vulgaris, and Triticum aestivum under different nutrient deficiencies. Plant, Cell and Environment 22: 949-958. Atkinson, D. (1973) Some general effects of phosphorus deficiency on growth and development. New Phytologist 72: 101-111. Bailey, S. (1986) The analysis of Agricultural materials. Third edition. Her Majesty,s Stationery Office, London, pp.181-182. Bielefeld Nardoto, G., M. M. da Cunha Bustamante, A. Siqueira Pinto and C. A. Klink (2006) Nutrient use efficiency at ecosystem and species level in savanna areas of Central Brazil and impacts of fire. Journal of Tropical Ecology 22:191-201. Buamscha, G., M. Gobbi, M. J. Mazzarino and F. Laos (1998) Indicators of nitrogen conservation in Austrocedrus chilensis forests along a moisture gradient in Argentina. Forest Ecology and Management 112:253-261. Chadwick, O. A., L. A. Derry, P. M. Vitousek, B. J. Huebert and L. O. Hedin (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397(6719):491-497. Chapin, F. S. and R. A. Kedrowski (1983) Season changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64:376-391. Chapin, F. S., P. M. Vistousek and K. van Cleve (1986) The nature of nutrient limitation in plant communities. American Naturalist 127:48-58. Codispodi, L. A. (1995) Is the ocean losing nitrate? Nature 376:724. Cornelissen, J. H. C. and K. Thompson (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytologist 135:109-114. Coté, B., J. W. Fyles and H. Djalilvand (2002) Increasing N and P resorption efficiency and proficiency in northern deciduous hardwoods with decreasing foliar N and P concentrations. Annals of Forest Science 59:275-281. Crews, T. E., K. Kitayama, J. H. Fownes, R. H. Riley, D. A. Herbert, D. Mueller-Dombois and P. M. Vitousek (1995) Changes in soil-phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76(5):1407-1424. Elser, J. J., K. Acharya, M. Kyle, J. Cotner, W. Makino, T. Markow, T. Watts, S. Hobbie, W. Fagan, J. Schade, J. Hood and R. W. Sterner (2003) Growth rate-stoichiometry couplings in diverse biota. Ecology Letters 6(10):936-943. Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S. S. Kilham, E. McCauley, K. L. Schulz, E. H. Siemann and R. W. Sterner (2000) Nutritional constraints in terrestrial and flesh water food webs. Nature 408:578-580. Fenner, M. (1986) The allocation of minerals to seeds in Senecio vulgaris plants subiected to nutrient shortage. Journal of Ecology 74:385-392. Fife, D. N. and E. K. S. Nambiar (1984) Movement of nutrients in radiata pine needles in relation to the growth of shoots. Annals of Botany 50:817-829. Fife, D. N., E. K. S. Nambiar and E. Saur (2008) Retranslocation of foliar nutrients in evergreen tree species planted in mediterranean environment. Tree Physiology 28:187-196. Fisher, R. F. and D. Binkley (2000) Ecology and Management of Forest Soils. John Wiley and sons, INC. p.298. Field, C. and H. A. Mooney (1986) The Photosynthesis-Nitrogen Relationship in Wild Plants. Cambridge University Press. Forde, B. G. (2002) The role of long-distance signaling in plant responses to nitrate and other nutrients. Journal of Experimental Botany 53: 39-43. Fransen, B. and H. de Kroon (2001) Long-term disadvantages of selective root placement: root proliferation and shoot biomass of two perennial grass species in 2-year experiment. Journal of Ecology 89: 711-722. Güsewell, S. (2004) N: P ratios in terrestrial plants: variation and functional signifigance. New Phytologist 164: 243-266. Güsewell, S. and C. Freeman (2005) Nutrient limitation and enzyme activities during litter decomposition of nine wetland species in relation to litter N: P ratios. Functional Ecology 19:372-384. Güsewell, S. and J. T. A. Verhoeven (2006) Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter. Plant and Soil 287:131-143. Güsewell, S. and W. Koerselman (2002) Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5, 37-61. Hagon-Thorn, A., I. Varnagiryte, B. Nihlgard and K. Armolaitis (2006) Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology and Management 228:33-39. Han, W., J. Fang, D. Guo and Y. Zhang (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist 168:377-385. Harvey, H. P. and R. van den Driessche (1999) Poplar nutrient resorption in fall or drought: influence of nutrient status and clone. Canadian journal of Forest Research 29:1916-1925. Hawkins, B. J., G. Henry and S. B. R. Kiiskila (1998) Biomass and nutrient allocation in Douglas-fir and amabilis fir seedlings: influence of growth rate and nutrition. Tree Physiology 18:803-810. Hedin, L. O. (2004) Global organization of terrestrial plant-nutrient interactions. Proceedings of the National Academy of Sciences (USA) 101 (30):10849-10850. Hedin, L. O., P. M. Vitousek and P. A. Matson (2003) Nutrient losses over four million years of tropical forest development. Ecology 84:2231-2255. Hikosaka, K. (2005) Leaf Canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Annals of Botany 95:521-523. Hobbie, S. E., J. P. Schimel, S. E. Trumbore and J. R. Richardson (2000) Controls over carbon storage and turnover in high-latitude soils. Global Change Biology 6:196-210. Hobbie, S. E., K. J. Nadelhoffer and P. Hogberg (2002) A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant and Soil 242(1):163-170. Hoch, W. A., E. L. Singsaas and B. H. McCown (2003) Resorption protection: Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. Plant Physiology 133:1296-1305. Keenan, R. J., C. E. Prescott and J. P. Kimmins (1995) Litter production and nutrient resorption in western red cedar and western hemlock forests on northern Vancouver Island, British Columbia. Canadian journal of Forest Research 25:1850-1857. Kerkhoff, A. J., B. J. Enquist, J. J. Elser and W. F. Fagan (2005) Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography 14:585-598. Kikuzawa, K. (1983) Leaf survival of woody plants in deciduous broad-leaved forest. Canadian Journal of Botany 62:2551-2556. Kikuzawa, K. (1996) Geographical distribution of leaf life span and species diversity of trees simulated by a leaf-longevity model. Vegetatio 122(1):61-67. Killingback, K. T. (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716-1727. Killingbeck, K. T. (1984) Nitrogen and phosphorus resorption dynamics of five tree species in a Kansas gallery forest. American midland Naturalist 111:155-164. Killingbeck, K. T. and R. Tainsh (2002) Does leaf size influence resorption of nutrients from senescing leaves? Northeastern Naturalist 9(2): 213-220. Killingbeck, K. T. and S. A. Costigan (1988) Element resorption in a guild of understory shrub species: niche differentiation and resorption thresholds. Oikos 53: 366-374. Knecht, M. and A. Goransson (2004) Terrestial plants require nutrients in similar proportions. Tree Physiology 24:447-460. Kobe, R. K., C. A. Lepczyk and M. Iyer (2005) Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86:2780-2792. Koerselman, W. and A. F. M. Meuleman (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33:1441-1450. Kull, O. and Ű. Niinemets. (1998) Distribution of leaf photosynthetic properties in tree canopies: comparison of species with different shade tolerance. Functional Ecology 12: 472-479. Lal, C. B., C. Anapurna, A. S. Raghubanshi and J. S. Singh (2001) Effect of leaf habit and soil type on nutrient resorption and conservation in woody species of dry tropical environment. Canadian journal of Botany 