請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42838完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊烽正 | |
| dc.contributor.author | Hao-De Lai | en |
| dc.contributor.author | 賴顥德 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:25:27Z | - |
| dc.date.available | 2009-07-29 | |
| dc.date.copyright | 2009-07-29 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-23 | |
| dc.identifier.citation | Arcus, A. L. (1966). 'COMSOAL A Computer Method of Sequencing Operations for Assembly Lines.' International Journal of Production Research, 4: p: 259.
Bautista, J. and J. Cano (2008). 'Minimizing work overload in mixed-model assembly lines.' International Journal of Production Economics, 112(1): p: 177-191. Bautista, J. and J. Pereira (2002). 'Ant Algorithms for Assembly Line Balancing.' LECTURE NOTES IN COMPUTER SCIENCE, p: 65-75. Bautista, J. and J. Pereira (2007). 'Ant algorithms for a time and space constrained assembly line balancing problem.' European Journal of Operational Research, 177(3): p: 2016-2032. Baybars (1986). 'A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem.' Management Science, 32(8): p: 909-932. Baykasoglu, A. and T. Dereli (2008). 'Two-sided assembly line balancing using an ant-colony-based heuristic.' International Journal of Advanced Manufacturing Technology, 36(5-6): p: 582-588. Baykasoglu, A. and L. Ozbakir (2007). 'Stochastic U-line balancing using genetic algorithms.' International Journal of Advanced Manufacturing Technology, 32(1-2): p: 139-147. Becker, C. and A. Scholl (2006). 'A survey on problems and methods in generalized assembly line balancing.' European Journal of Operational Research, 168(3): p: 694-715. Boysen, N., M. Fliedner and A. Scholl (2007). 'A classification of assembly line balancing problems.' European Journal of Operational Research, 183(2): p: 674-693. Dorigo, M., V. Maniezzo and A. Colorni (1991). 'The ant system: An autocatalytic optimizing process.' Thechnical Report 91-016 Revised, Dipartimento di Electronica. Dorigo, M., V. Maniezzo and A. Colorni (1996). 'Ant system: optimization by a colony of cooperating agents.' Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 26(1): p: 29-41. Kim, Y. K., J. Y. Kim and Y. Kim (2006). 'An endosymbiotic evolutionary algorithm for the integration of balancing and sequencing in mixed-model U-lines.' European Journal of Operational Research, 168(3): p: 838-852. Kim, Y. K., S. J. Kim and J. Y. Kim (2000). 'Balancing and sequencing mixed-model U-lines with a co-evolutionary algorithm.' Production Planning & Control, 11(p: 754-764. McMullen, P. R. and P. Tarasewich (2003). 'Using Ant Techniques to Solve the Assembly Line Balancing Problem.' IIE Transactions, 35(7): p: 605 - 617. McMullen, P. R. and P. Tarasewich (2006). 'Multi-objective assembly line balancing via a modified ant colony optimization technique.' International Journal of Production Research, 44(1): p: 27-42. Miltenburg, G. J. (1994). 'The U-line balancing problem.' Management Science, 40(10): p: 1378. Monden, Y. (1993). 'Toyota Production System, 2nd edn (Norcross, GA: Institute of Industrial Engineers).' Sabuncuoglu, I., E. Erel and A. Alp (2009). 'Ant colony optimization for the single model U-type assembly line balancing problem.' International Journal of Production Economics. Scholl, A. (1997). 'SALOME: A bidirectional branch-and-bound procedure for assembly line balancing.' INFORMS JOURNAL ON COMPUTING, 9(4): p: 319. Scholl, A., N. Boysen and M. Fliedner (2008). 'The sequence-dependent assembly line balancing problem.' OR-Spektrum, 30(3): p: 579. Taixiong, Z. and Y. Liangyi (2008). 'Optimal ant colony algorithm based multi-robot task allocation and processing sequence scheduling.' Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on, p. 5693-5698 Vilarinho, P. M. and A. S. Simaria (2006). 'ANTBAL: An ant colony optimization algorithm for balancing mixed-model assembly lines with parallel workstations.' International Journal of Production Research, 44(2): p: 291-303. Yang, F.-C. (2007). 'Superior/Inferior Segment-Discriminated Ant System for combinatorial optimization problems.' Proceedings of The 36th CIE Conference on Computers & Industrial Engineering, p: 1427-1442. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42838 | - |
| dc.description.abstract | 本研究針對多產品U型組裝線平衡/投料問題提出了蟻軍優化求解法,以一階段的求解方法同時處理作業配置和投料排序的問題,並詳細定義此種問題的數學模式。求解目標是在適當配置各工作站的組裝作業和投料順序之下得到:(1) 最小化生產週程時間及(2) 最小化絕對工作量偏差,並深入探討此兩種目標式的求解效果。本研究研擬兩種組裝模式的生產情形:(1) 組裝線的各組裝作業依照投料順序個別組裝不同的產品及(2) 相同工作站內的相鄰組裝作業共同組裝相同的產品。本研究提出蟻軍優化求解法,將蟻軍仿效為三種能力不同的部隊,評估三種不同的啟發式值以引導蟻兵建構作業配置解。每隻螞蟻必須先依照組裝作業的先後執行順序關係建置不違反限制的作業配置解以決定各工作站內須執行的組裝作業,再建置投料順序解以完成求解步驟。本研究使用擴大手法增加蟻軍的求解數,並使用優加劣減擇段系統費洛蒙更新方式,完成最佳解的搜尋過程。本研究開發一軟體系統實作提出的求解模式和啟發項,並對多個範例問題進行測試。數據驗證結果顯示,使用最小化絕對工作量偏差作為優化目標相較於使用最小化生產週程時間作為優化目標是無法提升組裝線的生產效能。另外,本研究所提出的蟻軍優化求解法相較於其他相關此問題的求解法可得到較好的結果。 | zh_TW |
