請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42843完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高照村 | |
| dc.contributor.author | Chia-Jung Chen | en |
| dc.contributor.author | 陳佳蓉 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:25:40Z | - |
| dc.date.available | 2011-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-23 | |
| dc.identifier.citation | 1. Hokanson JE, Austin MA: Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. Journal of Cardiovascular Risk 1996, 3(2):213-219.
2. Jonkers IJ, Smelt AH, van der Laarse A: Hypertriglyceridemia: associated risks and effect of drug treatment. Am J Cardiovasc Drugs 2001, 1(6):455-466. 3. Heller DA, de Faire U, Pedersen NL, Dahlen G, McClearn GE: Genetic and Environmental Influences on Serum Lipid Levels in Twins. N Engl J Med 1993, 328(16):1150-1156. 4. Emi M, Wilson D, Iverius P, Wu L, Hata A, Hegele R, Williams R, Lalouel J: Missense mutation (Gly----Glu188) of human lipoprotein lipase imparting functional deficiency. J Biol Chem 1990, 265(10):5910-5916. 5. Jong MC, Hofker MH, Havekes LM: Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 1999, 19(3):472-484. 6. Hahn PF: Abolishment of alimentary lipemia following injection of heparin. Science 1943, 98(2531):19-20. 7. Korn ED: Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart. J Biol Chem 1955, 215(1):1-14. 8. Krauss RM, Windmueller HG, Levy RI, Fredrickson DS: Selective measurement of two different triglyceride lipase activities in rat postheparin plasma. J Lipid Res 1973, 14(3):286-295. 9. Havel RJ, Gordon RS, Jr.: Idiopathic hyperlipemia: metabolic studies in an affected family. J Clin Invest 1960, 39:1777-1790. 10. Krauss RM, Windmueller HG, Levy RI, Fredrickson DS: Selective measurement of two different triglyceride lipase activities in rat postheparin plasma. J Lipid Res 1973, 14(3):286-295. 11. Breckenridge WC, Little JA, Steiner G, Chow A, Poapst M: Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med 1978, 298(23):1265-1273. 12. Sparkes RS, Zollman S, Klisak I, Kirchgessner TG, Komaromy MC, Mohandas T, Schotz MC, Lusis AJ: Human genes involved in lipolysis of plasma lipoproteins: mapping of loci for lipoprotein lipase to 8p22 and hepatic lipase to 15q21. Genomics 1987, 1(2):138-144. 13. Wion KL, Kirchgessner TG, Lusis AJ, Schotz MC, Lawn RM: Human lipoprotein lipase complementary DNA sequence. Science 1987, 235(4796):1638-1641. 14. Deeb SS, Peng RL: Structure of the human lipoprotein lipase gene. Biochemistry 1989, 28(10):4131-4135. 15. Wang CS, Hartsuck J, McConathy WJ: Structure and functional properties of lipoprotein lipase. Biochim Biophys Acta 1992, 1123(1):1-17. 16. Wong H, Davis RC, Thuren T, Goers JW, Nikazy J, Waite M, Schotz MC: Lipoprotein lipase domain function. J Biol Chem 1994, 269(14):10319-10323. 17. Braun JE, Severson DL: Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J 1992, 287 ( Pt 2):337-347. 18. Camps L, Reina M, Llobera M, Vilaro S, Olivecrona T: Lipoprotein lipase: cellular origin and functional distribution. Am J Physiol 1990, 258(4 Pt 1):C673-681. 19. Bengtsson G, Olivecrona T: Interaction of lipoprotein lipase with heparin-Sepharose. Evaluation of conditions for affinity binding. Biochem J 1977, 167(1):109-119. 