79:1066-1076. Lambers, H., F. S. Chapin and T. L. Pons (1998) Plant physiological ecology. Springer-Verlag, New York, 540p. LeBauer, D. S. and K. K. Treseder (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2):371-379. Lenton, T. M. and A. J. Waston (2000) Redfield revisited 1. Regulation of nitrate, phosphate, and oxygen in the ocean. Global Biogeochemical Cycles 14:225-248. Lovelock, C. E., I. E. Feller, M. C. Ball, J. Ellis and B. Sorrell (2007) Testing the growth rate v. s. geochemical hypothesis for latitudinal variation in plant nutrients. Ecology Letters 10:1154-1163. Marschner, H. (1995) Mineral nutrition of higher plants. Second edition. Academic Press, San Diego, London. Martínez-Sánchez, J.L. (2005) Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil. Revista de Biologia Tropcal 53(3-4):353-359. May, J. D. and K. T. Killingbeck (1992) Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics. Ecology 73:1868-1878. McGroddy, M. E., T. Daufresne and L. O. Hedin (2004) Scaling of C: N: P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85(9):2390-2401. Milla, R., P. Castro-Dìez , M. Maestro-Martìnez and G. Montserrat-Marti (2005) Relationship between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens. New Phytologist 168: 167-178. Millard, P. and M. F. Proe (1993) Nitrogen uptake, partitioning and internal cycling in Picea stichensis Bong. Carr. as influenced by nitrogen supply. New Phytologist 10:33-43. Minoletti, M. L. and R. E. Boerner (1994) Drought and site fertility effects on foliar nitrogen and phosphorus dynamics and nutrient resorption by forest understory shrub Viburnum acerifolium L. American Midland Naturalist 131:109-119. Moore, D. P. and S. B. Chapman (1986) Methods in plant ecology. Second edition. Blackwell Scientific Publication. Oxford, London, Edinburgh. Moore, T. R., A. J. Trofymow, C. E. Prescott and J. Fyles, B. D. Titus and CIDET Working Group (2006) Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian Forests. Ecosystems 9:46-62. Moore, T. R., A. J. Trofymow, M. Siltanen, C. Prescott and CIDET Working Group (2005) Litter decomposition and C, N and P dynamics in upland forest and peat land sites, central Canada. Canadian Journal of Forest Research 35:133-142. Moore, T. R., J. A. Trofymow, M. Slitanen and L. M. Kozak (2008) Litter decomposition and nitrogen and phosphorus dynamics in peat lands and uplands over 12 years in central Canada. Oecologia 157:317-325. Munson, A. D., H. A. Margolis and D. G. Brand (1995) Seasonal nutrient dynamics in white pine and white spruce in response to environmental manipulation. Tree Physiology 15:141-149. Nambiar , E. K. S. and D. N. Fife (1991) Nutrient retranslocation in temperate conifers. Tree Physiology 9:185-207. Nambiar, E. K. S. and G. D. Brown (1986) Uptake, distribution and retranslocaion of nitrogen by Pinus radiata from 15N-labelled fertilizer applied to podzolised sandy soil. Forest Ecology and Management 15:269-284. Niinemets, Ű. and Ű. Tamm (2005) Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiology 25:1001-1014. Nordell, K. O. and P. S. Karlsson (1995) Resorption of nitrogen and dry matter prior to leaf abscission: variation among individuals, sites and years in the mountain birch. Functional Ecology 9:326-333. Oland, K. (1963) Changes in the content of dry matter and major nutrient elements of apple foliage during senescence and abscission. Physiologia Plantarum 16:682-694. Oleksyn, J., J. Modrzynski, M. G. Tjoelker, R. Zytkowiak, P. B. Reich and P. Karolewski (1998) Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology 12(4):573-590. Oleksyn, J., P. B. Reich, R. Zytkowiak, M. G. Tjoelker, and P. Karolewski (2002) Needle nutrients in geographically diverse Pinus sylvestris L. populations. Annals of Forest Science 59(1):1-18. Pensa, M. and A. Sellin (2003) Soil type affects nitrogen conservation in foliage of small Pinus sylverstris. L. trees. Plant and Soil 253:321-329. Perry, D. A. (1994) Forest ecosystems. The Johns Hopkins University Press, Baltimore and London, USA pp. 339-438. Pugnaire, F. I. and F. S. Chapin (1993) Control over nutrient resorption from leaves of evergreen Mediterranean species. Ecology 74:124-129. Ralhan, P. K. and S. P. Singh (1987) Dynamics of nutrients and leaf mass in Central Himalayan Forest trees and shrubs. Ecology 68(6):1974-1983. Ran, S., G. Yu, B. Tao and S. Wang (2007) Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC. Environmental Science 28(12):2665-2673. Redfield, A. C. (1958) The biological control of chemical factors in the environment. American Scientist 46:205-221. Reich, P. B. and J. Oleksyn (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences (USA) 101(30):11001-11006. Reich, P. B., J. Oleksyn, J. Modrzynski and M. G. Tjoelker (1996) Evidence that longer needle retention of spruce and pine populations at high elevations and high latitudes is largely a phenotypic response. Tree Physiology 16(7):643-647. Reich, P. B., M. B. Walters and D. S. Ellsworth (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs 62(3):365-392. Reich, P. B., M. B. Walters, and D. S. Ellsworth (1997) From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Science (USA) 94:13730- 13734. Renteria, L.Y., V. J. Jaramillo, A. Martìnez-Yrìzar and A. Perez Jimenez (2005) Nitrogen and phosphorus resorption in trees of a Mexican tropical dry forest. Trees 19:431-441. Richardson, S. J., D. A. Peltzer, R. B. Allen and M. S. McGlone (2005) Resorption proficiency along a chronosequence: responses among communities and within species. Ecology 86(1):20-25. Richardson, S. J., D. A. Peltzer, R. B. Allen, M. S. McGlone and R. L. Parfitt (2004) Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia 139:267-276. Richardson, S. J., R. B. Allen and J. E. Doherty (2008) Shifts in leaf N:P ratio during resorption reflect soil P in temperate rainforest. Functional Ecology 22:738-745. Sanchez-Alonso, F. and M. Lachica (1987) Seasonal trends in the elemental content of plum leaves. Communications in Soil Science and Plant Analysis 18(1):31-43. Santiago, L. S., E. A. G. Schuur and K. Silvera (2005) Nutrient cycling and plant-soil feedbacks along a precipitation gradient in lowland Panama. Journal of Tropical Ecology 21:461-470. Saur, E., D. N. Fife and E. K. S. Nambiar (1997) Seasonal changes in accumulation and translocation of nutrients in Casuarina glauca cladodes. In Plant Nutrition for Sustainable Food Production and Evironment. Eds. Ando, T. et al. Kluwer Academic Publishers, Dordrecht: 71-172. Saur, E., E. K. S. Nambiar and D. N. Fife (2000) Foliar nutrient retranslocation in Eucalyptus globules. Tree Physiology 20: 1105-1112. Schachtman, D. P., R. J. Reid and S. M. Ayling (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiology 116: 447-453. Schlesinger, W. H. and J. A. Andrews (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7-20. Schmidt, M. G., H. Scherier and P. B. Shan (1993) Factors affecting the nutrient status of forest sites in mountain watershed in Nepal. Journal of Soil Science 44:417-425. Schuur, E. A. G. and P. A. Matson (2001) Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431-442. Scowcroft, P. G., J. E. Haraguchi and N. V. Hue (2004) Reforestation and topography affect montane soil properties, nitrogen pools, and nitrogen transformations in Hawaii. Soil Science Society of America Journal 