| dc.description.abstract | The mathematical model of the mixed-model U-shaped assembly line balancing problem is first rigorously defined in this thesis. This research proposes an Ant Colony Optimization (ACO) method for the tasks of line balancing and model sequencing involved in the problem. The pitfall and fitness for the objective functions using the minimum cycle time (CT) and the absolute deviation of workloads (ADW) are discussed. Two operation scenarios are simulated for the assembly line to determine the cycle times of all of the subcycles: (1) each task assigned to a workstation is processing on an individual model instance, and (2) successive tasks assigned to a workstation are processing on the same model instance. An ant platoon consisting of three squads with different heuristic value evaluations is proposed to guide the solution construction for line balancing. The first task for an ant is to construct a sequence of assembly tasks subject to the precedence constraints and create workstation one after the other to host the tasks. The second task is to construct a model sequence. Our method uses a solution set augmentation technique to enlarge the number of solutions and then adopts the segment-based pheromone update strategy from the segment discriminated ant system (SDAS). A software prototype system is developed to implement the proposed method. Several numerical tests are conducted on benchmarks to evaluate the performance of the proposed method. Numerical results show that the ADW objective function, compared with the one with CT, is unable to maximize the line efficiency. In addition, the proposed ACO method significantly outperforms the existing solving algorithms in solving the discussed problems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:25:27Z (GMT). No. of bitstreams: 1 ntu-98-R96546029-1.pdf: 1883408 bytes, checksum: 5dbd496efd32447279074630597a44dd (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Abstract i
Table of Contents iii List of Figures v List of Tables vii Glossary And Notations ix Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Objective 2 1.3 Research Procedure 3 1.4 Organization of This Research 4 Chapter 2 Literature Review 5 2.1 Assembly Line Balancing Problem 5 2.1.1 ACO method Applied to ALBPs 11 2.2 Ant Colony Optimization 15 2.2.1 Solution Construction in the ACO 17 2.2.2 Ant Colony Optimization Algorithms 21 2.2.3 Technologies of Ant Colony Optimization 22 2.3 Summary of Literature Review 30 Chapter 3 Solution Augmented Ant Platoon Optimization Method for Solving the MMUALBP 31 3.1 MMUALBP 31 3.2 Mathematical Model 40 3.2.1 Data Structure 40 3.2.2 Objective Function 45 3.2.3 Constraints 49 3.3 Ant Colony Optimization Method for the MMUALBP 50 3.3.1 Data Requirements for Task Assignment and Workstation Formation 50 3.3.2 Data Requirements for Model Sequencing 59 3.3.3 The Solution Augmented Superior/Inferior Segment-Discriminated Ant Platoon for the MMUALBP 63 3.4 Summary of this chapter 71 Chapter 4 Numerical Tests for the SA-SDAP to Solve MMUALBPs 73 4.1 The SA-SDAP Optimization System 73 4.2 The Data set of the Test Problems 75 4.3 Comparison of Numerical Results 78 4.3.1 Result Comparison of Platoon Heuristic Ratios 78 4.3.2 Result Comparisons with the EEA Method 84 4.4 Effectiveness Comparison of Objectives CT and ADW 88 4.5 Summary 92 Chapter 5 Conclusion and Suggestions for Future Work 93 5.1 Conclusion 93 5.2 Suggestion for Future Work 94 References 95 Appendix A Thomopoulos 19 tasks Problem 97 Appendix B Kim 61 tasks Problem 98 Appendix C Arcus 111 tasks Problem 101 | |
| dc.language.iso | en | |
| dc.subject | 產品組合 | zh_TW |
| dc.subject | 投料排序 | zh_TW |
| dc.subject | 作業配置 | zh_TW |
| dc.subject | 組裝線平衡 | zh_TW |
| dc.subject | 蟻拓最佳化演算法 | zh_TW |
| dc.subject | U型組裝線 | zh_TW |
| dc.subject | Assembly line balancing problem | en |
| dc.subject | Ant Colony Optimization | en |
| dc.subject | Mixed-model U-shaped line | en |
| dc.subject | Model sequencing | en |
| dc.subject | Line balancing | en |
| dc.title | 多產品U型組裝線平衡/投料問題的蟻軍優化求解法 | zh_TW |
| dc.title | Ant Colony Optimization for the Mixed-Model U-Shaped Assembly Line Balancing Problem | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭人介,徐旭昇,陳湘鳳 | |
| dc.subject.keyword | 組裝線平衡,作業配置,投料排序,產品組合,U型組裝線,蟻拓最佳化演算法, | zh_TW |
| dc.subject.keyword | Assembly line balancing problem,Line balancing,Model sequencing,Mixed-model U-shaped line,Ant Colony Optimization, | en |
| dc.relation.page | 105 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