20. Eckel RH: Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med 1989, 320(16):1060-1068. 21. Nilsson-Ehle P, Garfinkel AS, Schotz MC: Lipolytic enzymes and plasma lipoprotein metabolism. Annu Rev Biochem 1980, 49:667-693. 22. Vannier C, Ailhaud G: Biosynthesis of lipoprotein lipase in cultured mouse adipocytes. II. Processing, subunit assembly, and intracellular transport. J Biol Chem 1989, 264(22):13206-13216. 23. Wang CS, McConathy WJ, Kloer HU, Alaupovic P: Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 1985, 75(2):384-390. 24. Rensen PCN, van Berkel TJC: Apolipoprotein E Effectively Inhibits Lipoprotein Lipase-mediated Lipolysis of Chylomicron-like Triglyceride-rich Lipid Emulsions in Vitro and in Vivo. J Biol Chem 1996, 271(25):14791-14799. 25. Skottova N, Savonen R, Lookene A, Hultin M, Olivecrona G: Lipoprotein lipase enhances removal of chylomicrons and chylomicron remnants by the perfused rat liver. J Lipid Res 1995, 36(6):1334-1344. 26. Iverius PH, Ostlund-Lindqvist AM: Lipoprotein lipase from bovine milk. Isolation procedure, chemical characterization, and molecular weight analysis. J Biol Chem 1976, 251(24):7791-7795. 27. Elbein AD: Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. Faseb J 1991, 5(15):3055-3063. 28. Fuhrmann U, Bause E, Ploegh H: Inhibitors of oligosaccharide processing. Biochim Biophys Acta 1985, 825(2):95-110. 29. Rothman JE, Orci L: Movement of proteins through the Golgi stack: a molecular dissection of vesicular transport. Faseb J 1990, 4(5):1460-1468. 30. Busca R, Martinez M, Vilella E, Pognonec P, Deeb S, Auwerx J, Reina M, Vilaro S: The mutation Gly142-->Glu in human lipoprotein lipase produces a missorted protein that is diverted to lysosomes. J Biol Chem 1996, 271(4):2139-2146. 31. Willson TM, Brown PJ, Sternbach DD, Henke BR: The PPARs: from orphan receptors to drug discovery. J Med Chem 2000, 43(4):527-550. 32. Mangelsdorf DJ, Evans RM: The RXR heterodimers and orphan receptors. Cell 1995, 83(6):841-850. 33. A IJ, Jeannin E, Wahli W, Desvergne B: Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J Biol Chem 1997, 272(32):20108-20117. 34. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W: Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 1996, 137(1):354-366. 35. Desvergne B, Wahli W: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999, 20(5):649-688. 36. Basu-Modak S, Braissant O, Escher P, Desvergne B, Honegger P, Wahli W: Peroxisome proliferator-activated receptor beta regulates acyl-CoA synthetase 2 in reaggregated rat brain cell cultures. J Biol Chem 1999, 274(50):35881-35888. 37. Hansen JB, Zhang H, Rasmussen TH, Petersen RK, Flindt EN, Kristiansen K: Peroxisome proliferator-activated receptor delta (PPARdelta )-mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling. J Biol Chem 2001, 276(5):3175-3182. 38. Jehl-Pietri C, Bastie C, Gillot I, Luquet S, Grimaldi PA: Peroxisome-proliferator-activated receptor delta mediates the effects of long-chain fatty acids on post-confluent cell proliferation. Biochem J 2000, 350 Pt 1:93-98. 39. Schoonjans K, Staels B, Auwerx J: Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 1996, 37(5):907-925. 40. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J: PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. Embo J 1996, 15(19):5336-5348. 