68:959-968. Singh, S. P., K. Bargali, A. Joshi and S. Chaudhry (2005) Nitrogen resorption in leaves of tree and shrub seedlings in response to increasing soil fertility. Current Science 89:389-396. Son, Y. and S. T. Gower (1991) Aboveground nitrogen and phosphorus use by five plantation-grown trees with different leaf longevities. Biogeochemistry 14:167-191. Staaf, H. and I. Stjernquist (1986) Seasonal dynamics, especially autumnal retranslocation, of nitrogen and phosphorus in foliage of dominant and suppressed trees of beech, Fagus sylvatica. Scandinavian Journal of Forest Research 1:333-342. Sterner, R. W. and J. J. Elser (2002) Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere, Princeton Univ. Press, Princeton, pp.1-439. Su, H. J. (1984) Studies on the climate and vegetation types of the natural forests in Taiwan (II). Altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry. 17(4): 57-73. Taiz, L. and E. Zeiger (1991) Plant Physiology. The Benjamin/Cummings Publishing Company, Inc. Tateno, R. and H. Kawaguchi (2002) Differences in nitrogen use efficiency between leaves from canopy and subcanopy trees. Ecological Research 17:695-704. Temperton, V. M., P. Millard and P. G. Jarvis (2003) Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in temperate trees Alnus glutinosa and Pinus sylvestris?Global Change Biology 9:286-294. Tessier, J. T. and D. J. Raynal (2003) Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology 40:523-534. Tjoelker, M. G., P. B. Reich and J. Oleksyn (1999) Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant Cell and Environment 22:767-778. Townsend, A. R., C. C. Cleveland, G. P. Asner and M. M. Bustamante (2007) Controls over foliar N:P ratios in tropical rain forests. Ecology 88:107-118. Trémolières, M., A. Schnitzler, J. M. Sánchez-Pérez and D. Schmitt (1999) Changes in foliar nutrient content and resorption in Fraxinus excelsior L., Ulmas minor Mill. and Clematis vitalba L. after prevention of floods. Annals of Forest Science 56: 641-650. Treseder, K. K. and P. M. Vitousek (2001) Potential ecosystem-level effects of genetic variation among populations of Metrosideros polymorpha from a soil fertility gradient in Hawaii. Oecologia 126:266-275. van Heerwaarden, L. M., S. Toet and R. Aerts (2003) Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. OIKOS 101(3):664-669. Vitousek, P. M. (1982) Nutrient cycling and nutrient use efficiency. American Naturalist 119:553-572. Vitousek, P. M. and R. L. Sanford (1986) Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17:137-167. Vitousek, P. M., D. R. Turner and K. Kitayama (1995) Foliar nutrients during long-term soil development in Hawaiian montane rain-forest. Ecology 76:712-710. Walker, T. W. and J. K. Syers (1976) Fate of phosphorus during pedogenesis. Geoderma 15:1-19. Weih, M. and P. S. Karlsson (2001) Growth response of Mountain birch to air and soil temperature: is increasing leaf-nitrogen content an acclimation to lower air temperature?New Phytologist 150:147-155. Woods, H. A., W. Makino, J. B. Cotner, S. E. Hobbie, J. F. Harrison, K. Acharya and J. J. Elser (2003) Temperature and the chemical composition of poikilothermic organisms. Functional Ecology 17:237-245. Wright, I. J. and M. Westoby (2003) Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Functional Ecology 17:10-19. Wright, I. J., P. B. Reich, J. H. C. Cornelissen, D. S. Falster, E. Garnier, K. Hikosaka, B. B. Lamont, W. Lee, J. Oleksyn, N. Osada, H. Poorter, R. Villar, D. Warton and M. Westoby (2005) Assessing the generality of global leaf trait relationships. New Phytologist 166:486-496. Yasumura, Y., Y. Onoda, K. Hikosaka and T. Hirose (2005) Nitrogen resorption from