41. Langlois S, Deeb S, Brunzell JD, Kastelein JJ, Hayden MR: A major insertion accounts for a significant proportion of mutations underlying human lipoprotein lipase deficiency. Proc Natl Acad Sci U S A 1989, 86(3):948-952. 42. Murthy V, Julien P, Gagne C: Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol Ther 1996, 70(2):101-135. 43. Nickerson DA, Taylor SL, Weiss KM, Clark AG, Hutchinson RG, Stengard J, Salomaa V, Vartiainen E, Boerwinkle E, Sing CF: DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet 1998, 19(3):233-240. 44. Harlan WR, Jr., Winesett PS, Wasserman AJ: Tissue lipoprotein lipase in normal individuals and in individuals with exogenous hypertriglyceridemia and the relationship of this enzyme to assimilation of fat. J Clin Invest 1967, 46(2):239-247. 45. Fruchart JC, Brewer HB, Jr., Leitersdorf E: Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease. Fibrate Consensus Group. Am J Cardiol 1998, 81(7):912-917. 46. Zimetbaum P, Frishman WH, Kahn S: Effects of gemfibrozil and other fibric acid derivatives on blood lipids and lipoproteins. J Clin Pharmacol 1991, 31(1):25-37. 47. Fruchart JC, Staels B, Duriez P: The role of fibric acids in atherosclerosis. Curr Atheroscler Rep 2001, 3(1):83-92. 48. Ericsson CG, Hamsten A, Nilsson J, Grip L, Svane B, de Faire U: Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 1996, 347(9005):849-853. 49. Turay J, Grniakova V, Valka J: Changes in paraoxonase and apolipoprotein A-I, B, C-III and E in subjects with combined familiar hyperlipoproteinemia treated with ciprofibrate. Drugs Exp Clin Res 2000, 26(3):83-88. 50. Raslova K, Dobiasova M, Nagyova A, Fabry R, Rauchova H, Dusinska M: Ciprofibrate treatment in patients with atherogenic lipoprotein phenotype: effects on HDL quality, LDL susceptibility to oxidation and DNA damage. Eur J Clin Pharmacol 1998, 54(9-10):697-699. 51. Turpin G, Bruckert E: Efficacy and safety of ciprofibrate in hyperlipoproteinaemias. Atherosclerosis 1996, 124 Suppl:S83-87. 52. Despres JP: Increasing high-density lipoprotein cholesterol: an update on fenofibrate. Am J Cardiol 2001, 88(12A):30N-36N. 53. Guay DR: Micronized fenofibrate: a new fibric acid hypolipidemic agent. Ann Pharmacother 1999, 33(10):1083-1103. 54. Olsson AG, Rossner S, Walldius G, Carlson LA: Effect of gemfibrozil on lipoprotein concentrations in different types of hyperlipoproteinaemia. Proc R Soc Med 1976, 69 Suppl 2:29-31. 55. Antunes LM, Darin JD, Bianchi Nde L: Effects of the antioxidants curcumin or selenium on cisplatin-induced nephrotoxicity and lipid peroxidation in rats. Pharmacol Res 2001, 43(2):145-150. 56. Moragoda L, Jaszewski R, Majumdar AP: Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res 2001, 21(2A):873-878. 57. Soni KB, Kuttan R: Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol 1992, 36(4):273-275. 58. Asai A, Miyazawa T: Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. J Nutr 2001, 131(11):2932-2935. 59. Chu CY, Tsai YY, Wang CJ, Lin WL, Tseng TH: Induction of apoptosis by esculetin in human leukemia cells. Eur J Pharmacol 2001, 416(1-2):25-32. 60. Lin WL, Wang CJ, Tsai YY, Liu CL, Hwang JM, Tseng TH: Inhibitory effect of esculetin on oxidative damage induced by t-butyl hydroperoxide in rat liver. Arch Toxicol 2000, 74(8):467-472. 61. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K et al: Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444(7117):337-342. 62. Potenz R, Lo J-Y, Zsigmond E, Smith LC, Chan L: Human Lipoprotein Lipase: Production in Vitro, Purification, and Generation of Polyclonal Antibody Methods In Enzymology 1996, 263:319-326. 63. Feliciello I, Chinali G: A modified alkaline lysis method for the preparation of highly purified plasmid DNA from Escherichia coli. Anal Biochem 1993, 212(2):394-401. 64. Joly E: Preparation of plasmid DNA using alkaline lysis. Methods Mol Biol 1996, 58:257-263. 65. Higuchi R, Krummel B, Saiki RK: A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 1988, 16(15):7351-7367. 66. Tietz textbook of clinical chemistry. 1999, Third edition:850-851. 67. Fruchart-Najib J, Bauge E, Niculescu LS, Pham T, Thomas B, Rommens C, Majd Z, Brewer B, Pennacchio LA, Fruchart JC: Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5. Biochem Biophys Res Commun 2004, 319(2):397-404. 68. Iannelli P, Zarrilli V, Varricchio E, Tramontano D, Mancini FP: The dietary antioxidant resveratrol affects redox changes of PPAR[alpha] activity. Nutrition, Metabolism and Cardiovascular Diseases 2007, 17(4):247-256. 69. Floyd ZE, Wang ZQ, Kilroy G, Cefalu WT: Modulation of peroxisome proliferator-activated receptor [gamma] stability and transcriptional activity in adipocytes by resveratrol. Metabolism 2008, 57(Supplement 1):S32-S38. 70. Ge H, Zhang J-f, Guo B-s, He Q, Wang B-y, He B, Wang C-q: Resveratrol inhibits macrophage expression of EMMPRIN by activating PPAR[gamma]. Vascular Pharmacology 2007, 46(2):114-121. 71. Kirchgessner TG, Chuat JC, Heinzmann C, Etienne J, Guilhot S, Svenson K, Ameis D, Pilon C, d'Auriol L, Andalibi A et al: Organization of the human lipoprotein lipase gene and evolution of the lipase gene family. Proc Natl Acad Sci U S A 1989, 86(24):9647-9651. 72. Faustinella F, Chang A, Van Biervliet JP, Rosseneu M, Vinaimont N, Smith LC, Chen SH, Chan L: Catalytic triad residue mutation (Asp156----Gly) causing familial lipoprotein lipase deficiency. Co-inheritance with a nonsense mutation (Ser447----Ter) in a Turkish family. J Biol Chem 1991, 266(22):14418-14424. 73. Emmerich J, Beg OU, Peterson J, Previato L, Brunzell JD, Brewer HB, Jr., Santamarina-Fojo S: Human lipoprotein lipase. Analysis of the catalytic triad by site-directed mutagenesis of Ser-132, Asp-156, and His-241. J Biol Chem 1992, 267(6):4161-4165. 74. Faustinella F, Smith LC, Chan L: Functional topology of a surface loop shielding the catalytic center in lipoprotein lipase. Biochemistry 1992, 31(32):7219-7223. 75. van Tilbeurgh H, Roussel A, Lalouel JM, Cambillau C: Lipoprotein lipase. Molecular model based on the pancreatic lipase x-ray structure: consequences for heparin binding and catalysis. J Biol Chem 1994, 269(6):4626-4633. 76. Winkler FK, D'Arcy A, Hunziker W: Structure of human pancreatic lipase. Nature 1990, 343(6260):771-774. 77. Hide WA, Chan L, Li WH: Structure and evolution of the lipase superfamily. J Lipid Res 1992, 33(2):167-178. 78. Dugi KA, Dichek HL, Talley GD, Brewer HB, Jr., Santamarina-Fojo S: Human lipoprotein lipase: the loop covering the catalytic site is essential for interaction with lipid substrates. J Biol Chem 1992, 267(35):25086-25091. 79. Tashiro J, Kobayashi J, Shirai K, Saito Y, Nakamura H, Morimoto Y, Yoshida S: Trypsin treatment may impair the interfacial activation action of lipoprotein lipase. J Biochem (Tokyo) 1992, 111(4):509-514. 80. Henderson HE, Ma Y, Liu MS, Clark-Lewis I, Maeder DL, Kastelein JJ, Brunzell JD, Hayden MR: Structure-function relationships of lipoprotein lipase: mutation analysis and mutagenesis of the loop region. J Lipid Res 1993, 34(9):1593-1602. 81. Yang CY, Gu ZW, Yang HX, Rohde MF, Gotto AM, Jr., Pownall HJ: Structure of bovine milk lipoprotein lipase. J Biol Chem 1989, 264(28):16822-16827. 82. Davis RC, Wong H, Nikazy J, Wang K, Han Q, Schotz MC: Chimeras of hepatic lipase and lipoprotein lipase. Domain localization of enzyme-specific properties. J Biol Chem 1992, 267(30):21499-21504. 83. Dichek HL, Parrott C, Ronan R, Brunzell JD, Brewer HB, Jr., Santamarina-Fojo S: Functional characterization of a chimeric lipase genetically engineered from human lipoprotein lipase and human hepatic lipase. J Lipid Res 1993, 34(8):1393-1340. 84. Berryman DE, Bensadoun A: Site-directed mutagenesis of a putative heparin binding domain of avian lipoprotein lipase. J Biol Chem 1993, 268(5):3272-3276. 85. Hata A, Ridinger DN, Sutherland S, Emi M, Shuhua Z, Myers RL, Ren K, Cheng T, Inoue I, Wilson DE et al: Binding of lipoprotein lipase to heparin. Identification of five critical residues in two distinct segments of the amino-terminal domain. J Biol Chem 1993, 268(12):8447-8457. 86. Ma Y, Henderson HE, Liu MS, Zhang H, Forsythe IJ, Clarke-Lewis I, Hayden MR, Brunzell JD: Mutagenesis in four candidate heparin binding regions (residues 279-282, 291-304, 390-393, and 439-448) and identification of residues affecting heparin binding of human lipoprotein lipase. J Lipid Res 1994, 35(11):2049-2059. 87. Semenkovich CF, Luo CC, Nakanishi MK, Chen SH, Smith LC, Chan L: In vitro expression and site-specific mutagenesis of the cloned human lipoprotein lipase gene. Potential N-linked glycosylation site asparagine 43 is important for both enzyme activity and secretion. J Biol Chem 1990, 265(10):5429-5433. 88. Ben-Zeev O, Stahnke G, Liu G, Davis RC, Doolittle MH: Lipoprotein lipase and hepatic lipase: the role of asparagine-linked glycosylation in the expression of a functional enzyme. J Lipid Res 1994, 35(9):1511-1523. 89. Busca R, Pujana MA, Pognonec P, Auwerx J, Deeb SS, Reina M, Vilaro S: Absence of N-glycosylation at asparagine 43 in human lipoprotein lipase induces its accumulation in the rough endoplasmic reticulum and alters this cellular compartment. J Lipid Res 1995, 36(5):939-951. 90. Wong H, Davis RC, Nikazy J, Seebart KE, Schotz MC: Domain exchange: characterization of a chimeric lipase of hepatic lipase and lipoprotein lipase. Proc Natl Acad Sci U S A 1991, 88(24):11290-11294. 91. Lookene A, Bengtsson-Olivecrona G: Chymotryptic cleavage of lipoprotein lipase. Identification of cleavage sites and functional studies of the truncated molecule. Eur J Biochem 1993, 213(1):185-194. 92. Williams KJ, Fless GM, Petrie KA, Snyder ML, Brocia RW, Swenson TL: Mechanisms by which lipoprotein lipase alters cellular metabolism of lipoprotein(a), low density lipoprotein, and nascent lipoproteins. Roles for low density lipoprotein receptors and heparan sulfate proteoglycans. J Biol Chem 1992, 267(19):13284-13292. 