leaves under different growth irradiance in three deciduous woody species. Plant Ecology 178:29-37. Yuan, Z., L. Li, X. Han, G. Jiang and S. Wan (2005a) Foliar nitrogen dynamics and nitrogen resorption of a sandy shrub Salix gordejevii in northern China. Plant and Soil 278:183-193. Yuan, Z., L. Li, X. Han, G. Jiang and S. Wan (2005b) Nitrogen resorption from senescing leaves in 28 plants in a semi-arid region of northern China. Journal of Arid Environments 63:191-202. Zhang, L., Y. Lin, G. Ye, X. Liu and G. Lin (2008) Changes in the N and P concentrations, N:P ratios, and tannin content in Casuarina equisetifolia branchlets during development and senescence. Journal of Forest Research 13:302-311. Zotz, G. (2004) The resorption of phosphorus is greater than that of nitrogen in senescing leaves of vascular epiphytes from lowland Panama. Journal of Tropical Ecology 20:693-696. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42870 | - |
| dc.description.abstract | 氮與磷被普遍認為是對陸地植物生長兩個最重要的限制因子,植物族群的生物量產量通常由氮及磷所控制,葉子的氮與磷濃度也常被視為養分狀態的指標,所以植物葉部的氮、磷濃度的分析是植物生理生態學上重要的議題。自2006年7月至2008年8月,本研究在台灣中部山區天然林採集17種原生的闊葉樹種與5種針葉樹種的成熟綠葉與枯落葉進行氮、磷含量分析,以探討台灣森林樹木生長氮及磷的相對限制程度。
針葉樹種綠葉氮濃度低於闊葉樹,磷濃度則較高,且針葉樹綠葉的氮磷重量比顯著低於闊葉樹種,根據Koerselman and Meuleman (1996)所訂定的氮磷重量比門檻,針葉樹種的生長比較受到氮的限制(氮磷重量比<14),而闊葉樹種的生長比較受到磷的限制(氮磷重量比 > 16)。而根據Killingbeck (1996) 所訂定的氮、磷再吸收度標準,17種闊葉樹種有16種氮再吸收不完全(枯落葉氮濃度>1.0%),而有10種磷再吸收不完全(枯落葉磷濃度>0.05%),5種針葉樹種只有1種氮再吸收不完全,但有4種磷再吸收不完全,因此,針葉樹仍以氮的限制為主,闊葉樹以磷的限制為主。 生育地間綠葉氮濃度、磷濃度與氮磷比間有顯著差異(p<0.0001),原因可能是來自於生育地溫度或是土壤年齡的差異,根據Koerselman and Meuleman (1996)所訂定的氮磷重量比門檻,溪頭、神木村的植物生長比較受到氮的限制(氮磷重量比<14),塔塔加、合歡山植物生長比較受到磷的限制(氮磷重量比 >16)。根據Killingbeck (1996) 所訂定的氮、磷再吸收度標準,塔塔加與合歡山植物氮再吸收較完全,神木村植物P再吸收較完全,生育地間的氮再吸收率有顯著差異(p <0.05),但磷再吸收率沒有顯著差異。 由於台灣針葉樹種分佈的海拔明顯高於大多數的闊葉樹種,因此針葉樹及闊葉樹的差異可能是反映生育地的差異。本研究的綠葉磷濃度與氮磷比與溫度的關係與「土壤母層年齡假說」(the Soil Substrate Age hypothesis)相符,但綠葉氮濃度與溫度的關係卻符合「溫度-生物環境化學假說」(°T-Biogeochemistry hypothesis) | zh_TW |
| dc.description.abstract | Abstract
Nitrogen (N) and phosphorous (P) are generally considered as the most important factors limiting plant growth and ecosystem productivity. Foliar concentrations of nitrogen and phosphorous are good indicators of nutrient status in plants, and thus have been one of the major topics in plant physiological ecology. In this study, from July 2006 to August 2008, I collected fresh leaf and leaf fall samples from 17 native broadleaf tree species and 5 native coniferous species in the montane forests of central Taiwan to analyze their nitrogen and phosphorous concentrations and to determine the relative limitation of N or P on the growths of forest trees in Taiwan. Compared with hardwood species, conifer species had higher foliar N concentrations and lower foliar P concentrations. According to the thresholds of foliar N: P weight ratio proposed in Koerselman and Meuleman (1996), N was the major limiting factor for conifers species (N: P weight ratio <14), and P for hardwood species (N: P weight ratio >16). According to the thresholds of resorption proficiency proposed in Killingbeck (1996), 16 out of 17 hardwood species had incomplete N resorption (N concentrations in leaf fall >1.0) and 10 out of 17 had incomplete P resorption (P concentrations in leaf fall >0.05). By contrast, only 1 out of 5 conifer species had incomplete N resorption and 4 out of 5 conifer species had incomplete P resorption. Therefore, these comparisons still suggest that N was the major limiting factor for conifers species and P for hardwood species. Nitrogen and P concentrations and N: P weight ratio differed significantly between sampling sites (p <0.0001), and may result from the variations in temperature and the soil age. According to the thresholds of foliar N: P weight ratio proposed in Koerselman and Meuleman (1996), N was the major limiting factor for trees in Chitou and Shen-Mu Village (N: P weight ratio < 14) but P for trees in Tatachia and Mt. Ho-Huan (N: P weight ratio >16). According to the thresholds of resorption proficiency proposed in Killingbeck (1996), trees in Tatachia and Mt. Ho-Huan had more completed N resorption than the other sites but trees in Shen-Mu Village had more completed P resorption than the other sites. Nitrogen resorption efficiency differed significantly between the sampling sites (p <0.05), but P resorption efficiency did not differ significantly. Since conifers species are distributed in higher elevations than hardwood species in Taiwan. The differences between conifer and hardwood species could simply reflect the differences between the sites. In my study, the relationships between foliar P/N:P ratio and temperature were correspond to the Soil Substrate Age hypothesis, but between foliar N and temperature were correspond to the °T-Biogeochemistry hypothesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:26:51Z (GMT). No. of bitstreams: 1 ntu-98-R95625002-1.pdf: 5966840 bytes, checksum: 16b86cae0a03f63627812618fdf04fa4 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄
中文摘要 ………………………………………………………I 英文摘要 ………………………………………………………III 圖目錄……………………………………………………………VII 表目錄 …………………………………………………………VIII 附錄目錄…………………………………………………………IX 前言 ………………………………………………………………1 前人研究 ……………………………………………………………3 一、 氮磷在植物生理上的重要性…………………………………3 二、 影響植物葉子氮、磷濃度的因素……………………………3 三、 養分再吸收作用…...…………………………………………5 (一) 發生養分再吸收作用的元素…………………………………6 (二) 養分再吸收作用發生的時間…………………………………6 (三) 養分再吸收作用的計算………………………………………6 (四) 影響養分再吸收作用的因素…………………………………8 (五) 養分再吸收作用與土壤肥力…………………………………10 四、 植物葉子的氮磷比 …………………………………………11 (一) 氮磷比…………………………………………………………11 (二) 全球環境與葉子氮、磷濃度與氮磷比之關係………………12 材料與方法 ..………………………………………………………….13 一、 樣區概況 ……………………………………………………13 (一) 溪頭……………………………………………………………13 (二) 塔塔加鞍部與東埔山莊………………………………………13 (三) 神木溪保護林神木區…………………………………………13 (四) 合歡山小風口…………………………………………………14 二、 研究樹種 ……………………………………………………14 三、 樣本採集 .........................................14 四、 落葉高峰與其枯落葉的氮、磷濃度…………………………15 五、 氮與磷分析……………………………………………………16 (一)消化分解……………………………………………………………16 (二)氮分析………………………………………………………………16 (三)磷分析—鉬黃法……………………………………………………16 六、資料分析…………………………………………………17 結果 ……………………………………………………………………18 一、 台灣冷杉與台灣雲杉枯落葉氮磷濃度季節變化… ………18 二、 綠葉與枯落葉氮濃度 ………………………………………18 三、 綠葉與枯落葉磷濃度………………………………………..19 四、 綠葉與枯落葉氮磷重量比……………………………………19 五、 氮與磷的再吸收率……………………………………………20 討論 ……………………………………………………………………22 一、 季節的差異對綠葉N、P濃度的影響…………………………22 二、 綠葉與枯落葉氮、磷濃度與氮磷重量比在樹種上的差異…22 三、 生活型的差異對綠葉N、P濃度、氮磷重量比的影響………24 四、 生活型的差異對植物社會N、P再吸收作用的影響…………25 五、 生育地的差異對綠葉N、P濃度、氮磷重量比的影響………26 六、 生育地的差異對植物社會N、P再吸收作用的影響…………30 結論 ……………………………………………………………………33 引用文獻 ………………………………………………………………36 附錄………………………………………………………………………66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 針葉樹 | zh_TW |
| dc.subject | 養分再吸收作用 | zh_TW |
| dc.subject | 氮磷比 | zh_TW |
| dc.subject | 闊葉樹 | zh_TW |
| dc.subject | hardwood species | en |
| dc.subject | Coniferous species | en |
| dc.subject | nutrient resorption | en |
| dc.subject | N: P ratio | en |
| dc.title | 台灣重要原生樹種綠葉及落葉氮、磷濃度 | zh_TW |
| dc.title | Nitrogen and Phosphorus Concentration of Leaves and Leaf fall from Important Native Tree Species in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳子英(Tae-Ying Chen),顏江河(Chiang-Her Yen) | |
| dc.subject.keyword | 針葉樹,闊葉樹,氮磷比,養分再吸收作用, | zh_TW |
| dc.subject.keyword | Coniferous species,hardwood species,N: P ratio,nutrient resorption, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-23 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 5.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