93. Al-Haideri M, Granot E, Schwiegelshoh B, Vogel T, Gorecki M, Goldberg IJ, Deckelbaum RJ: Apoprotein E simulates non receptor triglyceride-rich particle cellular uptake. Circulation 1993, 88:1-321. 94. Nykjaer A, Bengtsson-Olivecrona G, Lookene A, Moestrup SK, Petersen CM, Weber W, Beisiegel U, Gliemann J: The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds lipoprotein lipase and beta-migrating very low density lipoprotein associated with the lipase. J Biol Chem 1993, 268(20):15048-15055. 95. Zhang H, Krapp A, Ma Y, Ginzinger D, Beisiegel U, Hayden MR: In vitro mutagenesis studies defining residues of lipoprotein lipase critical for mediation of the binding of lipoproteins to the LDL receptor-related protein (LRP). Atherosclerosis 1994, 109(1-2):66. 96. Bruin T, Appelman EE, Blanchard H, Groat NR, Knstelein JJP, Derewenda ZS: The role of proline residues in the structure and function of lipoprotein lipase. . Atherosclerosis (1994a), 109:63. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42843 | - |
| dc.description.abstract | 脂蛋白解脂酶(lipoprotein lipase, LPL)座落於人類第八條染色體上,全長大約有30kb,由十個exon以及九個intron構成,LPL在身體許多組織中都會合成,如脂肪組織, 骨骼肌, 腦以及腎臟等等。LPL被製造之後會分泌至附近的微血管,與細胞表面的heparan sulfate proteoglycans (HSPG)結合並藉之附著在微血管壁上。在脂質代謝方面佔有重要的角色,其主要的功能在於水解乳糜微粒和極低密度脂蛋白中的三酸甘油脂。三酸甘油脂經脂蛋白解脂酶分解會形成游離型脂肪酸及甘油,而游離型脂肪酸可燃燒作為能量使用,或者以脂肪形式貯存。當脂蛋白解脂酶發生變異時會造成第一型高脂血症,脂質的代謝會失去平衡,臨床上病人會產生高三酸甘油脂, 伴隨腹痛, 肝脾腫大, 胰臟炎等症狀。
臨床上使用的藥物,目前有fibrates這類藥物,主要是經由調控peroxisome proliferator-activated receptors (PPAR)使LPL的表現增加,另外也有研究指出薑黃素(curcumin)及馬栗樹皮素(esculetin)具有降低膽固醇以及三酸甘油脂的效果,故本論文將針對這些藥物對於LPL的影響做研究。此外,近年來對於Sirtuin family的研究也指出,SIR 1可以調節哺乳動物體內葡萄糖以及胰島素生成,脂肪代謝等,而resveratrol則是最具增強sirtuin活性的物質,因此本論文也研究resveratrol是否會影響LPL的生成與活性。 本實驗室之前的研究,已成功證明利用fibrates, curcumin等藥物可以增強LPL promoter的表現,然而LPL promoter無法啟動LPL的表現以及活性,因此無法透過比較得知藥物是否能使突變的LPL表現抑或是活性增加。推測造成野生型LPL無法表現的原因可能是其缺少了cDNA +80 ~ +144這段位於LPL cDNA 5’UTR的序列,也許會影響到LPL RNA的結構因而使LPL無法表現,因此本實驗的目的就是要重新建構一個帶有LPL promoter以及cDNA region(包括cDNA +80 ~ +144)序列的vector,研究此新建構的vector是否能使LPL成功地在CHO-K1細胞表現活性。 利用藥物處理有轉染帶有完整人類脂蛋白解脂酶啟動子和脂蛋白解脂酶cDNA 序列(-1715 ~ +1643)質體的CHO-K1細胞,從細胞培養液以及細胞溶解物中發現,除了curcumin之外所有藥物都可以使得細胞培養液以及細胞溶解液內的脂蛋白解脂酶活性有1.2至3.5倍的上升,由此結果可知除了curcumin外,esculetin和白藜蘆醇以及其他fibrate藥物可降低三酸甘油脂血症。 | zh_TW |
| dc.description.abstract | Lipoprotein lipase ( LPL ) gene located at human chromosome 8. The human LPL gene is now known to comprise 10 exons and 9 introns spanning approximately 30 kb. LPL are synthesized in many tissues, such as adipose tissue, skeletal muscle, brain and kidney,etc. The synthesized LPL then being secreted to capillary, binding with HSPG which is on cell surface so that it can attatch to capillary wall. Lipoprotein lipase plays an important role in the metabolism of plasma lipid metabolism. It catalyzes the hydrolysis of triglycerides from chylomicrons and very low density lipoprotein into glycerol, diacylglycerol and free fatty acids and the free fatty acids are supplied to tissues as sources of metabolic energy or stored as triglycerides after re-esterification. The defect in LPL gene can cause type I hyperlipoproteinemia and affect lipid homeostasis, symptoms like high triglyceride, accompany with recurrent abdominal pain, hepatosplenomegaly, pancreatitis,etc are found in clinical patients.
The drugs performed so far are fibrates, which enhance LPL expression by regulating peroxisome proliferator-activated receptors (PPAR). Additionally, there are also reports which show that curcumin and esculetin can lower cholesterol and triglyceride. In this research, we investigated effects of these drugs on LPL expression. Moreover, recent research about Sirtuin family also shows that SIR1 can regulate synthesis of glucose and insulin and adipose metabolism, etc. Resveratrol, the most potent molecule that enhances SIRT1 activity. Therefore whether resveratrol can enhance LPL synthesis and activity will be investigated. In previous report, we observed significant expression of reporter gene(β-galactosidase) (P<0.05) in drugs-treated cells transfected with plasmid carrying human LPL promoter. However, no LPL activity was expressed when report gene was replaced with LPL cDNA. The reason might be the lack of +80 ~ +144 sequence on 5'UTR. So we reconstructed a new plasmid (pLPLwt) which carried LPL promoter and cDNA region (includeing +80 ~ +144 sequence) to check whether LPL could be expressed in CHO-K1 cells and enhanced after treatment of drugs. The data shoewed that esculetin, resveratrol enhanced LPL expression up to about 1.2 ~3.5 fold compared with the control group. In addition to fibrates, however, no effect on LPL expression by curcumin was observed. We concluded that esculetin and resveratrol enhanced LPL expression on CHO-K1 cell. We hope that we can apply these drugs to mutant form LPL, furthermore apply theses drugs into clinical treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:25:40Z (GMT). No. of bitstreams: 1 ntu-98-R96424005-1.pdf: 954402 bytes, checksum: 79effe5a1930d74def8ea5481e4e5f58 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 總目次
總目次…………………………………………………………………………Ⅰ 圖目次…………………………………………………………………………Ⅲ 表目次…………………………………………………………………………Ⅳ 附錄目次………………………………………………………………………Ⅳ 簡稱或縮寫表…………………………………………………………………Ⅴ 中文摘要………………………………………………………………………Ⅶ 英文摘要………………………………………………………………………Ⅸ 第一章 導論 第一節 前言…………………………………………………………1 第二節 高三酸甘油脂血症…………………………………………1 第三節 脂蛋白解脂酶的發現………………………………………2 第四節 脂蛋白解脂酶的基因構造…………………………………2 第五節 脂蛋白解脂酶的基本特性…………………………………3 第六節 脂蛋白解脂酶的分泌機轉…………………………………4 第七節 細胞內的訊息傳遞…………………………………………4 第八節 脂蛋白解脂酶的基因缺陷…………………………………5 第九節 脂蛋白解脂酶缺乏的臨床症狀……………………………6 第十節 高脂血症的治療……………………………………………6 第十一節 藥物特性……………………………………………………6 第十二節 研究動機……………………………………………………9 第二章 實驗材料與方法 第一節 儀器設備……………………………………………………11 第二節 試藥、試劑組與材料………………………………………12 第三節 實驗方法……………………………………………………16 第三章 實驗結果 第一節 質體之序列確認……………………………………………22 第二節 溶液對細胞毒性的測試……………………………………23 第三節 藥物對細胞毒性的測試……………………………………24 第四節 極低密度脂蛋白的分離……………………………………26 第五節 藥物對脂蛋白解脂酶啟動子的影響………………………26 第四章 討論……………………………………………………………… 29 附圖……………………………………………………………………………32 附表……………………………………………………………………………48 附錄……………………………………………………………………………52 參考文獻………………………………………………………………………68 | |
| dc.language.iso | zh-TW | |
| dc.subject | Fibrate | zh_TW |
| dc.subject | 白藜蘆醇 | zh_TW |
| dc.subject | 脂蛋白解脂酶 | zh_TW |
| dc.subject | 高三酸甘油脂血症 | zh_TW |
| dc.subject | CHO-k1 | zh_TW |
| dc.subject | Lipoprotein lipase | en |
| dc.subject | Resveratrol | en |
| dc.subject | Fibrate | en |
| dc.subject | Hyperlipoproteinemia | en |
| dc.subject | CHO-k1 | en |
| dc.title | 藥物對脂蛋白解脂酶表現之影響 | zh_TW |
| dc.title | Effects of Fibrates and Chemicals on Lipoprotein Lipase Expression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江福田,林淑華,謝絹珠,林淑萍 | |
| dc.subject.keyword | 脂蛋白解脂酶,高三酸甘油脂血症,Fibrate,CHO-k1,白藜蘆醇, | zh_TW |
| dc.subject.keyword | Lipoprotein lipase,CHO-k1,Hyperlipoproteinemia,Fibrate,Resveratrol, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-23 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 932.03 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
